
Revamping the OSCAR Databases:
A Flexible Approach to Cluster

Configuration Data Management

DongInn Kim, Jeffrey M. Squyres, Andrew Lumsdaine
Indiana University

Overview
 Motivation
 Current Implementation
 Proposed Database Architecture
 Conclusions

What is ODA?
 OSCAR Database API
 An abstraction between the main

OSCAR framework and a commodity
backend database

 Heart of OSCAR’s configuration
management scheme

 Stores / retrieves all manner of
configuation information
 E.g., parses each package’s config.xml

file and stores it in the database

What is ODA Not?
 ODA is not the back-end database!
 ODA is not the back-end database!
 ODA is not the back-end database!
 ODA is not the back-end database!
 ODA is not the back-end database!
 ODA is not the back-end database!
 ODA is not the back-end database!

OSCAR Architecture
MySQL

ODA Raw Command ODA

Perl Module (Database.pm)

OSCAR
installer

Command line
Input / output

 ODA Shortcuts

ODA Goals
 Use a real database for a back-end

 Prior OSCAR versions used flat files
 Support a variety of back-end databases

 Provide simple, OSCAR-specific access
methods to read / write to the database
 Provide meaningful “shortcuts” for complex

queries
 “What MPI implementations are installed?”

ODA Goals
 Perl and command-line interfaces
 Location-independent access

 Head node and compute nodes
 Lock / unlock semantics [mostly] hidden

 Completely hide the back-end database
 No need for SQL elsewhere in OSCAR
 Database schema opaque to rest of OSCAR

Examples
 Command line

 Perl interface

shell# oda packages_that_provide mpi

lam

mpich

ODA Realities
 Many of the goals are met, but…
 Only one database is supported (MySQL)

 Tightly integrated into ODA
 Cannot easily be changed

 DB schema is disjoint, “ball of mud”
 Grown incrementally over time
 Many tables are useless, redundant

ODA Realities
 Sister OSCAR projects cannot rely on

database contents / layouts
 “Shortcuts” help, but not enough
 No guarantees about changes between

versions
 Only supports a single cluster

 New requirement: manage multiple clusters
from a single OSCAR installation

 Revise DB schema to handle this

ODA Realities
 The ODA code is far too complicated

 Thousands of lines of code
 Actively impedes changing or new ODA

development
 Too many ODA shortcuts

 Hundreds of shortcuts
 No one knows them all
 Many (most?) are unused

ODA Realities
 Parsing config.xml

 Unorthodox Glue Leading to Yack (UGLY)
 Thousands of lines of code

 Hundreds of special cases
 Intended to parse and store any config.xml
 Can accept structured and arbitrary data

 Impossible to read, debug, or extend

Proposed Database Architecture
 Fundamentally simpler

 Smaller, less complicated code base
 All interactions will be through a Perl module
 Remove CLUI

 Audit shortcuts / remove unused
 Revamp the schema

 Make it simpler
 Remove unused tables
 Enable multi-cluster data

Proposed Database Architecture
 Really allow multiple back-end databases

 MySQL
 Postgres
 …

 Give OSCAR sister projects guarantees
 Documented shortcuts
 Published interfaces

 Support multiple clusters

Proposed Database Architecture
Database

ODADBI module: DB connection

Internal module: Two main methods (Select, Update)

Perl module (Database.pm) : OSCAR including shortcuts

SSI-OSCAR.pmSSS-OSCAR.pmHA-OSCAR.pm

OSCAR
installer

Top-Level View
 Hide all aspects of connectivity

 Username, password
 Local, network (security will be an issue!)

 Four main functional units:
 The old ODA raw commands
 A subset of the old shortcuts
 select(): read from the database
 update(): write to the database

A Layered Approach
 OSCAR installer

 Talks directly to Database.pm
 Sister projects can have their own

abstractions above Database.pm
 May re-implement CLUI at this level

 Database.pm
 Converts between “outer” and “inner” data

representations
 Provides shortcuts as functions

A Layered Approach
 Internal module

 Convert internal representation to SQL
 Likely to be DB-specific
 Extremely small / thin
 Good candidate for “plugin” OSCAR system

 DBI module
 Furnished by Perl

 Back-end database

Example New ODA Usage

package OSCAR::ODA;
sub list_of_tables {
 my $ref_result = shift;
 my $sql = “SHOW TABLES”;
 my $error;
 my $local_result;
 my $status = ODA::query(\$sql,

\$local_result, \$error);
 # … translate $local_result into common
 # form and store in $ref_results…
 $status;
}

Back-End Database Schema
 No unused tables or fields

 Each table / field will have a defined purpose
 Strictly defined relations

 Based on a entity-relation diagram
 Documented
 Supported in the API
 [Relatively] Simple

Entity / Relation Diagram
Clusters Network

Cluster_Nodes

Nodes

Packages

Node_Packages

Node_Groups Groups

Packages_Groups

Node_Nics

Node_Images

Images

Nics

Packages_conflicts

Packages_requires

Packages_provides

Packages_servicelists

Packages_filters

Packages_rpmlists

Entity

Relationship

Weak Entity

Entity / Relation Diagram
Clusters Network

Cluster_Nodes

Nodes

Packages

Node_Packages

Node_Groups Groups

Packages_Groups

Node_Nics

Node_Images

Images

Nics

Packages_conflicts

Packages_requires

Packages_provides

Packages_servicelists

Packages_filters

Packages_rpmlists

Entity

Relationship

Weak Entity

E/R Analysis
 Central entities of the ER diagram

 Nodes
 Packages
 Groups

 Relations between entities describe most
interactions in an OSCAR cluster

Proposed Database Architecture

Groups

NodesPackages

W
hic

h p
ac

ka
ge

s s
ho

uld
 be

ins
tal

led
 in

 w
ha

t g
rou

p
W

hich nodes are related

to what group

Which packages are installed
in what nodes

Groups Entity
 Categorizations of nodes and packages
 Current typical node groups:

 OSCAR server, client
 Images

 Future groups
 Nodes: Interactive, batch
 Nodes: Myrinet, Infiniband, GigE, …
 Packages: MPI, HPC, Compilers, Apps, …

Packages and Nodes Entities
 Packages

 Similar to today’s definition
 Describes a single OSCAR package

 Nodes
 Similar to today’s definition
 Describes a single OSCAR node
 Contains additional information: cluster

Node  Packages Relation
 Shows status of OSCAR packages

related to a specific node
 State of the package installation on the node

 On a node, which packages
 Are installed
 Will be installed
 Failed to be installed
 …

Package/Node  Groups Relation
 What package(s) / node(s) belong to which

group(s)
 Also support “meta grouping”

 Adds functionality support for:
 Install / uninstall packages
 Add / delete nodes
 Online / offline nodes

 May also be integrated into OPD and OPDer

Node  Groups Relation
 What package(s) belong to which group(s)

 Support “meta grouping” for configuration of one or more nodes
 Install / uninstall packages will use this information
 Relation : Node_Groups, Package_Groups

 What packages belong to what groups
 Which nodes are associated with the certain group
 Meta grouping for configuration of one or more nodes is

allowed
 Installing/uninstalling packages to certain node can be

controlled by the the relation between Nodes, Groups, and
Packages

Conclusions
 Code in the ODA layer will shrink dramatically
 ODA shortcuts will be tremendously reduced
 Database schema will be formalized
 The first step towards integration with a fully

distributed node synchronization and
configuration management system

 OSCAR v5.0 expects to be released with
[some variant of] the proposed database
scheme

Questions?

