
OSCAR testing infrastructure

Benôıt des Ligneris
Revolution Linux,

145 rue Sauv́e,
Sherbrooke, Qúebec, Canada, J1L 1L6

Abstract— This document describes the objectives and
gives a precise description of an automatic testing infras-
tructure for OSCAR. The different technologies available,
as well the layout of the testing infrastructure will be
detailed. The benefits of such a tool for the OSCAR project
will also be discussed.

CONTENTS

I Objective and definition 1
I-A Rationale 1
I-B OSCAR workflow modification 1

II Available technologies 2
II-A Virtualization of computers . 2

II-A.1 Vmware Worksta-
tion 2

II-A.2 plex86 2
II-A.3 Bochs 2

II-B Linux inside Linux 2
II-B.1 The chroot method 2
II-B.2 The Linux Vservers 2
II-B.3 User Mode Linux 3

II-C Comparisons of the available
methods and choice of the
best one 3

III Proposed implementation 3
III-A Topology of the virtual com-

puters 3
III-B Structure of the virtual hard-

disk on the master-node . . . 3
III-C How to test ? 4

IV Test plan : what to test ? 4
IV-A OSCAR build 4
IV-B OSCAR installation 4

IV-B.1 Default
installation :
core packages only 4

IV-B.2 Installation of
each package
individually . . . 5

IV-B.3 Installation of
package sets . . . 5

IV-C OSCAR maintenance 5
IV-D Distribution maintenance . . 5
IV-E OSCAR update 5

V Conclusion 5

References 5

I. OBJECTIVE AND DEFINITION

The OSCAR[1] Automated Suite Installation and
Simulation (OASIS) is a tool for OSCAR develop-
ers, by OSCAR developers. It has one main goal :
to provide a way to automatically test an OSCAR
installation process on different distributions and on
different architectures.

A. Rationale

As the number of supported combinations
{distribution, version, architecture} increases, the
release mechanism is increasingly more complex.
The testing phase can be very long, for instance,
for the IA32 architecture :

- 2 RedHat versions
- 2 Mandrake versions
- 2 Fedora versions
At the time of this writing, there is only one

additional architecture (IA64) with two distribu-
tions/versions :

- 1 RedHat 7.3

- 1 Debian unstable
In the near future, support for the x8664 will be

required with several distributions (the same as is
already supported in other architectures) :

• 3 : RedHat, Mandrake, Debian
With these constraints and without an

automated testing tool therelease early/release
often mechanism becomes totally impractical,
especially because of some boundary effects :
changes in one given combination of
{distribution,version,architecture} can affect one
or all of the other combinations of{distribution,
version, architecture}.

If every developer tested against all supported
distributions/versions then development would be
extremely slow. Even if such a drastic rule is
not applied, if the testing time for a given trio
is constant, the testing time for each OSCAR re-
lease is proportional ton, the number of trios
{distribution,version,architecture} supported : this is
a O(n) problem.

Once the OASIS tool is well established, it will
run daily on the development version (the head
of the CVS repository) on all distributions and
architectures supported by OSCAR. These tests will
detect defects early in the development process (no
later than 24 hours after a faulty commit into the
CVS tree). With the OASIS tool, the problem of pre-
release testing is now aO(1) problem : all tests are
achieved in a 24 hour period. Moreover, it is even
more interesting for the development of OSCAR
because no developer time is used by OSCAR in
order to achieve this result !

B. OSCAR workflow modification

Once the OASIS structure is in place, the daily
results will be included in the workflow of the
OSCAR development process which can solve some
”broken CVS” problems. Ideally, a new role will
be created : testing manager, whose job will be to
make sure that automatic testing is up to date with
the development tree (maintenance of the automatic
testing in sync with the new OSCAR feature), and
that tests are always successful.

Each time a test does not work, the testing
manager will first identify the faulty commit, then
ask for corrections, or rollback the commit so that
the automatic testing is functional again.

II. AVAILABLE TECHNOLOGIES

In this section, we will discuss the available tech-
nologies that can be used for OASIS. It is important
to note that several major opensource projects enjoy
daily regression testing : kernel, gcc, etc. In this
context, developing an automatic regression testing
for OSCAR can also be seen as a necessity to
increase the quality of OSCAR.

We will not discuss here the tools that can be
used to do automatic regression testing, this will be
discussed in a the next section (proposed implemen-
tation).

A. Virtualization of computers

The vmware[2] workstation program and it’s
open source equivalent, plex86 [4] or Bochs[3]
(which achieve the same goal but not with the
same technics) emulate an x86 CPU. Some of these
are mature enough to provide a virtualization of
resources allowing one computer to host several
alien operating systems and to share resources (file
system, etc.) between these virtual computers.

1) Vmware Workstation:¿From the VMware[2]
web site,VMware Workstation is a powerful virtual
machine software for the desktop. VMware Work-
station runs multiple operating systems, including
Microsoft Windows, Linux, and Novell NetWare,
simultaneously on a single PC in fully networked,
portable virtual machines.

VMware is already in used by most OSCAR
developers in order to diminish development time.
Real testing occurs only when it is time to do a
release.

2) plex86: ¿From the plex86[4] website, plex86
is a very lightweight Virtual Machine (VM) for
running Linux/x86. It uses the same VMware logic
but is restricted only to the Linux OS (native OS
as well as guest OS). At this time, it is needed
to recompile the kernel on your guest OS and
this seems very impractical because OSCAR uses
standard distribution kernels.

3) Bochs: ¿From the Bochs[3] web site :Bochs
is a highly portable open source IA-32 (x86) PC
emulator written in C++, that runs on most popular
platforms. It includes emulation of the Intel x86
CPU, common I/O devices, and a custom BIOS.
Currently, Bochs can be compiled to emulate a
386, 486, Pentium, Pentium Pro or AMD64 CPU,

including optional MMX, SSE, SSE2 and 3DNow
instructions.

The performance of bochs is does not compare
to VMWare or plex86 mainly because it emulates
the CPU instead of using the native instruction set
of the IA-32 CPUs. There is no locking mechanism
for the disks.

B. Linux inside Linux

In this section we will discuss three methods in
use in order to have a Linux environment inside a
Linux environment.

1) The chroot method:As its name suggests,
the chroot command allows any command inside a
Linux OS to be run within a new root. This is used
heavily for security reasons (protect the ”true” root
of a server) or in order to automatically compute
RPM[5] dependencies.

While it can be useful to test certain components
of OSCAR it can not be used to simulate a complex
clustering environment (network adapters, private
network, etc...).

However, at the time of this writing, this is the
only program that is truly architecture independent :
chroot works on any architecture. I feel, however
that the amount of work needed to reproduce an
OSCAR installation inside a chroot environment is
too lengthy.

2) The Linux Vservers:¿From the Linux-Vserver
web site[6] : Linux-VServer allows you to create
virtual private servers and security contexts which
operate like a normal Linux server, but allow many
independent servers to be run simultaneously in one
box at full speed.

The Linux-Vserver project consists of a patch (on
the real OS) and, once done virtual servers can be
created. The virtual servers share CPU resources
from the real OS and no emulation occurs. This is a
very fast system. Several user tools exist to control
the vservers (start, stop, etc...).

3) User Mode Linux: ¿From the UML-Linux
web site[7] :User-Mode Linux is a safe, secure way
of running Linux versions and Linux processes. Run
buggy software, experiment with new Linux kernels
or distributions, and poke around in the internals of
Linux, all without risking your main Linux setup.

User-Mode Linux gives you a virtual machine
that may have more hardware and software virtual

resources than your actual, physical computer.
This is a similar project to the Linux Vservers

project. It provides the same level of functionalities
but the emulation is very slow at this time.

C. Comparisons of the available methods and
choice of the best one

Because VMware testing is already widely in use
by OSCAR developers this will be the best choice
at this time. By choosing VMWare, the automated
testing can be seen as a complete standardization of
the testing method : the OSCAR community will
be able to use the testing case manually (if needed)
inside their own VMWare.

However, it is important to note that the function-
ality of the VMWare testing is completely similar
to the one from bochs, VServers or UML-Linux.
As such, and for licensing purposes, it would be
very interesting to use one of these technologies,
especially if the number of VMWare licences is
limited. Moreover, it will allow the development of
OASIS to be done by anybody, and not only by
VMWare licenced holders.

As noted above, the only architecture independent
technical solution is chroot.

III. PROPOSED IMPLEMENTATION

The proposed implantation is independent of the
tool used to provide the emulation. For practical
reasons, and because the user has extended VMWare
knowledge, we will use VMware terminology. How-
ever, the same outcome can achieved with another
tool (the author is currently experimenting with the
Linux-vserver project with very promising results).

One of the main drawbacks of the proposed
solutions is the lack of architecture support : only
the IA32 architecture is virtualized (or emulated).
However, it is expected that the new 64 bit architec-
ture that is of major importance for OSCAR (IA64
and x8664) will be supported as it become more
popular.

A. Topology of the virtual computers

The architecture of the virtual network of com-
puters used by OASIS is presented in Figure 1. The
real computer hosting all the others is called ”Linux
Box”. Inside this box, three virtual computers called
”Master”, ”Node01” and ”Node02” are running

using, for instance, VMWare. The three virtual hosts
are linked by a private virtual network. The virtual
computer called ”Master” has access to the internet
using the internet connection of the Linux box.

Fig. 1

TOPOLOGY OF THE VIRTUAL COMPUTERS

This architecture is the smallest one that will
allow us to test several key functions of OSCAR
as well as the installation itself, which requires only
one Master server, and one node. With the proposed
setting, we can test the following functions :

• add/remove nodes
• heterogeneous cluster : two different images on

node01 and node02
• heterogeneous hardware : for instance IDE disk

on node01, SCSI disk on node 02
All this will be detailed in the sectionIV.

B. Structure of the virtual hard-disk on the master-
node

The hard-disk structure of the virtual nodes
(Node01 and Node02) will not be presented here :
nodes are completely reinstalled during a regular
OSCAR installation including formatting of the hard
disk.

For the server however, it is important to always
start from a well known starting point in order to
ensure good reproducibility. VMWare allows us to
lock a virtual disk : this achieves exactly what is
desired. All changes to this virtual hard disk will
be lost when the virtual computer is rebooted or
stopped.

Fig. 2

SETTING OF THE VIRTUAL DISK (ON THE OSCARVIRTUAL

SERVER) AS USED BY OASIS

The basic disk image consists of one ”regular”
installation of the distribution/version to be tested
as well as the necessary RPMs placed inside the
/tftpboot/rpm directory. This is done only once, and
once this is done, the content of the disk is locked
and shared so that any OSCAR developer can obtain
the basic disk image.

The /opt/oscar directory will be copied from a
fresh checkout done at a given time (let’s assume
midnight EST everyday) directly from the Linux
box disk.

C. How to test ?

At the time of this writing, OSCAR is completely
dependant on its Graphical User Interface (GUI) in
order to work properly. It is certainly easier to test a
Command Line Interface (CLI) than a GUI because
of the increased capacity to script the actions done
with a CLI.

OSCAR is using the X-windowing system and
several tools exist to generate arbitrary X events to
any given application [8], [9] so that there is no real
technical showstopper.

However, the separation of functionality and in-
terface is now well established in OSCAR, which
means that the development of a CLI is a feature that
can be very useful in order to simplify the automatic
testing [10].

IV. T EST PLAN : WHAT TO TEST ?

In this section we will list the functionality that
has to be tested. Of course, this is an iterative pro-

cess that will be refined while others will be added
but this subset is interesting because it provides
minimal testing for an OSCAR release.

A. OSCAR build

The first and easiest function to test is actually
the OSCAR build process because it is CLI based.
The goal of the build process is to generate several
kinds of tarballs (including documentation) that can
then be distributed.

The test will simply build a tarball and look for
errors. The error log as well as the complete build
log will be available on a public webpage.

The objective of this test is to make sure that
the build program is in sync with the development
version of OSCAR.

B. OSCAR installation

This is the most important task, and the one that
OSCAR was originally designed for, as well as the
most complex one. The starting point here is the
locked image of the virtual master node. A bit of
human interaction is needed for the image creation
as described in section III-B.

While no CLI is available, the X events will be
recorded and then replayed accordingly. The error
and regular flow will be stored for future reference.
The time needed to perform the installation will also
be recorded. Both of recordings will be available
on a public web site. Each time the GUI changes,
adaptations to OASIS will be necessary in order to
reflect these changes.

1) Default installation : core packages only:
While this is not an atomic step (several steps make
the installation of the cluster possible) this is a very
interesting test for OSCAR developers as this tests
the core packages of OSCAR for installation.

These packages are a prerequisite for any addi-
tional tools to work. Any failure at this test should
be corrected as soon as possible in order to maintain
a functional development tree.

2) Installation of each package individually:If
the default installation is successful, then all the
packages will be tested individually (including their
dependencies). This will be possible only if time
permits, or if there is enough dedicated testing
computers.

3) Installation of package sets:While unit test-
ing is very important, it does not correspond in
practice to a real use case. In general, users will
install package sets. This can be simulated also :
several use cases (MPI, PVM, scheduler, etc...) will
be created in order to reflect this.

OASIS will test these use cases in order to ensure
that the packages are working well together.

C. OSCAR maintenance

The maintenance operations are the following :
add/remove node, and add/remove packages. Those
scenarios will be tested in this regard.

D. Distribution maintenance

The distribution vendor regularly publishes secu-
rity updates, especially for servers. Because OSCAR
uses a lot of servers, the security update of one
distribution vendor can affect the global OSCAR
functionality.

In order to test this, the distribution updates
will be installed (from a local copy on the testing
computer) and then all OSCAR installations and
maintenance will be tested.

This kind of test can be generalize to a non-
development version of OSCAR : this will allow the
OSCAR community to publish bugfixes necessary
to operate older clusters.

E. OSCAR update

While there is no official way for updating OS-
CAR at this time, the fact that all the relevant
information is in ODA (the OSCAR Database), it
should not be difficult to update the newest OSCAR
version.

OASIS can be used to test these major updates.

V. CONCLUSION

In this paper, we briefly presented the architecture
of a completely automated OSCAR testing suite call
OASIS. We analyzed the existing tools that can be
used to test OSCAR and made some recommenda-
tions regarding these technologies. Then we detailed
the basic structure for the OASIS tool as well as the
requirements on the hardware, and software side.

We have established that the testing time for each
OSCAR release is proportional to the number of
combinations of supported{distribution, version,

architecture} : this is aO(n) problem. The devel-
opment of OASIS will transform this into aO(1)
problem (24 hours).

OASIS will ensure better reproducibility of an
OSCAR installation and development as the initial
state of the OSCAR installation will be well known
and shared among the developers.

REFERENCES

[1] OSCAR : Open Source Cluster Application Ressources,
http://oscar.openclustergroup.org/ 30th of april
2004

[2] Vmware,
http://www.vmware.com/products/desktop/ws_
faqs.html 30th of april 2004

[3] Bochs,
http://bochs.sourceforge.net/ 30th of april 2004

[4] plex86 ,
http://www.plex86.org/ 30th of april 2004

[5] Stephan little build dameon,
http://qa.mandrakesoft.com/twiki/bin/view/
Main/SlBd 30th of april 2004

[6] The Linux-VServer project,
http://www.linux-vserver.org/ 30th of april 2004

[7] The User-mode Linux Kernel Home Page,
http://user-mode-linux.sourceforge.net/ 30th
of april 2004

[8] The Android GUI Testing Tool,
http://www.wildopensource.com/
larry-projects/android.html 30th of april 2004

[9] Xnee,
http://www.gnu.org/software/xnee/ 30th of april
2004

[10] OSCAR CLI : a Command Line Interface for OSCAR, Benoı̂t
des Ligneris and Fernando Laudares, to be published.

http://oscar.openclustergroup.org/
http://www.vmware.com/products/desktop/ws_faqs.html
http://www.vmware.com/products/desktop/ws_faqs.html
http://bochs.sourceforge.net/
http://www.plex86.org/
http://qa.mandrakesoft.com/twiki/bin/view/Main/SlBd
http://qa.mandrakesoft.com/twiki/bin/view/Main/SlBd
http://www.linux-vserver.org/
http://user-mode-linux.sourceforge.net/
http://www.wildopensource.com/larry-projects/android.html
http://www.wildopensource.com/larry-projects/android.html
http://www.gnu.org/software/xnee/

	Objective and definition
	Rationale
	OSCAR workflow modification

	Available technologies
	Virtualization of computers
	Vmware Workstation
	plex86
	Bochs

	Linux inside Linux
	The chroot method
	The Linux Vservers
	User Mode Linux

	Comparisons of the available methods and choice of the best one

	Proposed implementation
	Topology of the virtual computers
	Structure of the virtual hard-disk on the master-node
	How to test ?

	Test plan : what to test ?
	OSCAR build
	OSCAR installation
	Default installation : core packages only
	Installation of each package individually
	Installation of package sets

	OSCAR maintenance
	Distribution maintenance
	OSCAR update

	Conclusion
	References

