
A Directives API for Loop Transformations

Achievement: Defined the directives API “HSLOT” for transforming and parallelizing loops and implemented it in a production compiler

Significance and Impact: Allows for the rapid transformation of Fortran loop structures in custom ways and with a programming simplicity similar to OpenMP FOR-loop parallelization.

[image:][image:][bookmark: _GoBack]Showcasing one (fuse) of the many HSLOT transformation primitives we support(left) -- speedup for PolyBench kernels optimized and parallelized with HSLOT (right).

Research Details:
· We developed a plethora of loop transformation directives, which includes the classic set (unroll, fuse, fission, ..) plus unique ones (specialize, swap, nest, …). We implemented them in our HERCULES Open64-backed framework. We then tested them on Titan using PolyBench as our optimizations target.

Sponsor/Facility: OLCF

PI and affiliation: Christos Kartsaklis from CSMD – Oak Ridge National Laboratory

Team: Christos Kartsaklis, EunJung Park, John Cavazos

Publication: Christos Kartsaklis, EunJung Park and John Cavazos, “HSLOT: the HERCULES scriptable loop transformations engine”, 4th International Workshop on Domain-Specific Languages and High-Level Frameworks for High Performance Computing, held in conjunction with the SC14: The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC14).

Overview:
HSLOT strives to simplify the task of transforming source code in order to test different optimization paths on current and future computing systems. HSLOT arms users with a rich set of configurable transformation directives – these can be used as-they-are, specialized and most importantly combined into powerful, customized, transformations. We offer a plethora of loop transformations, which includes both the classic set (unroll, fuse, fission, tile, and so on) as well as unique ones (specialize, swap nest, split, fork, and so on) that are not found in other state-of-the-art systems. We showed how HSLOT can be used for breaking dependencies and enabling additional optimizations and parallelism, while leaving the original sources intact. Users use HSLOT by simply annotating loops with the transformations sequence and by compiling with our Open64-based HSLOT-implementing Fortran compiler, which produces both object files and optionally source.
image1.png
Format: fuse([doloop 11,_, doloop 1n], {same|different},
doloop ip{, doloop Inew}? ¢, (11, -, 10132)

nd o

TShslot Toop(LD), fuse([LL, 2], smme, 12, 19) T bar0);
EEeew Seenn
ox(3) 2 oaepecn) " ety
ot = oaeox(n)
1 bar ()3
isnslot Loop(12) ov(3) = oaev()
o323, W oy
ov() 2 oaeov()

Tshalot Loop(L1), \
 fozelinial, different, 12,) TR,])
one opion fpreset,

e aentere il
be scoctedth the
pr——

fisserent

image2.png
Speedup with Different Thread Numbers
Program Problem Size Serial | TH=2 TH=4 TH=8 TH=16 TH=32 | Set of Transformations Used with
Counts
2mm NININKNL=1024 | 121x | 062x LI6x 2.18x__1.76x _ 4.03x | pecl(2), fuse(3), openmp(l)
3mm | NUNJNKNLNM=1024 | 1.I5x | 048X 085x 1.29x 1.43x _ 205X | peel(2). fuse(3). openmp(1)
correlation NM=512 0.6 B - B - - fission(2), unroll(1), peel(2), fuse(2)
doitgen NQ.NRNP=128 T.04x | 2.1x _ 426x 824x _829x 165X | unroll(l), openmp(l)
dynprog | LEN=50, TSTEPS=I0K | 1.I7x | L.I9x _1.66x 1.74x__ 139x _ 123x | unroll(2).fuse(l). openmp(l)
fdid-2D NX,NY=1000 TIx - B - - - peel(3), fuse(2)
gemm NLNJ=1024 T.05% | 1.65% 3.8% 665% 7.38x _ 14.56% | unroll(1), fuse(2), openmp(1)
Jacobi-1D_| N=10000, TSTEPS=100 | 1.1x - - - - - peel(2), fuse(1). unroll(1)
jacobi-2D | N=9000, TSTEPS=10 | 1.32x | 15x 295x 336X 341x 223x | unrolli2), fused). peel(2).
openmp(1)
mvt N=4000 248x | 122 238x 438x _448x _ 829x | unroll(2), openmp(2)
seidel2D | N=3200, TSTEPS=4 | 1.06x | 1.86x 3.71x 7T41x 13.52x 26.96x | unroll(I) . fuse(l), openmp(1)
[GMEAN | [LI5x | LlIx _[74x_247x 257X 347X |

