
Revamping the OSCAR Databases:
A Flexible Approach to Cluster

Configuration Data Management

DongInn Kim, Jeffrey M. Squyres, Andrew Lumsdaine
Indiana University

Overview
 Motivation
 Current Implementation
 Proposed Database Architecture
 Conclusions

What is ODA?
 OSCAR Database API
 An abstraction between the main

OSCAR framework and a commodity
backend database

 Heart of OSCAR’s configuration
management scheme

 Stores / retrieves all manner of
configuation information
 E.g., parses each package’s config.xml

file and stores it in the database

What is ODA Not?
 ODA is not the back-end database!
 ODA is not the back-end database!
 ODA is not the back-end database!
 ODA is not the back-end database!
 ODA is not the back-end database!
 ODA is not the back-end database!
 ODA is not the back-end database!

OSCAR Architecture
MySQL

ODA Raw Command ODA

Perl Module (Database.pm)

OSCAR
installer

Command line
Input / output

 ODA Shortcuts

ODA Goals
 Use a real database for a back-end

 Prior OSCAR versions used flat files
 Support a variety of back-end databases

 Provide simple, OSCAR-specific access
methods to read / write to the database
 Provide meaningful “shortcuts” for complex

queries
 “What MPI implementations are installed?”

ODA Goals
 Perl and command-line interfaces
 Location-independent access

 Head node and compute nodes
 Lock / unlock semantics [mostly] hidden

 Completely hide the back-end database
 No need for SQL elsewhere in OSCAR
 Database schema opaque to rest of OSCAR

Examples
 Command line

 Perl interface

shell# oda packages_that_provide mpi

lam

mpich

ODA Realities
 Many of the goals are met, but…
 Only one database is supported (MySQL)

 Tightly integrated into ODA
 Cannot easily be changed

 DB schema is disjoint, “ball of mud”
 Grown incrementally over time
 Many tables are useless, redundant

ODA Realities
 Sister OSCAR projects cannot rely on

database contents / layouts
 “Shortcuts” help, but not enough
 No guarantees about changes between

versions
 Only supports a single cluster

 New requirement: manage multiple clusters
from a single OSCAR installation

 Revise DB schema to handle this

ODA Realities
 The ODA code is far too complicated

 Thousands of lines of code
 Actively impedes changing or new ODA

development
 Too many ODA shortcuts

 Hundreds of shortcuts
 No one knows them all
 Many (most?) are unused

ODA Realities
 Parsing config.xml

 Unorthodox Glue Leading to Yack (UGLY)
 Thousands of lines of code

 Hundreds of special cases
 Intended to parse and store any config.xml
 Can accept structured and arbitrary data

 Impossible to read, debug, or extend

Proposed Database Architecture
 Fundamentally simpler

 Smaller, less complicated code base
 All interactions will be through a Perl module
 Remove CLUI

 Audit shortcuts / remove unused
 Revamp the schema

 Make it simpler
 Remove unused tables
 Enable multi-cluster data

Proposed Database Architecture
 Really allow multiple back-end databases

 MySQL
 Postgres
 …

 Give OSCAR sister projects guarantees
 Documented shortcuts
 Published interfaces

 Support multiple clusters

Proposed Database Architecture
Database

ODADBI module: DB connection

Internal module: Two main methods (Select, Update)

Perl module (Database.pm) : OSCAR including shortcuts

SSI-OSCAR.pmSSS-OSCAR.pmHA-OSCAR.pm

OSCAR
installer

Top-Level View
 Hide all aspects of connectivity

 Username, password
 Local, network (security will be an issue!)

 Four main functional units:
 The old ODA raw commands
 A subset of the old shortcuts
 select(): read from the database
 update(): write to the database

A Layered Approach
 OSCAR installer

 Talks directly to Database.pm
 Sister projects can have their own

abstractions above Database.pm
 May re-implement CLUI at this level

 Database.pm
 Converts between “outer” and “inner” data

representations
 Provides shortcuts as functions

A Layered Approach
 Internal module

 Convert internal representation to SQL
 Likely to be DB-specific
 Extremely small / thin
 Good candidate for “plugin” OSCAR system

 DBI module
 Furnished by Perl

 Back-end database

Example New ODA Usage

package OSCAR::ODA;
sub list_of_tables {
 my $ref_result = shift;
 my $sql = “SHOW TABLES”;
 my $error;
 my $local_result;
 my $status = ODA::query(\$sql,

\$local_result, \$error);
 # … translate $local_result into common
 # form and store in $ref_results…
 $status;
}

Back-End Database Schema
 No unused tables or fields

 Each table / field will have a defined purpose
 Strictly defined relations

 Based on a entity-relation diagram
 Documented
 Supported in the API
 [Relatively] Simple

Entity / Relation Diagram
Clusters Network

Cluster_Nodes

Nodes

Packages

Node_Packages

Node_Groups Groups

Packages_Groups

Node_Nics

Node_Images

Images

Nics

Packages_conflicts

Packages_requires

Packages_provides

Packages_servicelists

Packages_filters

Packages_rpmlists

Entity

Relationship

Weak Entity

Entity / Relation Diagram
Clusters Network

Cluster_Nodes

Nodes

Packages

Node_Packages

Node_Groups Groups

Packages_Groups

Node_Nics

Node_Images

Images

Nics

Packages_conflicts

Packages_requires

Packages_provides

Packages_servicelists

Packages_filters

Packages_rpmlists

Entity

Relationship

Weak Entity

E/R Analysis
 Central entities of the ER diagram

 Nodes
 Packages
 Groups

 Relations between entities describe most
interactions in an OSCAR cluster

Proposed Database Architecture

Groups

NodesPackages

W
hic

h p
ac

ka
ge

s s
ho

uld
 be

ins
tal

led
 in

 w
ha

t g
rou

p
W

hich nodes are related

to what group

Which packages are installed
in what nodes

Groups Entity
 Categorizations of nodes and packages
 Current typical node groups:

 OSCAR server, client
 Images

 Future groups
 Nodes: Interactive, batch
 Nodes: Myrinet, Infiniband, GigE, …
 Packages: MPI, HPC, Compilers, Apps, …

Packages and Nodes Entities
 Packages

 Similar to today’s definition
 Describes a single OSCAR package

 Nodes
 Similar to today’s definition
 Describes a single OSCAR node
 Contains additional information: cluster

Node Packages Relation
 Shows status of OSCAR packages

related to a specific node
 State of the package installation on the node

 On a node, which packages
 Are installed
 Will be installed
 Failed to be installed
 …

Package/Node Groups Relation
 What package(s) / node(s) belong to which

group(s)
 Also support “meta grouping”

 Adds functionality support for:
 Install / uninstall packages
 Add / delete nodes
 Online / offline nodes

 May also be integrated into OPD and OPDer

Node Groups Relation
 What package(s) belong to which group(s)

 Support “meta grouping” for configuration of one or more nodes
 Install / uninstall packages will use this information
 Relation : Node_Groups, Package_Groups

 What packages belong to what groups
 Which nodes are associated with the certain group
 Meta grouping for configuration of one or more nodes is

allowed
 Installing/uninstalling packages to certain node can be

controlled by the the relation between Nodes, Groups, and
Packages

Conclusions
 Code in the ODA layer will shrink dramatically
 ODA shortcuts will be tremendously reduced
 Database schema will be formalized
 The first step towards integration with a fully

distributed node synchronization and
configuration management system

 OSCAR v5.0 expects to be released with
[some variant of] the proposed database
scheme

Questions?

