OSCAR CLI: a Command Line Interface for OSCAR
Benoit des Ligneris!

Fernando Laudares Camargos

2

! Révolution Linux Inc.
145, rue Sauvé - bureau 15-16
Sherbrooke (Quebec)
J1L1L6e CANADA

benoit.des.ligneris@revolutionlinux.com

2 Federal University of Santa Catarina (UFSC)
Servidao Dias, 292
Floriandpolis, SC

8830-330 Brasil

laudares@inf.ufsc.br

Abstract

This article discusses the implementation of a Command Line Interface (CLI) for
OSCAR. The structure of the CLI as well as the different commands required to
reproduce the Graphical User Interface (GUI) will be presented.

Keywords: CLI, Command Line Interface

Introduction

At the time of this writing OSCAR functionalities
are only available via the OSCAR Wizard
Graphical Interface (GUI): this is the only way to
proceed with the installation of OSCAR. While it
is easy to use, and offers an intuitive and friendly
installation process it also has certain limits :

- to reproduce a given OSCAR installation, the
steps must be followed explicitly. For large
clusters with multiple servers, this can be a
major problem;

- the GUI is not scriptable per se (one has to use
an external tool);

- testing OSCAR is a lengthy process that is
difficult to automate (because the GUI needs

some human interaction to function properly);

- an X-windowing system has to be installed on
the server.

This paper defines the organization of a
Command Line Interface (CLI) for OSCAR. The
CLI should provide roughly the same level of
functionality as the mainline GUI and is not there
to replace the GUI : a GUI is clearly more user-
friendly than a CLI and performs certain classes
of actions much better (selection, display of large
lists, etc).

Trying to work through the CLI for all GUI
actions limits the GUI and also makes the CLI
much more complex. Indeed, the objective of the

CLI is not to replace the actual Wizard (GUI), but
instead to have the GUI call the CLI. This will be
especially interesting once an automated, and
tested system will be in place for OSCAR. In the
meantime, our proposal is that the GUI, and CLI
should be alternatives and not dependent layers:
this way the CLI could be connected to the same
API as the GUI connects to, but neither interface
is limited by, or capable of overwrite the other.

The idea of developing a command line interface
for OSCAR arose when we had to face the task of
building a large cluster of more than 1024 nodes.
While the main GUI simplifies the installation of
a generic cluster, based on the OSCAR supported
architecture (one server, and several nodes), it
does not support more complex architectures.
Moreover, the architecture we planned for the
large cluster is hierarchical with a "master
OSCAR server" and several sub-servers that will
each control between 48 and 96 nodes

In order to achieve this goal, building a CLI will
provide exceptional flexibility for OSCAR
clusters. It will then be possible to support any
kind of cluster-architecture. One bonus of the CLI
is to ease the development of an automated test
suite, which will in turn, save OSCAR developers
a lot of development time.

reproduce the OSCAR installation and produce a
script file that will allow a complete replay of the
installation, except for the MAC address
collection. This solution can be particularly
attractive for cluster vendors as it will automate
the installation, and customization, of any cluster
installation. It will be possible to edit the cluster
install script, as well as the key information
(namely the node MAC addresses) provided by
the system integrator. This will allow a cluster to
be installed in a matter of minutes, according to
the customer specifications, without human
intervention.

CLI structure

At this time, the CLI structure has been created in
order to mimic the actual steps of the OSCAR
wizard. All functions, with the exception of one,
should be easy to implement, especially those
functions that affect the database (read or write).

Indeed, OSCAR uses, almost exclusively, ODA
(the Oscar Database) as well as an interface for
accessing the existing database (read, write,
update, delete).

As the CLI requires direct access to the OSCAR
libraries, which are programmed in Perl, this is
the language of choice for the implementation.

‘ Oscar Command Line Interface (CLI) ‘

1 ©
1®

®
_{

oscar_options oscar_package

oscar_image ‘

1 ®
- @

— installation_type getCopy

-- sel_interface
- lest

configure

— internel_access install

- multicasting test

— change_oda_pwd

Figure 1: structure of the OSCAR CLI commands
At some point, we would like to be able to

oscar_clients oscar_cluster

OSCAR global options : oscar_option

Before attempting to install OSCAR, there is a set
of options that should be configured. As this step
is optional, there must be a 'default’ configuration
(when required). The command name is
“oscar_option”

--installation_type (default : disk)

Defines which type of OSCAR installation will be
used (meaning: 'disk’ or 'diskless' (Thin-OSCAR).

Ex: 'oscar_option --intallation_type diskless'.
--set_interface (default : ethl)

Defines which server adapter (interface) will be
used to connect to the cluster network.

Ex: 'oscar_option --set_interface ethl'.
--internet_access (default : yes)

Enables or disables the cluster's internet access
(i.e.: if the cluster will or will not have "contact"
with the "outside world"). This issue is
particularly important when deciding if the server
will be able to 'download' additional packages
(from an outside repository).

Ex: 'oscar_option --internet_acces yes'.
--multicasting (default : no)

Enable or disable multicasting.

Ex: 'oscar_option --multicasting yes'.
--change_oda_pwd

Modifies the OSCAR
administrator's password.

DATABASE

--test

Performs a series of test scripts that ensures that
the choosen global options are OK (“checks the
system to see if it is "OSCAR-ready" by checking
file locations, rpm versions, etc”).

Ex: 'oscar_option --test'.

OSCAR Package : oscar_package command

Performs the copy/download, selection,
installation, configuration, and testing of the
OSCAR (core and additional) packages.

getCopy

The command 'getCopy' retrieves a copy of
additional packages. This command depends
entirely on whether or not the Internet is enabled.
If the Internet is enabled, getCopy, by using the
'OSCAR Package Downloader (OPD)', establish a
connection with a repository and download the
desired packages from there. If there is no
Internet connection, the only way to get additional
packages is to copy them from a local directory
into the local Opder package repository
(/var/lib/oscar/packages/).

command: 'oscar_package getCopy [options]'
--local (default : /var/lib/oscar/packages)

Specifies the location where the additional
packages can be found (it can be either a local
directory, or a URL for a specialized OSCAR
package repository), and prints a list with the
available package's information.

Ex: 'oscar_package --local /

tmp/packages'

getCopy

--pkname

When '--pkname' is the only option chosen,
(besides the '--local' option), the copy/download
of the package will be performed.

Ex: 'oscar_package getCopy --pkname clumon'

--pkname --xmlinfo

1

When the option '--pkname' is entered with the
“--xmlinfo” option, the package information will
be printed. (This can be any XML tag of the
config.xml definition of the package.)

select

The command 'select' chooses which additional
packages will be installed (by default, all packages
directly included in OSCAR (the core packages) are
selected and installed). The additional
copyed/downloaded packages must be manually
selected for installation.

command: 'oscar_package select [options]'.
--table

Gets the list (table) of the available packages for
immediate selection (including package name,
class and location/version).

Ex: 'oscar_package select --table'.
--pkname

As with the command 'getCopy', if this option is
entered "alone", the package is selected for
installation.

Ex: 'oscar_package select --pkname clumon'.

--pkname --xmlinfo

When the option '--pkname' is entered with the
“--xmlinfo” option, the package information will
be printed. (This can be any XML tag of the
config.xml definition of the package.)

Ex: 'oscar_package select --pkname clumon --
requires'.

A complementary, but important option, that
helps in the automatization of the process, is:
--all

Select all packages (including the packages
previously copied/downloaded)

Ex: 'oscar_package select --all'.

(PS: there is no need for a 'default' select option,
as all of the core packages of OSCAR are
automatically selected for installation)

configure

Some packages in OSCAR have configuration
options. The command 'configure' allows for the
configuration of these packages.

command: 'oscar_package configure [options]'.
--table

Prints a list of packages that can be configured.

install

Performs the installation of selected packages in
the OSCAR server.

command: 'oscar_package install'.
test

Performs a test with a package to assure that the
installation was successful.

command: 'oscar_package test [option]'.
Options:

--table

Print a list (table) of the installed packages.
Ex: 'oscar_package test --table'.

--pkname

Specifies which package you want to test.

Ex: 'oscar_package test --pkname clumon'.

OSCAR Image commands : oscar_image

Builds and tests the future client's image, which is
constructed from the OSCAR core, and additional
(selected) packages, plus the operational system
files (like RPMs).

build

Builds the image, that will be "network copied"
to the node (uses the 'mksiimage’' command).

command: 'oscar_image build [options]'".

It is possible to either customize the default
image, by altering the following options, or
simply build the default image (by omitting the
options).

Options:

--seeDefault

Print the default options.

Ex: 'oscar_image build --seeDefault'.
--imageName

Specifies the name of the current image
customization, by which you will identify the
image (you can create several different image
customizations);

--packageFile

Specifies the full address of the text file
containing a list of packages that should be
installed (usually present in
'fopt/oscar/oscarsamples’);

--packageDirectory

Specifies the directory which contains the
packages that will be used to build the image
(usually '/tftpboot/rpm");

--diskPartFile

Specifies a text file that contains the disk partition
table for the image;

--ipAssignMet

Specifies the IP assignment method, that can be
either 'static', 'dhcp' or 'replicant’;

--postInstAct

Specifies which will be the client's post install

action, this can be either 'beep', 'reboot' or
'shutdown';

Ex: 'oscar_image build --imagename oscartest] —
packageFile /opt/oscar/ oscarsamples/mandrake-

9.2-1386.rpmlist --packageDirectory /tftpboot/rpm
--diskPartFile /
opt/oscar/oscarsamples/sample.disk.ide --
ipAssignMet static ~ --postInstAct beep;.

delete

Delete an existing OSCAR image.

--imageName

The name of the image, used to identify it.

Ex: 'oscar_image delete --imageName oscartest1'.
OSCAR Node commands : oscar_node

Takes care of tclient management (include,
remove, test).

add

Defines which clients will be installed. It can be
used either for the first installation to establish the
main set of nodes, as well as later to add new
clients to the selected image group.

command: 'oscar_node add [options]'.
Options:

--seeDefault

Print the default values

--imageName

Specifies which image (previously built) to use.
--domainName

Specifies the client's [P domain name;
--baseName

Specifies the first part of the client's name and
hostname (this name can not contain an
underscore character);

--numberOfHosts

Specifies the number of hosts. This field does not
have a default value and must be filled. The value
must be greater than zero.

--startNumber
Specifies the number of the first node;
--padding

Specifies the number of digits to pad the node
name with;

--startIP

Specifies the network subnet mask;
--defaultGateway

Specifies the default route to send all packets;

Ex: 'oscar_node install --imageName oscartest] --
numberOfHosts 2'.

delete

Deletes a client from your running OSCAR
cluster.

command: 'oscar_node delete [options]'.
Options:
--clientID

Specifies the ID of the client that you want to
remove from your cluster (the ID is formed by the
base name plus the client's index number [which
depends on the pad digits]).

Ex: 'oscar_node delete --clientID oscarnodel'.
--all

Deletes all clients from the cluster.

Ex: 'oscar_node delete --all'.

getState

Get the current state of a determined client. By
default, use the ping test.

command: 'oscar_node getState [option]'.
--clientID

Node name

--protocol

Which protocol to use (ping, SSH, openPBS, etc.)

-- clientFileListst

Name of a file that contains one node name per
line. Will return a list clientName, value

Ex: 'oscar_node getState --clientID oscarnodel —
protocol SSH'.

OSCAR global cluster commands

Collect the MAC adresses and assign specific IP
adresses to the Clients, complete the installation
of the cluster and test it.

collectMACs

This command is very difficult to reproduce in a
CLI. The idea is to collect as many MAC
addresses as the number of nodes, and then stop
the process.

command: 'oscar_cluster collectMACs'
importMACs

Import a list of MAC adresses (previously
collected) from a file.

command: 'oscar_cluster importMAC:s [file]'.

Ex: 'oscar_cluster importMACs /

mnt/floppy/listA'.
getMACsList

Print the list of the collected (or “imported”)
MAC:s.

command: 'oscar_cluster getMACsList'.
exportMACs

Save the list containing the collected MAC
adresses in a file, for “re-use”.

command: 'oscar_cluster exportMAC:s [file]'.
Ex: 'oscar_cluster exportMACs /tmp/listOfMACs'
assignAll

Assign all of the collected MACs to all of the
"free" nodes.

command: 'oscar_cluster assignAll'

postInstall

Execute scripts that complete the installation of
the cluster (must be executed only after all the
nodes have completed their installation, rebooted
from the hard disk and have their ethernet
adaptors up).

command: 'oscar_cluster postlnstall'
test

Test the cluster to check if the OSCAR
installation is working.(oscar_package performs a
node-level test; oscar_cluster test performs a
cluster-level test. The Cluster-level test can be
done only if the package-level test is successful).

Conclusion

The main objective of this article is to present the
specifications for a command line interface (CLI)

for OSCAR in order that the OSCAR community
may comment the article.

The rationale for developing a CLI are numerous :
adaptation of OSCAR to any arbitrary cluster
topologies, scalability of OSCAR, ease the work

of OSCAR cluster integrators, remove the
necessity to have an X windowing system on the
master node, ensure the exact image of any
OSCAR installation, and finally, allow an easy
implementation of an automated regression
testing suite for OSCAR.

The proposal for the development of the CLI is
not disruptive for the GUI as both will, at first, be
independant. The development of the CLI will
ensure a strict separation of functionality and
interface as all the functionality code will be
moved into the OSCAR libraries. This is the best
known method for software development.

The long-term objective is to remove code
duplication in order that the GUI makes use of the
CLI instead of calling the Perl library directly.
This will allow for separate testing of the GUI,
and of the functionalities (CLI). Once this is
achieved, each OSCAR installation will produce a
script of OSCAR CLI commands that will allow
the reproduction of the exact same cluster
installation (very useful for cluster integrators and
for the reproductability of bugs).

