
Developing Applications with Open
MPI on an OSCAR-Based Cluster

Jeffrey M. Squyres
Andrew Lumsdaine

Indiana University, USA

Thomas Naughton
Stephen L. Scott

Oak Ridge National Laboratory,
USA

Speakers

Thomas Naughton, Oak Ridge National
Laboratory, USA

• naughtont@ornl.gov
Jeffrey M. Squyres, Indiana University, USA

• jsquyres@open-mpi.org

mailto:naughtont@ornl.gov
mailto:jsquyres@open-mpi.org

Tutorial Goals

• OSCAR
Brief background
Cluster installation overview
Helpful tools for administrators and users

• Introduce Open MPI
• Advanced MPI techniques

Multi-threading and concurrency
MPI-2 dynamic processes

Target Audiences

• System / network administrators
Setup and tune MPI for a parallel resource

• MPI users
Write and / or run MPI applications

Overview

• OSCAR Introduction
• Open MPI Introduction
• Installing OSCAR and Open MPI
• Threading and MPI
• MPI-2 Dynamic Processes
• Conclusions

Open Source Cluster
Application Resources

What is OSCAR?

• Framework for cluster installation, configuration
and management

Integrates commonly used cluster tools
Automatically configures cluster components
Wizard based cluster installation

• Operating system
• Cluster environment (Administration & Operation)

• Advantages
Increase consistency among cluster builds
Reduce time to build / install a cluster
Reduces need for expertise

OSCAR Background
• Concept first discussed in January 2000

• First organizational meeting in April 2000
Cluster assembly is time consuming & repetitive
Nice to offer a toolkit to automate

• First public release in April 2001

• Use “best practices” for HPC clusters
Leverage wealth of open source components
Targeted modest size cluster (single network switch)

• Form umbrella organization to oversee cluster efforts
Open Cluster Group (OCG)

Open Cluster Group
• Informal group formed to make cluster computing more practical for HPC

research and development

• Membership is open, directed by steering committee
Research/Academic
Industry

• Current active working groups
OSCAR (core group)
Thin-OSCAR (Diskless Beowulf)
HA-OSCAR (High Availability)
SSS-OSCAR (Scalable Systems Software)
SSI-OSCAR (Single System Image)
BIO-OSCAR (Bioinformatics cluster system)

OSCAR Core Organizations

• Bald Guy Software
• Intel
• RevolutionLinux

• Indiana University
• Oak Ridge National Lab.
• Université de Sherbrooke
• Louisiana Tech Univ.
• Canada’s Michael Smith

Genome Sciences Centre

2005-2006

The OSCAR strategy

Offer variety of flavors: HA-
OSCAR, Thin-OSCAR, SSS-

OSCAR, SSSi-OSCAR

Open source
OSCAR with

Linux

Commercially supported
value-added instantiations of

OSCAR

• OSCAR is a snap-shot of best-known-methods for building,
programming and using clusters of a “reasonable” size.

• To bring uniformity to clusters, foster commercial versions of
OSCAR, and make clusters more broadly acceptable.

• Consortium of research, academic & industry members cooperating
in the spirit of open source.

OSCAR v4.0/4.1 Feature List
• Red Hat 9.0, Fedora Core 2 support on x86.
• Experimental Mandrake 10.0 support on x86.
• Experimental Red Hat Enterprise Linux (RHEL) 3 on Itanium and x86.
• Fully integrated support for new RPM dependency finder to help build

server and clients (Depman/PackMan).
• Ganglia now included in the default package set.
• Torque now included / OpenPBS is now an optional package.
• Enhanced testing framework to use the APITest tool for more thorough

post installation testing.
• Multiple bug fixes and Wizard improvements.
• Updated user interface (updated wizard)

state @ May 2005

OSCAR Components
• Administration/Configuration

Installers: System Installation Suite (SIS), Cluster Command and Control (C3), OPIUM,
Kernel picker
Config cluster services: DHCP, NFS, NTP, …
Security: Pfilter, OpenSSH

• HPC Services/Tools
Parallel: LAM/MPI, MPICH, PVM
Batch/Scheduler: Torque, Maui, OpenPBS
Development: HDF5
Monitoring: Ganglia, Clumon
Other 3rd party OSCAR Packages

• Core Infrastructure/Management
Management: SIS, C3, Env-Switcher
OSCAR tools: OSCAR DAtabase (ODA), OSCAR Package Downloader (OPD)

System Installation Suite (SIS)

Enhanced suite to the SystemImager tool
Adds SystemInstaller and SystemConfigurator

• SystemInstaller: interface to installation, includes a
stand-alone GUI – Tksis. Allows for description based
image creation.

• SystemImager: base tool used to construct & distribute
machine images.

• SystemConfigurator: extension that allows for on-the-fly
style configurations once the install reaches the node,
e.g., /etc/modules.conf

Switcher

• Switcher provides a clean interface to edit
environment without directly tweaking .dot files

e.g., PATH, MANPATH (path for mpicc, etc.)

• Edit / set at both system and user level

• Leverages existing Modules system

• Changes are made to future shells
To help with “foot injuries” while making shell edits
Modules already offers facility for current shell
manipulation, but no persistent changes

Switcher Examples
• List all defined tags for the name, mpi :

root# switcher mpi
lam-7.0.6
mpich-1.2.5

• List / change user-level defaults:
shell$ switcher mpi –show
default=mpich-1.2.5
shell$ which mpicc
/opt/mpich-1.2.5/bin/mpicc
shell$ switcher mpi = lam-7.0.6

• Examine new user-level defaults (i.e., future shells):
shell$ which mpicc
/opt/lam-7.0.6/bin/mpicc

• Remove user-level default:
shell$ switcher mpi = none
shell$ switcher mpi --rm-attr default

C3 Power Tools

• Command-line interface for cluster system
administration and parallel user tools.

• Parallel execution cexec
Execute across a single cluster or multiple clusters at same time

• Scatter/gather operations cpush/cget
Distribute or fetch files for all node(s)/cluster(s)

• Used throughout OSCAR and as underlying
mechanism for tools like OPIUM’s useradd
enhancements.

C3 Building Blocks

• User & system tools
cpush - push single file -to- directory
crm - delete single file -to- directory
cget - retrieve files from each node
ckill - kill a process on each node
cexec - execute command on each node
• cexecs – serial mode, useful for debugging

C3 Building Blocks (2)

• C3 management tools
clist – list each cluster available and it’s type
cname – returns a node name from a given
node position
cnum – returns a node position from a given
node name

• System administration
cpushimage - “push” image across cluster
cshutdown - Remote shutdown of cluster

C3 Power Tools

• Example to run hostname on all nodes of default cluster:
shell$ cexec hostname

• Example to push an RPM to /tmp on the first 3 nodes
shell$ cpush :1-3 helloworld-1.0.i386.rpm /tmp

• Example to get a file from node1 and nodes 3-6
shell$ cget :1,3-6 /tmp/results.dat /tmp

* Can leave off the destination with cget and will use the same location as source.

Open MPI

Technical Contributors

• Indiana University
• The University of Tennessee
• Los Alamos National Laboratory
• High Performance Computing Center,

Stuttgart
• Sandia National Laboratory - Livermore

MPI From Scratch!

• Developers of FT-MPI, LA-MPI, LAM/MPI
Kept meeting at conferences in 2003
Culminated at SC 2003: Let’s start over
Open MPI was born

• Started serious design and coding work
January 2004

All of MPI-2 except one-sided operations
Demonstrated at SC 2004

MPI From Scratch: Why?

• Each prior project had different strong points
Could not easily combine into one code base

• New concepts could not easily be
accommodated in old code bases

• Easier to start over
Start with a blank sheet of paper
Decades of combined MPI implementation
experience

MPI From Scratch: Why?

• Merger of ideas from
FT-MPI (U. of Tennessee)
LA-MPI (Los Alamos)
LAM/MPI (Indiana U.)
PACX-MPI (HLRS, U. Stuttgart)

…one MPI to rule them all

PACX-MPI
LAM/MPI

LA-MPI
FT-MPI

Open MPIOpen MPI

Open MPI Project Goals

• All of MPI-2
• Open source

Vendor-friendly license (modified BSD)
• Prevent “forking” problem

Community / 3rd party involvement
Production-quality research platform (targeted)
Rapid deployment for new platforms

• Shared development effort

Design Goals

• Extend / enhance previous ideas
Message fragmentation / reassembly
Design for heterogeneous environments

• Multiple networks (run-time selection and striping)
• Node architecture (data type representation)

Automatic error detection / retransmission
Process fault tolerance

Design Goals

• Design for a changing environment
Hardware failure
Resource changes
Application demand (dynamic processes)

• Portable efficiency on any parallel resource
Small cluster
“Big iron” hardware
“Grid” (everyone a different definition)
…

Implementation Goals

• All of MPI-2
• Low latency

E.g., minimize memory management traffic
• High bandwidth

E.g., stripe messages across multiple networks
• Production quality
• Thread safety and concurrency

(MPI_THREAD_MULTIPLE)

Implementation Goals

• Natively support
commodity networks

TCP
Shared memory
Myrinet

• GM, MX
Infiniband

• mVAPI, OpenIB
Portals
Quadrics Elan4 §
LAPI §

(§ = future)

• Based on a
component
architecture

Flexible run-time
tuning
“Plug-ins” for different
capabilities (e.g.,
different networks)

…additional slides at
end about components

OSCAR Installation

Server Installation and Configuration

• Install Linux on server machine (cluster head node)
Workstation install w/ software development tools
57-page installation document!

• (quick install available)

• Download copy of OSCAR and unpack on server
• Configure and install OSCAR on server

Readies the wizard install process
• Configure server Ethernet adapters

Public
Private

• Launch OSCAR Install Wizard

OSCAR Wizard

Step 0

Enables you to download
additional packages

OPD – Oscar Package
Downloader does download

OPDer – GUI frontend to OPD

OPDer

clumon and PVFS
selected for download

OPDer (2)

Alternate repositories,
possibly a local machine

Step 1

Select OSCAR packages
to install.

Package Selector

Core packages are
automatically selected
for you and can not be
“unselect”

Download does not
equal installation!

Packages downloaded
with OPDer are
selected for installation
here

Step 2

Configure OSCAR
packages that require
special configuration
tasks

Package Configuration

Environment Switcher does
configuration for default MPI
use

make selection

Step 3

Install OSCAR Server
(cluster head node)
specific packages on
cluster head node

May take a few minutes

Wait for Success notice…

Install Server Packages

success

Step 4

Specify and build
system image for client
(compute) nodes

Build Image Configuration

name your image

list of packages

package file location

disk partition file location

static or dynamic

halt, reboot, beep

enable multicast

Building Image

showing progress

Building Image Finished

success

Step 5

Define client nodes

Define Client Nodes
specify image name (from step 4 – or other
saved image)

client IP domain name

client base name (oscarnodeXXX)

node count

starting index to append to base

padding to client names (3 = oscarnode009)

starting IP address

Subnet Mask

Default Gateway

Define Client Nodes

success

Step 6

in one operation – setup
networking for all
cluster client nodes

for first time in
installation process we
will “touch” the client
nodes

Setup network – Initial
Window

machines named as
specified in prior step 5

IP address as specified
in prior step 5

Scan network for
MACs or import from
file

Setup network – Scanning
Network

found MAC addresses will
show here for network setup

stop collecting when done

Setup network – Initial
Window

found and assigned all
MAC addresses

Reboot Clients

reboot on own – “post
install action” from step 4

or

manually reboot

Step 7

only after ALL clients
have rebooted

runs “post install”
scripts for packages that
have them

cleanup and reinitialize
where needed

Complete Setup

success

Step 8

test suite provided to
ensure that key cluster
components are
functioning properly

Test Cluster Setup

All Passed!!!

* Note on v4.1 there are additional APItests for PVM, which are not shown here.

Quit OSCAR Wizard

Your OSCAR cluster is
now ready to use

Add OSCAR Clients

increase the number of
compute nodes in the cluster

Add OSCAR Clients
Operates in similar manner to steps
5, 6, and 7 in OSCAR installation

Behind the scene action differs
somewhat…

step 5
step 6

step 7

compare to standard
install process:

Delete OSCAR Clients

decrease the number of
compute nodes in the
cluster

Delete OSCAR Clients

client selected to delete

Delete OSCAR Clients

success

Install/Uninstall OSCAR Package

select to install or uninstall
an OSCAR package

Install / Uninstall Packages

Installing Open MPI
on OSCAR

Getting Open MPI Software

• First [beta] release “soon”
http://www.open-mpi.org/

Source code repository will eventually be open
• Available in multiple forms:

Source code tarball
SRPM

• Future
Mac OSX package
OSCAR package

http://www.open-mpi.org/sc-tutorial/

Building Open MPI From a
Distribution Tarball

• Expand the tarball (on NFS sever)
shell$ cd /home/build
shell$ tar zxf openmpi-0.9b1.tar.gz

• Configure the source code
shell$ cd openmpi-0.9b1
shell$./configure \
--prefix=/opt/openmpi-0.9b1 \
--with-ptl-gm=/san/shared/gm \
--with-ptl-ib=/san/shared/mellanox

Building Open MPI From a
Distribution Tarball

• Build the software
shell$ make all

(go visit Starbucks)

• Install to the head node and cluster
root# make install
root# cexec make install

Create New Modulefile

• Copy from existing modulefile
root# cd /opt/env-switcher/share/mpi
root# cp lam-7.0.6 openmpi-0.9b1

• Modify for Open MPI paths, etc.
(see next slide)

• Distribute this modulefile out to cluster
cpush /opt/env-switcher/share/mpi/openmpi-0.9b1

Changes vs. LAM Modulefile
#%Module -*- tcl -*-

Open MPI modulefile for OSCAR clusters

proc ModulesHelp { } {

puts stderr "\tThis module adds Open MPI to the PATH and MANPATH."

puts stderr "\tHence, the mpicc, mpiCC, mpif77, and mpirun commands"

puts stderr "\tthat you run will be from Open MPI."

}

module-whatis "Sets up the Open MPI environment for an OSCAR cluster."

Don't let any other MPI module be loaded while this one is loaded

conflict mpi

It's real simple. Append to the PATH and to the MANPATH.

append-path PATH /opt/openmpi-0.9b1/bin

append-path MANPATH /opt/openmpi-0.9b1/man

Modify Default MPI
• What is the default set to now?

root# switcher mpi --show
default=lam-7.0.6

• Query user defaults in same fashion.
root# switcher mpi --show --user sgrundy
shell$ switcher mpi --show

• Set user level defaults
shell$ switcher mpi = openmpi-0.9b1

Threads and MPI

Threading

• Multi-threading can improve performance
Better CPU utilization
IO latency hiding
Simplified logic (letting threads block)

• Most useful on SMPs
Each thread can have its own CPU

• Overloading CPU’s can be ok
Depends on application (e.g., latency hiding)
Even on uniprocessors

Threads and MPI

• Extend the threaded model to multi-level
parallelism

Threads within an MPI process
Possibly spanning multiple processors
Allowing threads to block in communication

• Two kinds:
Application-level threading
Implementation-level threading

Application Level Threading

• Freedom to use blocking MPI functions
Allow threads to block in MPI_SEND /
MPI_RECV
Simplify application logic

Separate and overlap communication and
computation

Implementation Threading

• Asynchronous communication progress
Allow communication “in the background”
Even while no application threads in MPI

• Can help single-threaded user applications
Non-blocking communications can progress
independent of application

Asynchronous Progress

MPI implementation

App

One
thread

Multiple
threads

One thread

Multiple threads

What About “One Big Lock”?

• Put a mutex around MPI calls
Only allow one application thread in MPI at
any given time
Allows a mutli-threaded application to use MPI

• Problem: can easily lead to deadlock
Example

• Thread 1 calls MPI_RECV
• Thread 2 later calls matching MPI_SEND

Why Not Use Non-Blocking?

• Why not use MPI_ISEND? (and friends)
This has worked for years
MPI implementations already support it
Allows at least some degree of overlap

• Threads can allow simplicity of logic
Do not have to poll for MPI completion
Concurrency within application
Let threads block in MPI_SEND / MPI_RECV

Doesn’t MPI Do This Already?

• MPI_SEND: Does it progress after return?
Example: in TCP, MPI typically calls write(2)
OS buffers and sends “in the background”
But does not effect MPI flow control

• If the MPI implementation can use threads:
True asynchronous progress
Progress pending communications while
application is outside of MPI (even flow
control)

Threads and MPI

• MPI does not define if a MPI process is a
thread or an OS process

Threads are not addressable
MPI_SEND(…thread_id...) is not possible

• MPI-2 specification
Does not mandate thread support
Does define “Thread Compliant MPI”
Specifies four levels of thread support

Thread Compliant MPI

• All MPI library calls are thread safe
• Blocking calls block the calling thread only

and allow progress on other threads

Time
MPI_Send (self...)Thread1

Thread2
MPI_Recv (self...)

MPI_Recv (other...)Thread3

Threads and MPI

• Instead of MPI_INIT:
MPI_INIT_THREAD(argc, argv, requested,
provided)
Tells MPI application threading requirements
MPI returns what it can provide

• If MPI cannot support a requested thread
level, it returns its highest supported level

MPI Threading Rules

• MPI_INIT_THREAD and MPI_FINALIZE
can only be called once

Should only be called by a single thread
Both should be called by the same thread
Known as the main thread

Threads and Requests

• Multiple threads should not attempt to
complete the same request

• Erroneous example:

Time

MPI_Wait (req...)Thread1

MPI_Wait (req...)Thread2

Threads and Exceptions

• Exception handlers can arise in a different
thread context than the one making the
MPI call

Error handler etc

User Thread MPI_Send (..req..)

Time

Internal thread has a problem, throws exception

Passing com request to
internal send thread

Internal Thread

Performing send

More Thread Rules

• Undefined behavior of MPI call when:
If a thread executes an MPI call that is
cancelled by another thread
If a thread executes an MPI call and catches a
signal

• How to deal with signals?

Avoiding Signal Problems

• Create extra thread that waits in
sigwait()

• MPI threads mask signals

MPI_Send / Recv / Wait / etc.

OS signals etc

Thread catches almost all signals

User Thread

Extra Thread

sigmask()

sigwait()
Time

MPI Levels of Thread Support

• MPI_THREAD_SINGLE
• MPI_THREAD_FUNNELED
• MPI_THREAD_SERIALIZED
• MPI_THREAD_MULTIPLE

MPI_THREAD_SINGLE

• Application is NOT allowed to use threads
This allows an MPI implementation to avoid
potentially expensive locking *

• Might cause problems / errors if the
application actually does use threads

So don’t do it!

* Specification is unclear on if the MPI implementation can use threads

MPI_THREAD_FUNNELED

• The user application can be multi-threaded
but only the main thread calls MPI
functions

MPI Send & Recvs

Time

MPI_Send / Recv / Wait / etc.User Thread

MPI_Init_thread MPI_Finalize

Other User threads Threads cannot make MPI calls

MPI_THREAD_SERIALIZED

• Users application is multi-threaded any thread
can make MPI calls

But only one thread can / will be in MPI at a time

MPI_Send(..)

Time

User Thread

MPI_Init_thread

MPI_Send(..)

User Thread MPI_Recv(..)

MPI_Recv(..)User Thread

MPI_THREAD_SERIALIZED

• Application can be multi-threaded any thread can
make MPI calls

But only one thread can / will be in MPI at a time

Time

User Thread MPI_Send(..) MPI_Send(..)

User Thread MPI_Recv(..)

MPI_Recv(..)

MPI_Init_thread

User Thread

MPI_THREAD_MULTIPLE

• Application can be multi-threaded and any
thread can make an MPI call at any time

Least restricted and most flexible
programming model

MPI_Send(..)User Thread

MPI_Init_thread

MPI_Send(..)

User Thread MPI_Recv(..)MPI_Recv(..)

Time

Threads and MPI

• MPI_QUERY_THREAD
Returns provided level of thread support
Useful if MPI_INIT was invoked (vs.
MPI_INIT_THREAD)
Thread level may be set via environment variable!

• MPI_IS_THREAD_MAIN
Returns true if this is the thread that invoked MPI_INIT
/ MPI_INIT_THREAD

Threading Example

• Use a common master / slave framework
Master sends out work
Workers receive work, do work, return work
Loop until complete

• Show how threads can be beneficial in this
scenario

Method 1: Pure Master / Slave

• Total of N processes
1 Master process
(N-1) Slave processes

• Master
Send initial set of work
Loop receiving /
sending

• Worker
Loop: receive, work,
send

Master

…
Slave 2 Slave N-1Slave 1

Pure Master / Slave

Master Slave 1 Slave N-1

Work
Results
FinishTime

Application main()

MPI_Init(…);
MPI_Comm_rank(…, &rank);
if (rank == 0)

do_master()
else

do_slave()
MPI_Finalize()

Master Main Loop

for (i = 0; i < n; ++i)
MPI_Send(work[i], …, slaves[i], …);

while (i < total_work) {
MPI_Recv(answer, …, MPI_ANY_SOURCE, …);
process_answer(answer);
if (++i < total_work) {

MPI_Send(work[i], …, slave[X], …);
}else {

MPI_Send(you_are_done, …,slave[X], …);
}

}

Slave Main Loop

while (1) {
MPI_Recv(work, …);
if (work == you_are_done)

break;
answer = do_work(work);
MPI_Send(answer, …);

}

Summary

• Benefits
Easily understood paradigm
Robust algorithm

• Drawbacks
Master process cannot do any work other than
calculating the final result
To improve: Master needs to do work and
control simultaneously

Method 2:
Combined Master / Slave

• Total of N MPI
processes

N Slave processes
Master is combined
with Slave 1

• Not wasting a full
process for the Master

…
Slave 2 Slave N

Master

Slave 1

Combined Master / Slave

• Combined master and slave routines in 1st
Slave

Send / receive work
Do work / calculate answers

• Use non-blocking receives to collect
results

Use MPI_TEST calls to poll for results
• Master must track state of receives rather

than simple outstanding work counter

Combined Master / Slave

• New combined master algorithm
Send initial work set

• Post MPI_IRECV for each item of work sent
Loop

• If work available, do work locally
• Check for completion of other slaves
• If completion, send more work or “finish” message

End loop when no more work to be done and
all slaves finished

Combined Master / Slave

…Master /
Slave 1 Slave 2 Slave N

Work
Results
FinishTime

Combined Master / Slave

…Master /
Slave 1 Slave NSlave 2

Time
Overall completion time is shorter, BUT…

Combined Master / Slave

…Master /
Slave 1 Slave 2 Slave N

Idle workers awaiting response from master

Time
Results cannot be processed while master
is working even when using IRECV / TEST

Summary

• Benefits
Does not waste a process for the Master

• Drawbacks
Complicated application code
Master does not asynchronously process
messages while working
Not just simple overlapping of computation
and communication
Stalls the work pipeline -- idle workers

Method 3: Thread Based
Combined Master / Slave

• Use threads
Master code in one thread
Slave code in another thread
Independent progress

• Code now almost identical to Method 1
Simplified code / less custom code = less
errors

Thread Based
Combined Master / Slave

• Total of N MPI
processes

N Slave processes
Master is combined
with Slave 1

• Similar concept to
Method 2 (one
process)

• But similar code to
Method 1 (simple
code)

…
Slave 2 Slave N

Master

Slave 1

Application main()

MPI_Init_thread(…,
MPI_THREAD_MULTIPLE, …);

MPI_Comm_rank(…, &rank)
if (rank == 0)

pthread_create(…,do_master, …);
do_slave();
pthread_join(…);
MPI_Finalize();

Thread Based
Combined Master / Slave

Master /
Slave 1 Slave 2 Slave N

Time

Shortest completion time
Workers not left idle
Threads use blocking MPI_SEND

and MPI_RECV

Work
Results
Finish

Summary

• Benefits
Simple code -- similar to method 1
Overlap communication and computation

• Drawbacks
1st Slave might run somewhat slower than its
peers

Dynamic Processes

Dynamic Processes

• Adding processes to a running job
As part of the algorithm i.e. branch and bound
When additional resources become available
Some master-slave codes where the master is
started first and asks the environment how
many processes it can create

• Joining separately started applications
Client-server or peer-to-peer

• Handling faults/failures

MPI-1 Processes

• All process groups are derived from the
membership of the MPI_COMM_WORLD

No external processes
• Process membership static

Simplified consistency reasoning
Fast communication (fixed addressing) even
across complex topologies
Interfaces well to many parallel run-time
systems

Static MPI-1 Job

• MPI_COMM_WORLD
• Contains 16

processes

MPI_COMM_WORLD

Static MPI-1 Job

• MPI_COMM_WORLD
• Contains 16

processes
• Can only subset the

original
MPI_COMM_WORLD

No external processes

MPI_COMM_WORLD

Derived comm

Disadvantages of Static Model

• Cannot add processes
• Cannot remove processes

If a process fails or otherwise disappears, all
communicators it belongs to become invalid

Fault tolerance undefined

Types of Communicators

• Intracommunicator
“Normal” communicator
MPI_COMM_WORLD is an intracommunicator
One group of processes

• Intercommunicator
Two groups of processes: local and remote
Always communicate relative to remote group

• MPI_SEND / MPI_RECV can use both

Continue Previous Example

• MPI_COMM_WORLD
and one derived
communicator

Both are intracomms

MPI_COMM_WORLD

Derived comm

Continue Previous Example

• MPI_COMM_WORLD
and one derived
communicator

Both are intracomms
• Create another

derived communicator
Now have 2 groups

MPI_COMM_WORLD

Derived comm

Another comm

Continue Previous Example

• MPI_COMM_WORLD
and one derived
communicator

Both are intracomms
• Create another

derived communicator
Now have 2 groups

• Create intercomm
from the two groups

MPI_COMM_WORLD

Derived comm

Another comm

MPI-2 Process Management

• MPI-2 provides “spawn” functionality
Launch a child MPI job from a parent MPI job

• Some MPI implementations support this
Open MPI
LAM/MPI
NEC MPI
Sun MPI
…

MPI-2 Spawn Functions

• MPI_COMM_SPAWN
Starts a set of new processes with the same
command line (SPMD)

• MPI_COMM_SPAWN_MULTIPLE
Starts a set of new processes with potentially
different command lines
Different executables and / or different
arguments (MPMD)

Spawn Semantics

• Group of parents collectively call spawn
Launches a new set of children processes
Children processes become an MPI job
An intercommunicator is created between
parents and children

• Parents and children can then use the
usual MPI functions to pass messages

MPI_SEND / MPI_RECV
etc.

Spawn Example

Spawn Example

Parent processes collectively call MPI_COMM_SPAWN

Spawn Example

Two processes are launched

Spawn Example

MPI_INIT(…)

Children collectively call MPI_INIT

Spawn Example

Children create their own MPI_COMM_WORLD

Spawn Example

Intercommunicator

An intercommunicator is formed between parents and children

Spawn Example

Intercommunicator

Intercommunicator is returned from MPI_COMM_SPAWN

Spawn Example

Intercommunicator

MPI_COMM_GET_PARENT(…)

Children call MPI_COMM_GET_PARENT to get intercommunicator

How is This Useful?

• It isn’t… yet (IMNSHO)
Can to PVM-style launching
“./master” launches its own slaves
But mpirun can do MPMD launches with no
user code changes -- so why bother?

• More interesting / useful for fault scenarios
A node dies
Spawn process(es) to replace the dead ones
Technology not quite there… yet

MPI “Connected”

• “Two processes are connected if there is a
communication path directly or indirectly
between them.”

E.g., belong to a common communicator
SPAWN Parents and children are connected

• Connectivity is transitive
If A is connected to B, and B is connected to C
A is connected to C

MPI “Connected”

• Why does “connected” matter?
MPI_FINALIZE is collective over set of
connected processes
MPI_ABORT may abort all connected
processes

• How to disconnect?
…stay tuned

Multi-Stage Spawning

• What about multiple spawns?
Can sibling children jobs communicate
directly?
Or do they have to communicate through a
common parent?

Is all MPI dynamic process
communication hierarchical in nature?

Multi-Stage Spawning

Intercommunicator

Multi-Stage Spawning

Multi-Stage Spawning

Do we have to
do this?

Multi-Stage Spawning

Or can we do
this?

Establishing Communications

• MPI-2 has a TCP socket-style abstraction
Process can accept and connect connections
from other processes

• Client-server interface
MPI_COMM_CONNECT
MPI_COMM_ACCEPT

Establishing Communications

• How does the client find the server?
With TCP sockets, use IP address and port
What to use with MPI?

• Use the MPI name service
Server opens an MPI “port”
Server assigns a public “name” to that port
Client looks up the public name
Client gets port from the public name
Client connects to the port

Server Side

• Open and close a port
MPI_OPEN_PORT(info, port_name)
MPI_CLOSE_PORT(port_name)

• Publish the port name
MPI_PUBLISH_NAME(service_name, info,
port_name)
MPI_UNPUBLISH_NAME(service_name, info,
port_name)

Server Side

• Accept an incoming connection
MPI_COMM_ACCEPT(port_name, info, root,
comm, newcomm)
comm is a intracommunicator
newcomm is an intercommunicator

Client Side

• Lookup port name
MPI_LOOKUP_NAME(service_name, info,
port_name)

• Connect to the port
MPI_COMM_CONNECT(port_name, info,
root, comm, newcomm)
comm is a intracommunicator
newcomm is an intercommunicator

Connect / Accept Example

Connect / Accept Example

Port A

Server calls MPI_OPEN_PORT

Connect / Accept Example

ocean:Port A

Server calls MPI_PUBLISH_NAME(“ocean”, info, port_name)

Connect / Accept Example

ocean:Port A

Server blocks in MPI_COMM_ACCEPT(“Port A”, …)

Connect / Accept Example

ocean:Port A

Client calls MPI_LOOKUP_NAME(“ocean”, …), gets “Port A”

Connect / Accept Example

ocean:Port A

Client calls MPI_COMM_CONNECT(“Port A”, …)

Connect / Accept Example

ocean:Port A

Intercommunicator formed; returned to both sides

Connect / Accept Example

Server calls MPI_UNPUBLISH_NAME(“ocean”, …)

Connect / Accept Example

Server calls MPI_CLOSE_PORT

Connect / Accept Example

Both sides call MPI_COMM_DISCONNECT

How is This Useful?

• Only with MPI_THREAD_MULTIPLE
MPI_COMM_ACCEPT blocks!

• Connect to a long-running MPI job
Query current status
Change direction of the job

• Large scale distributed computing
A la Distributed.net, SETI@Home, etc.
Secretary’s machine launches cron job at
6pm, MPI_COMM_CONNECTs to server

Summary

• Summary
Server opens a port, publishes public “name”
Client looks up public name, connects
Server unpublishes name, closes port
Both sides disconnect

Similar to TCP sockets / DNS lookups

• Useful in a variety of situations

MPI_COMM_JOIN

• A third way to connect MPI processes
User provides a socket between two MPI
processes
MPI creates an intercommunicator between
the two processes

Will not be covered in detail here

Collective Operations

• Collective operations are defined on both
intra- and intercommunicators

Hence, can use collectives on the
communicators returned by SPAWN,
ACCEPT, CONNECT

• However -- beware!
Intracommunicator collectives are “familiar”
Intercommunicator collectives are different
Read the MPI-2 chapter on “Extended
Collectives”

Disconnecting

• Once communication is no longer required
MPI_COMM_DISCONNECT
Waits for all pending communication to
complete
Then formally disconnects groups of
processes -- no longer “connected”

• Cannot disconnect MPI_COMM_WORLD

Conclusions

Takeaway Points

• OSCAR
Cluster configuration & installation
Common tools to manage / use cluster
Reduces time and expertise costs

• Advanced MPI techniques
Threads and MPI (e.g., blocking in threads)
Dynamic processes: spawn, accept / connect
Open MPI components / run-time tuning
(see extra slides)

Takeaway Points

• Open MPI is the culmination of years of
research and MPI implementation
experience

Designed for research and production usage
External collaboration encouraged!
Vendor-friendly license

• First [beta] release “soon”
• Sign up on “announcement” mailing list

Questions?

http://oscar.openclustergroup.org/
http://www.open-mpi.org/

Additional Slides

Not enough time to cover this
material during the tutorial

Open MPI Architecture

Traditional MPI Implementations

• Monolithic in nature
Large, unwieldy, tightly-integrated code
Difficult to maintain

• Practical difficulties for 3rd parties
Hard / impossible to learn code base
Forking of original code base

This has stifled independent research

A New Approach:
Components in MPI

• LAM/MPI introduced first components-
based MPI implementation

Think “plug-in”, like Netscape
“System Services Interface” (SSI)
Small, independent components
Four different component types
Eased implementation / maintenance
Allowed 3rd parties to explore and research

• Provided the foundation for this work

Components

• Formalized interfaces
Specifies “black box”
implementation
Different
implementations
available at run-time
Can compose different
systems on the fly

Caller

Interface

A B C

Components

• Formalized interfaces
Specifies “black box”
implementation
Different
implementations
available at run-time
Can compose different
systems on the fly

Interface 1 Interface 2 Interface 3

Caller

Components

• Formalized interfaces
Specifies “black box”
implementation
Different
implementations
available at run-time
Can compose different
systems on the fly

Caller

Interface 1 Interface 2 Interface 3

Components

• Formalized interfaces
Specifies “black box”
implementation
Different
implementations
available at run-time
Can compose different
systems on the fly

Caller

Interface 1 Interface 2 Interface 3

Components in HPC

• Components traditionally associated with
heavy-weight systems such as:

CORBA
COM
Java beans

• HPC needs much smaller / simpler / faster
• Components therefore only slowly being

accepted by the HPC community

Open MPI and Components

• Modular Component Architecture (MCA)
• Logical progression of LAM’s component

architecture research
More component types
More services provided to components
Decentralized management

• End result is a “highly pluggable” MPI

Component Benefits

• Stable, production quality environment for
3rd party researchers

Can experiment inside the MPI
implementation
Small learning curve (learn a few components,
not the entire implementation)

• Vendors can quickly roll out support for
new platforms

Write a few components

Open MPI and Components

• Components are shared libraries
Central set of components in Open MPI
installation tree
Users can also have components under
$HOME

• Can add / remove components after install
No need to recompile / re-link MPI apps
Download / install new components
Develop new components safely

Example: Cluster Growth

• Sysadmin installs one set of components
• Later adds Infiniband to the cluster

Simply add the IB component(s)
• Users unaware of change

No need to recompile / re-link MPI apps
Apps start seeing IB-level performance

Example: User Components

• 3rd party researchers writing components
Too unstable for general usage
Cannot be installed at system level

• Solution: developer installs development
component under $HOME

Open MPI install still finds / uses it at run time

Four-Tier MCA Organization

• Architecture
Top-tier “glue” and service provider

• Frameworks in the architecture
Targeted to specific functionality

• Components in each framework
Implementations of a framework

• Modules in each component
Components paired with resources

MCA Organization
(not a call stack!)

User application

MPI API

Architecture services

Framework Framework Framework Framework Framework

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

Modules

Architecture Services

• Top-tier services
Find valid components
Load found components on demand
Unload components when finished
Run-time parameter services

• “Glue” that ties the frameworks together

Frameworks

• Divided into three categories
1. Back-end to MPI API functions
2. Run-time environment
3. Infrastructure / management

• Rule of thumb:
“If we’ll ever want more than one
implementation, make it a framework”

Frameworks

• Dedicated to a single task, such as:
MPI collective algorithms
MPI point-to-point transfer
Starting a process in a run-time environment

• Defines an interface for components and
modules

Provides framework-specific “glue”
• Defines “scope” for components

Many-to-many / many-to-one

[Some] Framework Types

• MPI types
P2P management
P2P transport
Collectives
Reduction operations §
Topologies
MPI-2 one-sided §
MPI-2 IO
Checkpoint / restart §

(§ = future)

• Run-time env. Types
Out of band
Process control
Node list management
Global data registry
Daemon service
Name server

• Management types
Memory pooling
Memory allocation

Components

• Implementation of a framework interface
Independent units of software execution

• Examples:
TCP point-to-point protocols
Infiniband point-to-point protocols
Shared memory point-to-point protocols
Linear collective algorithms
MagPIe-based collective algorithms

Modules

• A component paired with resources
Analogous to a C++ “instance”

• Examples (in a single process):
TCP p2p component with a NIC
IB p2p component with a NIC
Linear collective algorithms with a
communicator
MagPIE-based algorithms with a
communicator

MCA Parameters

• Companion concept: parameterize
everything

Allow values to be changed at run-time
Never use constants in code

• Examples
“Short” message size (per network)
Number of pre-posted receives
Maximum fragment size
Which network interfaces to use

Sources of MCA Parameters

1. MPI attributes
2. Command line

$ mpirun -mca <param> <value>

3. Environment
$ export OMPI_MCA_<param>=<value>
% setenv OMPI_MCA_<param> <value>

4. Files (resolved analogous to $PATH)
<param>=<value>

5. Default value

One Open MPI Installation

• Parameters can be set in multiple places
• Typical scheme:

System / network admin tunes performance,
sets default MCA values (in a system file)
Most users utilize default values
Users can selectively override if they want

• This is not just a “feature”
Critical infrastructure for flexibility and
independent development

3rd Party Components

• Independent development and distribution
No need to be part of main Open MPI
distribution
No need to “fork” Open MPI code base

• Compose to create unique combinations
A p2p-based collective component can utilize
new ABC network p2p component

• Can distribute as open or closed source

3rd Party Components

CoMPIdeaCoMPIdea
(vendor)(vendor)

Open MPI Open MPI
distributiondistribution

Univ. Southern Univ. Southern
North DakotaNorth Dakota

Open MPI installation on your cluster:

3rd Party Example:
MPI Collective Components

• How to implement new collective
algorithms?

• Before components:
MPI profiling layer
Edit existing MPI implementation
Create new MPI implementation (!)
Use alternate function names
Compiler substitution

• All have benefits / tradeoffs

User application

MPI API

Architecture services

coll

C
om

p.

C
om

p.

C
om

p.…

“coll” Component Framework

• Components as the back-end
MPI_BCAST, MPI_BARRIER, MPI_GATHER,
etc.

coll Framework Goals

• Intuitive interface
• Maximize

performance
• Allow (but not require)

layering on MPI point-
to-point

• Allow exploitation of
back-end hardware

• Allow component
layering

• Fine-grained component
selection at run-time
(per communicator)

• Support both intra- and
intercommunicators

Typical coll
Component Models

1. Layered over point-to-point
Use MPI_SEND, MPI_RECV

2. Alternate communication channels
Native hardware support for collectives

3. Hierarchical coll components
Let one coll component use another

coll Module Lifecycle

Selection MPI_INIT
MPI_COMM_CREATE
MPI_COMM_DUP
MPI_COMM_SPLITInitialization

Checkpoint
restart

Normal
usage

MPI_ALLGATHER
…
MPI_SCATTERV

MPI_COMM_FREE
MPI_COMM_DISCONNECT
MPI_FINALIZE

Finalization

	Developing Applications with Open MPI on an OSCAR-Based Cluster
	Speakers
	Tutorial Goals
	Target Audiences
	Overview
	Open Source Cluster Application Resources
	What is OSCAR?
	OSCAR Background
	Open Cluster Group
	OSCAR Core Organizations
	The OSCAR strategy
	OSCAR v4.0/4.1 Feature List
	OSCAR Components
	System Installation Suite (SIS)
	Switcher
	Switcher Examples
	C3 Power Tools
	C3 Power Tools
	Open MPI
	Technical Contributors
	MPI From Scratch!
	MPI From Scratch: Why?
	MPI From Scratch: Why?
	Open MPI Project Goals
	Design Goals
	Design Goals
	Implementation Goals
	Implementation Goals
	OSCAR Installation
	Server Installation and Configuration
	OSCAR Wizard
	Step 0
	OPDer
	OPDer (2)
	Step 1
	Package Selector
	Step 2
	Package Configuration
	Step 3
	Install Server Packages
	Step 4
	Build Image Configuration
	Building Image
	Building Image Finished
	Step 5
	Define Client Nodes
	Define Client Nodes
	Step 6
	Setup network – Initial Window
	Setup network – Scanning Network
	Setup network – Initial Window
	Reboot Clients
	Step 7
	Complete Setup
	Step 8
	Test Cluster Setup
	Quit OSCAR Wizard
	Add OSCAR Clients
	Add OSCAR Clients
	Delete OSCAR Clients
	Delete OSCAR Clients
	Delete OSCAR Clients
	Install/Uninstall OSCAR Package
	Install / Uninstall Packages
	Installing Open MPIon OSCAR
	Getting Open MPI Software
	Building Open MPI From a Distribution Tarball
	Building Open MPI From a Distribution Tarball
	Create New Modulefile
	Changes vs. LAM Modulefile
	Modify Default MPI
	Threads and MPI
	Threading
	Threads and MPI
	Application Level Threading
	Implementation Threading
	Asynchronous Progress
	What About “One Big Lock”?
	Why Not Use Non-Blocking?
	Doesn’t MPI Do This Already?
	Threads and MPI
	Thread Compliant MPI
	Threads and MPI
	MPI Threading Rules
	Threads and Requests
	Threads and Exceptions
	More Thread Rules
	Avoiding Signal Problems
	MPI Levels of Thread Support
	MPI_THREAD_SINGLE
	MPI_THREAD_FUNNELED
	MPI_THREAD_SERIALIZED
	MPI_THREAD_SERIALIZED
	MPI_THREAD_MULTIPLE
	Threads and MPI
	Threading Example
	Method 1: Pure Master / Slave
	Pure Master / Slave
	Application main()
	Master Main Loop
	Slave Main Loop
	Summary
	Method 2:Combined Master / Slave
	Combined Master / Slave
	Combined Master / Slave
	Combined Master / Slave
	Combined Master / Slave
	Combined Master / Slave
	Summary
	Method 3: Thread Based Combined Master / Slave
	Thread BasedCombined Master / Slave
	Application main()
	Thread BasedCombined Master / Slave
	Summary
	Dynamic Processes
	Dynamic Processes
	MPI-1 Processes
	Static MPI-1 Job
	Static MPI-1 Job
	Disadvantages of Static Model
	Types of Communicators
	Continue Previous Example
	Continue Previous Example
	Continue Previous Example
	MPI-2 Process Management
	MPI-2 Spawn Functions
	Spawn Semantics
	Spawn Example
	Spawn Example
	Spawn Example
	Spawn Example
	Spawn Example
	Spawn Example
	Spawn Example
	Spawn Example
	How is This Useful?
	MPI “Connected”
	MPI “Connected”
	Multi-Stage Spawning
	Multi-Stage Spawning
	Multi-Stage Spawning
	Multi-Stage Spawning
	Multi-Stage Spawning
	Establishing Communications
	Establishing Communications
	Server Side
	Server Side
	Client Side
	Connect / Accept Example
	Connect / Accept Example
	Connect / Accept Example
	Connect / Accept Example
	Connect / Accept Example
	Connect / Accept Example
	Connect / Accept Example
	Connect / Accept Example
	Connect / Accept Example
	Connect / Accept Example
	How is This Useful?
	Summary
	MPI_COMM_JOIN
	Collective Operations
	Disconnecting
	Conclusions
	Takeaway Points
	Takeaway Points
	Questions?
	Additional Slides
	Open MPI Architecture
	Traditional MPI Implementations
	A New Approach:Components in MPI
	Components
	Components
	Components
	Components
	Components in HPC
	Open MPI and Components
	Component Benefits
	Open MPI and Components
	Example: Cluster Growth
	Example: User Components
	Four-Tier MCA Organization
	MCA Organization(not a call stack!)
	Architecture Services
	Frameworks
	Frameworks
	[Some] Framework Types
	Components
	Modules
	MCA Parameters
	Sources of MCA Parameters
	One Open MPI Installation
	3rd Party Components
	3rd Party Components
	3rd Party Example:MPI Collective Components
	“coll” Component Framework
	coll Framework Goals
	Typical coll Component Models
	coll Module Lifecycle

