
The Integration of Scalable Systems Software with the OSCAR
Clustering Toolkit

John Mugler, Thomas Naughton, and Stephen Scott† 
Network and Cluster Computing Group 

Oak Ridge National Laboratory, Oak Ridge, TN
{muglerj, naughtont, scottsl}@ornl.gov

1 Introduction

The Scientific Discovery Through Advanced Computing (SciDAC) project has
implemented a Scalable Systems Software (SSS) center. The SSS center is charged with
building a scalable and robust operating environment for high end computing systems. Part of
the approach is building a general solution for multiple platforms, to include both clusters and
individual machines. This starts a trend toward standardization of systems within computing
centers, which saves money in the long run by reducing operator training and lowering software
development and support costs. The development in SciDAC: SSS is focused on components
and not on the underlying operating system. The first target operating system for the individual
components to run on is Linux on x86 based hardware. The vehicle chosen for delivery of the
software is OSCAR, which supplies both the installation mechanism and the support  for the
underlying operating system.

OSCAR, or Open Source Cluster Application Resources, is a clustering toolkit that has
been widely used for installing/configuring smaller clusters of up to 256 nodes. The biggest
advantage of OSCAR is that it works on top of specific Linux distributions. OSCAR makes an
effort to package commonly available clustering software (an example is MPI/PVM) and
provide sane default configurations for this software. This is done so that beginning system
administrators can install clusters with minimal coaching and help.

One of the biggest challenges for the SSS-OSCAR effort was converting the SSS software
into OSCAR packages. An OSCAR package is a combination of RPMs and scripts, and there is
a published API for doing this. Some history of both projects, a description of the OSCAR
packaging API, and the new packages that are available to OSCAR users from the SSS project is
available in this paper. Also included is a summation of the experience of many new package
writers using the OSCAR API, and some insights into the strengths and weaknesses of choosing
OSCAR for the deployment vehicle for the SSS suite.

2 Background

OSCAR is open source and freely available for download via Sourceforge. The current

†Research supported by the Mathematics, Information and Computational Sciences Office, Office of Advanced Scientific Computing Research,
Office of Science, U. S. Department of Energy, under contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

1



version of OSCAR at the time of this writing is version 3.0, which can work with RedHat
versions 8.0/9.0 and Mandrake 9.0 on x86 hardware. OSCAR consists of several different logical
entities. One way to think about OSCAR is to separate the packages from the installation
mechanism itself. A package is a piece of software that runs on a cluster. Different pieces of the
same package can be installed on the head node or the compute nodes or both. Fine grained
control of where parts of a package go and running scripts for configuration of a package is the
job of the installation mechanism. The packages are the individual bits of software that run on a
cluster, such as the popular communication libraries like PVM and MPI. OSCAR has the goal of
installing a cluster with minimal input from an administrator, and following commonly
understood “best practices” for installing clusters. 

The OSCAR working group was formed in 2000 under the Open Cluster Group (OCG)
organization. The OCG was founded to address the need for a public forum to develop open
source clustering solutions. The OSCAR working group produces a solution for High
Performance Computing (HPC) clusters, and OSCAR should technically be labeled “HPC
OSCAR”. The OCG forms a convenient umbrella organization for other types of clustering
software. Currently there are three working groups [5]:

1. “HPC” OSCAR – previously mentioned, and commonly referred to as just OSCAR

2. Thin-OSCAR – disk-less approach to clustering

3. HA-OSCAR – group focusing on high availability

Membership in these groups is open to anyone that wants to contribute to the project. The more
involved a member becomes, the more responsibility that organization/individual can have in the
project's direction. A good way to get started in OSCAR is with testing the trial releases. Testing
by expert users/developers is always needed and seems to be in short supply in most open source
projects. [2]  

The SSS center was formed in 2001 to meet the software needs of large computing centers.
The software being developed has the mission of making terascale computing systems both
manageable and usable, and is funded by the Department of Energy. To do this, working groups
were formed in various areas in order to pool interest and expertise among the participating
developers; the working groups include: process management, resource management, integration
& verification, and build & configuration. These groups have focused, for the most part1, on
software that runs at the application level and not at the kernel/operating system level [1]. To
this end, the reference implementation that this document describes, has been developed first to
run on RedHat Linux using x86 hardware. That should ensure that the software reaches the
widest possible market initially with the expectation being that many will download the software
for evaluation before deploying on production systems. The decision was also made to use
OSCAR as the initial delivery vehicle, as this is a popular open source clustering toolkit.

The first step of the SSS project was to define a basic system architecture and agree upon
standard interfaces for the system. It was decided that XML would be used for messages

1 The BLCR checkpoint/restart library is an area that delves down to the kernel level.

2



between components, and one of the first pieces of software that was developed was a
communication library. Development commenced rapidly, and software is available today for
testing/evaluation purposes in the form of an OSCAR release.

To expand on some of the thinking for using OSCAR, one must consider the portability
question. The notion of software portability can extend down to hardware instruction sets up to
runtime/operating system environments.  The portability of a clustering toolkit such as OSCAR
is bound by the runtime environments it attempts to configure and manage.  A goal of OSCAR is
to be Linux distribution agnostic.  The distributions spend a great deal of time doing integration
and testing for a large set of applications and OSCAR tries to leverage this work whenever
possible.  The current implementation of OSCAR does make some assumptions about the
underlying distribution but the objective is to have particular applications, in this case SSS
software, port to OSCAR and then leverage the toolkits portability.  The portability of the
OSCAR framework is bound by the set of supported Linux distributions, and the set of SSS
OSCAR packages is bounded by the portability of the framework itself. 

3 SSS/OSCAR Packages

The overall design of the SSS system can be summarized quickly in a diagram, commonly
known as the “meatball” diagram (Figure 1) to the SSS developers. Each piece of the SSS
system has been specified in general, with developers creating components that meet the general
specification. This was done to allow different implementations of the same component (with

3

Figure 1: The SSS architecture diagram shows the functional areas of the system and the
lines of communication.  The color codes indicate the working groups and bold lines display
components currently communicating via published SSS interfaces.



possibly differing feature sets) to exist and be used so long as the general requirements were met.
The current software that is specific to SSS-OSCAR is listed below.  In some cases a

component correlates directly to an OSCAR package, but sometimes one package can contain
multiple components. Some of this software is not configured to meet its full potential, but for
early software releases the decision was made to publish software that uses a bland configuration
in order to speed integration and deployment. As SSS-OSCAR evolves, more of the component's
capabilities will be harnessed. All of the SSS components fit together into one integrated system
with a well defined communication protocol. The following subsections outline the currently
available SSS packages with details regarding their default configuration.

SSSlib 
The SSSlib is a communication library is used by the SSS components for inter-component

communication. The library provides a range of default protocols for communication, e.g.,
Challenge/Response, and is extensible to allow for new additions. Library bindings exist  for
several languages including Perl, Python, C and C++. The Service Directory and Event Manager
are also key aspects of this communication infrastructure.

Service Directory(SD) 
The SD is a centralized routing service that runs as a daemon on the head node. It serves as

a central “phone book” for the system. All SSS components register themselves with the SD so
that others man query the SD for connection and location information. The query is based on the
component name, protocol, etc., e.g. “process-manager, challenge”. This allows for multiple
implementations a the components for different communication protocols and capabilities.

Event Manager (EM): 
The EM is a process that runs on the head node of the cluster, and collects events or signals

that other SSS components generate. The use of this centralized asynchronous event system is
used throughout the SSS communication infrastructure. This assists inter-component
communication and helps organize the management of the cluster. Events are passed to the EM
via the SSSlib. Also, error messages and other types of events from the SSS system can be
logged here.

Maui 
Maui is popular scheduling system that is widely used in the HPC community. The SSS

version has the additional benefit of being able to work with SSS components and understand the
SSS communication  infrastructure. Maui interacts with Warehouse (system monitor) and
Bamboo (queue manager) to schedule jobs across the cluster. Basically, Maui polls both Bamboo
and Warehouse to get a list of jobs to run and some information about the cluster. Then it
schedules the next job in the list at an appropriate time, if authorization to run the job is obtained
from Gold (allocation manager).

Warehouse 

4



This is a monitoring system that can provide information about both individual jobs and
the entire system. Currently, Warehouse interacts with Maui (scheduler), providing information
about the system upon request. Individual job information is not currently used at the time of this
writing. Warehouse has a daemon that runs on the head node that serves as an information
repository (warehouse_System_monitor) and one information collector daemon
(warehouse_Linux_monitor) per compute node. Currently, the information repository polls the
collector daemons on the nodes for job and system information.  Maui is the primary consumer
of Warehouse's information repository, polling occasionally for the monitoring data to use when
scheduling jobs.

Bamboo 
This component is the queue manager and this is the place where a user submits a job in

the SSS system. Bamboo has the responsibility of keeping track of jobs until they are scheduled
to run by Maui. Currently, Bamboo responds to requests from Maui to send it job information. 

Multi Purpose Daemon (MPD) 
MPD is a process manager that Argonne National Laboratory (ANL) provides with its MPI

implementation, MPICH. MPD serves as the backend to the process manager component of the
SSS system, and is a ring of daemons that run across the cluster. MPD is responsible for starting
and managing processes across the cluster. MPD also has the ability to redirect the I/O of the
process and pass signals back and forth between processes that it manages.

Process Manager 
The Process Manager is that is provided is a frontend to MPD that exists to handle the SSS

communication protocols that have been developed. It performs this service on behalf of MPD,
and sends to MPD other types of messages to control its actions. MPD does the work, but the
Process Manager interacts with the rest of the SSS system.

Berkeley Labs Checkpoint/Restart (BLCR) 
BLCR is a checkpoint/restart system that works on Linux kernel based systems. It can be

used as a standalone library to checkpoint a process on an individual system and in conjunction
with LAM/MPI to checkpoint an MPI job across a cluster. BLCR is compiled against a specific
kernel, therefore some adjustments must be made if the kernel version is changed2.

Gold 
An accounting and allocation manager that basically keeps track of how many system

resources a user is allotted, and when/where they can use these privileges. Gold keeps track of
information in a PostgreSQL database, so it has a large capacity for information storage. Gold
gets queried by Maui (scheduler) to see if a process has permission to run. 
 

2 See the BLCR documentation for portability details.

5



4 OSCAR Package API

This section takes a whirlwind tour through the OSCAR package API and tries to point out the
major features. An OSCAR package in its simplest definition is a collection of RPMs and
scripts, and the minimum investment required is one RPM. By convention, a package is stored in
a directory of its name. If you look into a directory that contains one package, the following
files/directories will be present:

1. config.xml – An XML file that contains meta data about the package. Most of this 
information gets loaded into the OSCAR database use during the installation.

2. RPMS/ - A directory containing the binary RPM(s) for the package.

3. SRPMS/ - A directory containing the source RPM(s) used to build the package.

4. scripts/ - A directory containing a set of scripts that run at defined points in time during 
the installation process.

5. testing/ - A directory containing unit test scripts for a package that run during the test 
phase of the installation.

6. doc/ - A directory containing documentation and license information for a package.

As the installer runs, it determines from the “config.xml” file where the binary RPMs go
on the system. Both the server/head node and the compute nodes are distinct entities to the
installer, so RPMs can be parceled out to one or the other, or installed at both locations. There
are nine possible scripts that can be located in the “scripts” directory. They run at various times
during the install process and provide fine grained control of configuration tweaks for the
installed software, both on the head node and the compute node image [3].

Another part of the system is the configurator. Any user input that the package needs can
be obtained by using this facility. A file named “configurator.html” is created and placed in the
package's top level directory, where the “config.xml” file is located. The contents of this file are
displayed to the user by the configurator, and are in HTML format. Input to HTML Form items
can be collected by the configurator and deposited in the same directory in a file named
“.configurator.values”. The “pre_configurator” and “post_configurator” scripts are used to setup
and process this information, respectively.

Oscar can also handle certain dependencies at the package level. If one package requires
another package to be installed before it gets installed, this information is encoded into the
“config.xml” file, and OSCAR can mange this dependence. On the other hand, RPM level
dependencies must be handled by the package author. OSCAR has available to it all the RPMs
for the distribution on which it is being installed. RPM dependency problems can occur when
additional RPMs outside of the distribution are needed.

6



Another tool used by the OSCAR framework is the Environment Switcher (Env-Switcher).
This software gives the package author the ability to set the necessary environment values for
users to use the package, e.g. PATH, MANPATH. The Env-Switcher simplifies this process by
providing a shell independent method for manipulating the environment. A big benefit for the
user is the ability to quickly switch back and forth between different or competing versions of
software, e.g. change default mpicc version from MPICH to LAM/MPI. 

5 Challenges and Observations

The remaining sections identify and discuss observations and possible areas for
improvement after our initial experiences in forming SSS-OSCAR.  It is worth noting that all of
the authors are active in both the SSS and OSCAR projects and therefore comments are rather
critical at times in an attempt to generate helpful feedback to the respective project developers.

The effort to use OSCAR as the deployment vehicle for the initial release of the SSS
software components presented several challenges. The use of OSCAR influenced the SSS
developers to settle upon an integration platform of RedHat Linux 9.0 since it is fully supported
by OSCAR 3.0. This required some to bundle their software into an RPM format for the first
time. The project also settled upon OSD compliant licenses [4] for the project.

A common testbed for integration was also a challenge due to DOE computer security at
national labs as well as a number of logistical issues given time and resource constraints among
a distributed set of developers. This is similar to the challenges the standard OSCAR project
faces when doing integration & testing and therefore many of the project's practices were reused.
This included the creation of a central repository to help pool current/stable versions of the
components into a single location.  The use of a tracking system and mailing lists helped
overcome some of these distributed integration challenges.

The SSS group are experienced software developers but many were new to OSCAR so
there was a bit of a learning curve on packaging. In addition to any work learning to create
RPMs they had to determine how to create an OSCAR Package [3]. The OSCAR API scripts fire
at different phases of the installation process. Some package authors felt that it was unclear
where to put their configuration “hooks” in this API and often raised interesting issues that were
not as cleanly addressable through the API script as one might want. These issues seem to imply
that some improvement could be made to the OSCAR packaging documentation and potentially
API itself. The gray line between what should be performed in an RPM versus an external API
script was an issue.  This line is often identified in the standard OSCAR project by previous
experience, which was not always obvious to those new to writing RPMs and cluster
configuration scripts.  

Marshalling inter-package dependences was somewhat challenging. Most were
comfortable with expressing their dependencies through the RPM system, but in some cases the
dependence was also necessary at the OSCAR Package level. Often this was due to the need to
include all dependent RPMs for a package even if they were not providing that software, e.g.,
Java runtime environment. Thus forcing the creation of additional OSCAR packages for inter-
OSCAR package dependence. This issue is a know limitation in the OSCAR 2.x and 3.0 releases

7



and is to be remedied in the 3.x series of releases via the dependency and package manager
abstraction layers, DepMan and PacMan respectively. This new dependency analysis layer will
remove the need for packages to list all dependent RPMs in their “config.xml” file since this
dependence information is contained in the RPM itself.

There also seemed to be some difference of opinion regarding what constitutes a
“reasonable default”. Many of the SSS developers are experienced in using systems where the
configurations are entirely custom. This was somewhat contradictory of the basic OSCAR
philosophy to setup a reasonable default that can be customized if the end-user so chooses for
improved performance, etc.
 The most difficult problem by far for SSS-OSCAR was the fact that it is laborious to
configure over ten pieces of software to work seamlessly with one another in an automated
fashion. Most of the test platforms (clusters) that the SSS group has available are hand
configured by the actual developer of the component. A system at ORNL, 64 node compute
cluster known as eXtreme TORC (XTORC), was dedicated to the SSS project to enable and
assist with development and provide a single location for the configuration of all project
components before a release.  It takes a substantial amount of developer time to setup this system
by hand, install all the required software, and exercise the system. Converting this configuration
into OSCAR packages takes considerable effort and is only compounded when one is new to the
OSCAR framework.  However, the advantage of using OSCAR is that once the work has been
done it is reproducible and this will benefit SSS developers and ultimately OSCAR users.

Another challenge was the issue of inter-package communication.  Many are accustomed
to using the file system to share data in flat files, but the OSCAR Database (ODA) is also an
option.  The particular example of a “shared secret key” was one that added another wrinkle,
security. Several packages within the project, MAUI, Gold, and Bamboo, share an authentication
key to communicate with each other. Because the decision on whether to create the key was
dependent upon the existence of other OSCAR packages, where and how to query the user for
this key was a notable issue. One suggestion was to create a single OSCAR package that was
responsible for the key and logic surrounding its creation and management.  This approach had
pros and cons, it was fairly straightforward but it also added another package to the set.
Ultimately, one of the packages that used the shared key was put in charge and simply setup the
necessary configurations. This added some dependence, but the packages were already linked to
each other for this release due to the default configurations being used.

6 Suggestions for Improvement

At the current time, the OSCAR installer is undergoing a major overhaul.  Having gone
through the exercise of integrating a number of packages into the OSCAR framework we
thought it appropriate to offer some suggestions for potential improvements that might fit into
the current toolkit's refactoring.

Since the SSS project is focused on creating a full set of components for management and
use of an HPC system, several key services were replaced or upgraded. For example, (old/new)
the scheduler (Maui/SSS-Maui) was upgraded to an SSS compliant version, the queue manager

8



changed  completely (OpenPBS/Bamboo) and an accounting system was added (Gold). All of
these packages either used the common communication infrastructure SSSlib or a compliant
infrastructure. It became apparent that having a simple way to “group” collections of
applications would be beneficial. The idea of “package sets” in the OSCAR 3.x/4.0 development
path should help to address this grouping. It would be helpful if one could provide, for example,
a common XML file describing the global options for a given set of packages to streamline
installation. Additionally, one unified information query to the user for configuration options
across entire package sets could be performed. This would be a general solution to provide fine
grained control of the different types of logical dependence encountered when integrating several
related components. It is not hard to imagine an OSCAR distribution being comprised of several
different mutually exclusive package sets, plus individual packages that are mostly standalone.
The sets may reuse common packages but in slightly different configurations, with the
integration being done ahead of time to resolve major dependence issues. 

Given the diversity of the SSS developers and their newness with OSCAR for package
deployment, it seemed that a fertile area for contribution to the OSCAR project would be
improved package author tools. These could include some enhancements to the framework itself
but some items could be fairly standalone and would offer a good entry point for project
participation since nothing in the mainline development would be held up by this work.  Possible
suggestions in this area include the updating of the XML DTD or creation of an XML Schema
for the package “config.xml” files. Several issues during the integration were simple
typographical errors or assumptions easily identified by using a tool like 'xmllint'.  Also the
creation of a tool to isolate package installation from cluster installation, possibly by using a
virtual cluster system that would allow an author to just drop their package into a directory and
have all scripts and configurations automatically exercised, without user/tester interaction, and
results dumped to an output file. This would help isolate package issues from core framework
functionality and help expedite testing and integration. These improvements are underscored as
the number of new packages to integrate increases.

On a similar vein, the testing framework used by OSCAR could be made more versatile
and extensible. The current framework offers each package the ability to run basic tests and
show installation and configuration success/failure. However, more elaborate package tests
could be envisioned which could extend this cluster installation testing. The work coming out of
the SSS project's Verification and Integration working group, APITest, seems very promising.

7 Conclusion

This paper has discussed the Scalable System Software (SSS) suite and the OSCAR
package API, and notes the lessons learned in deploying the SSS suite using OSCAR. The two
projects seek to make computing system more manageable. OSCAR is a cluster toolkit and
builds clusters in an automated fashion,  using default settings that are appropriate for a wide
variety of clusters. The SSS software suite is a collection of tools that work together in a
cohesive manner to scalably manage and operate large computing systems with 1,000's of nodes.
In the early stages of SSS development, it is logical to deploy the SSS suite as widely and as

9



quickly as possible in order for cluster administrators to learn about and test the software.
Additionally, as OSCAR gets ported to different platforms, the SSS suite can leverage this for
ease of deployment. The OSCAR package API has served this effort well with areas for
improvement being identified as more package authors have spent time working with the
framework. The OSCAR toolkit provides as a sound vehicle for deployment of clustering
software systems and is helpful to reduce the time and expertise necessary to evaluate new
systems. The combination of these two efforts has led to the SSS-OSCAR bundle, which
leverages OSCAR to allow the SSS suite to be evaluated and deployed more easily. 

Acknowledgments

We would like to thank the other SSS and OSCAR members for their time and hard work.
It is our pleasure to be involved in both of these projects and have the opportunity to collaborate
with such talented developers.

References

[1] Al Geist (center coordinator). Scalable Systems Software Enabling Technology Center
(Proposal). http://www.scidac.org/ScalableSystems/proposal.doc. 2001.

[2] John Mugler, Thomas Naughton, and Stephen Scott. Tutorial: OSCAR Clusters. In the 5th

Annual Ottawa Linux Symposium (OLS 2003). Ottawa, Canada 2003. 

[3] Core OSCAR Team. HOWTO: Create an OSCAR Package. January 22, 2004.
http://www.csm.ornl.gov/~naughton/oscarpkg-howto.pdf. 

[4] Open Source Definition (OSD) – http://www.opensource.org/docs/definition.php

[5] John Mugler et al. OSCAR Clusters, In Proceedings of the 5th Annual Ottawa Linux
Symposium (OLS 2003). Ottawa, Canada, July 23-26, 2003.

[6] MPICH: Implementation of MPI – http://www-unix.mcs.anl.gov/mpi/mpich/index.html

10


