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ABSTRACT

We develop a projection-based dimension reduction approach for partial differential equations with
high-dimensional stochastic coefficients. This technique uses samples of the gradient of the QoI
to partition the uncertainty domain into “active” and “passive” subspaces. The passive subspace is
characterized by near constant behavior of the quantity of interest, while the active subspace con-
tains the most important dynamics of the stochastic system. We also present a procedure to project
the model onto the low-dimensional active subspace that enables the resulting approximation to
be solved using conventional techniques. Unlike the classical Karhunen-Loève expansion, the ad-
vantage of this approach is that it is applicable to fully nonlinear problems and does not require
any assumptions on the correlation between the random inputs. This work also provides a rigorous
convergence analysis of the quantity of interest and demonstrates: at least linear convergence with
respect to the number of samples. It also show that the convergence rate is independent of the num-
ber of input random variables, revealing its superiority compared to even standard Monte Carlo,
for approximation high-dimensional problems. Finally, several numerical examples demonstrate
the feasibility of our approach and are used to illustrate the theoretical results. In particular, we
validate our convergence estimates through the application of this approach to a reactor criticality
problem with a large number of random cross-section parameters.
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Introduction

A large number of phenomena in science and engineering are modeled by a map from a set of
input data, i.e. model coefficients, forcing functions, boundary and initial conditions, geometry,
etc., to an output quantity of interest (QoI). This mapping is typically achieved by virtue of one
or more differential and/or partial differential equations (PDEs). However, in practice, the deter-
ministic exact values of the input data are seldom known as they are affected by uncertainty. Such
uncertainties can be included in the mathematical model by adopting a probabilistic setting, pro-
vided enough information is available for a complete statistical characterization of the physical
system. Once the probability distribution, either given or through a calibration procedure, of the
input random data is known, the goal of the computational simulation becomes the prediction of
statistics (mean, variance, covariance, etc.) of a QoI, or the probability of some given responses of
the system. In this setting, stochastic formulations are utilized to account for this random behavior,
enabling uncertainty quantification (UQ) in practical applications. In particular, the input data are
modeled as random variables, and the underlying dynamics originally described by a set of PDEs,
are naturally transformed into stochastic parameterized PDEs (SPDEs).

In this work we focus on QoIs coming from the solution of SPDEs whose coefficients and/or
forcing terms are described by a finite dimensional random vector; either because the problem
itself can be described by a finite number of random variables or because the input coefficients are
modeled as truncated random fields. We especially address the situation where the input data are
assumed to depend on a large number of random variables.

One particular problem of interest comes from the physics of a nuclear reactor. The behavior of
a nuclear reactor depends on the flow of neutrons through the reactor core and the flow of neutrons
itself depends on a large number of cross-section parameters that describe the way various types
of materials (i.e. nuclear fuel, control rods, coolant etc.) interact with the neutron field. The
number of the parameters is often times in the thousands or even tenths of thousands and recent
advances in simulation techniques allow us to resolve the neutron flow for problems with realistic
complexity [14]. However, transport solvers still assume that the values of the cross-sections are
known exactly, while in practice, those are measured experimentally and hence they come with a
potentially wide range of uncertainty. The neutron transport problem is an excellent candidate to
motivate our gradient-based reduction approach, as it offers a particular set of challenges: including
a significantly large number of (potentially uncorrelated) input parameters with a wide range of
uncertainty, and significant computational cost associated with each realization.

Sensitivity analysis (SA) is technique for estimating the first two moments of the QoI [9]. The
derivative of the QoI with respect to the random input data is used to form a local linearization of
the PDE, and then the distributions of the input parameters are propagated through the simplified
model. In essence, the expectation is approximated by evaluating the QoI at the nominal (mean)
values of the random inputs and the variance is approximated via a “sandwich-rule” using the gra-
dient of the QoI and the covariance matrix. Computationally, SA is relatively cheap, however, for
a general nonlinear QoI, the accuracy of the linearization away from the nominal point deteriorates
quickly, and therefore, is only feasible for problems where the size of the noise is relatively small.
Yet, many engineering and science applications are affected by a relatively large amount of uncer-
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tainty in the input data, and an accurate approximation of the QoI over the full range of uncertain
inputs is a desired result.

The Monte Carlo (MC) family of methods (see, e.g., [15]) for random sampling is the classical
and most popular approach for estimating statistics of QoIs that depend on the solution to a SPDE
with a large number of random inputs. When coupled with a discretization in the physical domain,
e.g. finite elements, finite difference, finite volume, spectral or even h-p, the MC approximation
is based on independent identically distributed (iid) realizations of the input parameters; approx-
imations of the expectation or other moments of QoIs are obtained by a simply averaging over
the corresponding realizations of that quantity. As such, the MC method requires a deterministic
solution of the PDE for each realization of the input parameters, making it simple to implement,
allows for maximal code reusability, and is straightforward to parallelize. The resulting numerical
error is proportional to (1/

√
k), where k is the number of realizations. The advantage of using the

Monte Carlo sampling approach is that the convergence rate does not deteriorate with respect to
the number of random variables in the problem, making the method very attractive for problems
with a large number of random inputs. On the other hand, when solving large-scale applications
for which numerical solutions of the PDE are expensive to obtain, the exponent 1/2 in the rate of
convergence generates a tremendous amount of computational work in order to achieve accurate
solutions. Other ensemble-based methods such as quasi-Monte Carlo, Latin hypercube sampling,
lattice rules, orthogonal arrays, etc. (see, e.g., [20, 28] and the references cited therein), have
been devised to produce “faster” convergence rates, e.g., proportional to (log(k)r(N)/k), where
r(N) > 0 grows with the number N of the random input variables, and thus, deteriorating conver-
gence as N increases.

More recently, alternative approaches for approximating SPDEs, that utilize standard approx-
imations in the physical space, and stochastic polynomial approximations, using either Galerkin
projections or Lagrange interpolation, in the probabilistic domain, have gain considerable atten-
tion. These methods are typically known as stochastic Galerkin (SG) and stochastic collocation
(SC) respectively, and both techniques exploit the regularity of the solution to acquire faster con-
vergence rates. Moreover, to combat the the explosion in computational effort, caused by the curse
of dimensionality, approximations are employed in sparse [6,12,13,16–18,29–31,33,34] or piece-
wise polynomial spaces [3, 8, 19, 21, 26, 32, 35]. However, the intrusive nature of the SG approach
requires solving a system of equations that couples all degrees of freedom in the approximation
to the stochastic solution. As such, as the number of random inputs grows then the corresponding
number of degrees of freedom is prohibitively large. On the other hand, SC offers a non-intrusive,
ensemble-based approach, similar to Monte Carlo, for constructing a fully discrete approximation
over the entire range of probabilistic inputs. Moreover, as shown in [29,30], the sparse grid SC ap-
proximation of SPDEs in which the input random variables come e.g., from Karhunen-Loève -type
truncations of “smooth” random fields, the convergence rate is at least sub-exponential, and in some
particular examples is independent of dimension. However, in general, when the parameter space is
truly high-dimensional and/or the solution exhibits steep gradients, sharp transitions/bifurcations,
or jump discontinuities, all SG and SC methods converge very slowly or even fail to converge. As
such, to effectively exploit the fast convergence of both the SC and SG approaches, it becomes
necessary to reduce the parameter dimensions to a moderate size of the most important random
variables.
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For a second order stochastic process, the Karhunen-Loéve (KL) [24,25] expansion is the most
common dimension reduction technique associated with random input data of a SPDE. KL creates
a lower dimensional representation to the inputs that preserves the mean and yields an increasing
accurately approximation of the variance. However, KL requires prior knowledge of the correlation
between the inputs and the existence of a suitable low-dimensional representation is contingent
upon the inputs being strongly correlated. Therefore, this approach is not feasible if the inputs are
uncorrelated and, even if a low-dimensional representation of the uncertainty exists, the relation
between the error in the KL projection and the corresponding discrepancy in the statistics of the
QoI is not rigorously defined for nonlinear problems.

A new reduction approach for approximation SPDEs that depend on high-dimensional param-
eter spaces by combining the advantages of MC sampling with SA [1, 2, 5, 7, 10]. Monte Carlo
sampling is used to compute the sensitivities (i.e. derivatives) of the QoI in order to construct
a subspace that approximates the span of the gradient of the QoI. Consecutively, the problem is
projected onto the resulting low-dimensional subspace, thus reducing the number of inputs and
allowing for the application of SC and SG techniques. This method is similar to an approach pro-
posed in [23,27], where the dominant singular values of a matrix are inferred from the action of the
matrix onto a set of random Gaussian vectors, i.e. every component of the vector is sampled inde-
pendently from a Gaussian distribution. However, in general, the gradient is not a linear function of
the inputs and if it is represented as a product of a matrix and a nonlinear vector function (e.g. [5]),
the samples from the nonlinear function do not follow the Gaussian distribution. Therefore, the
error estimates in [23,27] are not applicable. Furthermore, even if the gradient depends linearly on
the input parameters, these error bounds relate to the discrepancy between the computed and actual
dominant singular values of the matrix, while in context of SPDEs, we are interested in the error
in the projection of the QoI (which is associated with the neglected small singular values). The
gradient sampling method has been successfully applied to several problems, however, it suffers
from the lack of rigorous error bounds, relating the approximation of the gradient samples to the
error in the statistics of the projected QoI.

The main contribution of this work is to develop a rigorous approach for gradient-based di-
mension reduction of SPDEs with high-dimensional random inputs. In particular, we propose
an approach to identify the passive subspace, i.e. where the QoI is constant or can be accurately
(within small error tolerance) approximated by a constant, and then project the problem onto the
(active) orthogonal complement, subspace. Moreover, we also derive rigorous bounds relating the
error in the statistics of the projected QoI to the error in the approximation of the gradient samples.
In the case that the QoI is the variance of a vector that depends linearly on the inputs, our approach
is equivalent to Karhunen-Loéve expansion. However, our results extend for higher statistical mo-
ments, fully nonlinear problems and does not require any assumptions on the correlation between
the random inputs. Our analysis reveals, that in the worst case, the convergence rate is proportional
to (1/k), and as such, the method is dimension independent and convergences faster then classic
MC sampling. Moreover, as our numerical examples reveal, this linear rate of convergence is in
fact an overestimate and a suitable projection space can be identified with even fewer samples.

The rest of this paper is organized as follows, in §1 we define the abstract problem setting and
introduce the mathematical problem and the main notation used throughout. In §2 we present the
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analysis that relates the error in the projection of the QoI to the error in the approximation of the
gradient. In §3 we present a numerical sampling-based algorithm for approximation of the gradient
of the QoI and provide the rigorous error analysis of our approach. In §4 we present three numerical
examples where we apply our method to: a KL expansion involving random matrices (see §4.1);
a highly reducible random parameter problem (see §4.2) and; a neutron transport problem with
uncertain cross-sections (see §4.3).
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1 Problem setting

We begin by following the notation in [4, 29, 30] and let D ⊂ Rd, d = 1, 2, 3, be a convex
bounded polygonal domain in Rd, d = 1, 2, 3, and (Ω,F , P ) a complete probability space. We let
L be a differential operator, linear or nonlinear, defined on a domain D, which depends on some
coefficient(s) γ(ω, x) with x ∈ D, ω ∈ Ω. Here Ω is the set of outcomes, F ⊂ 2Ω is the σ-algebra
of events and P : F → [0, 1] is a probability measure. We are interested the following stochastic
boundary value problem: find u : Ω×D → Rm such that P -almost everywhere in Ω

L(γ)(u) = 0 in D, (1.1)

equipped with suitable boundary conditions. Typically L defines a physical system by virtue of
ordinary or partial differential equations, however, the analysis presented in this work is agnos-
tic with respect to any specific structure in the model. We denote by W (D) a Banach space of
functions v : D → R and define, for q ∈ [1,∞], the stochastic Banach spaces

LqP (Ω)⊗W (D) :=

{
u : Ω×D → Rm

∣∣∣∣ ∫
Ω

‖u‖qW (D) dP (ω) < +∞
}

(1.2)

We are particular interest in the case when q = 2 as we assume the underlying stochastic input data
are chosen so that the corresponding stochastic partial differential equation (1.1) is well-posed so
that it has an unique solution u(ω, x) ∈ L2

P (Ω) ⊗ W (D), consisting of Banach-space valued
functions that have finite second moments. Finally, we note that in this setting the solution u can
either be a scalar or vector-valued function depending on the system of interest.

We also assume that the stochastic coefficients γ(ω, x) depend on a finite dimensional real-
valued vector of independent random variables y = [y1(ω), . . . , yN(ω)] : Ω→ RN with N ∈ N+.
Then, the solution u of (1.1) depends on the realization ω ∈ Ω through the value taken by the
random vector y, i.e. u = u(ω, x) = u(y(ω), x). Below we give an example of the typical finite-
dimensional noise decomposition. However, we note that this is not an assumption of our sampling
approach or the accompanying convergence analysis.

Example 1 (Stochastic input data) In many applications, the stochastic input data may have a
simple piecewise random representation whereas, in other applications, the coefficients a in (1.1)
may have spatial variation that can be modeled as a correlated random field, making them amenable
to description by a Karhunen-Loève (KL) expansion [24, 25]. In practice, one has to truncate such
expansions so that they are of the form

γ(ω, x) = γ(y(ω), x) = γ0(ω, x) +
N∑
n=1

yn(ω)bn(x), (1.3)

where the number N terms retained depends on the regularity of the given covariance function and
the desired accuracy of the expansion. Please see [30, Section 1.1] for detailed descriptions of both
types of noise.
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In what follows, we denote by Γn ≡ yn(Ω) ⊂ R the image of the random variable yn, then
set Γ ≡ ∏N

n=1 Γn ≡ y(Ω), and assume that the components of the real-valued random vector
y = [y1(ω), . . . , yN(ω)] : Ω→ RN have a joint probability density function (PDF)

ρ : Γ→ R+ with ρ(y) ∈ L∞(Γ),

where ρ(y) =
∏N

n=1 ρn(yn) if the random variables are independent. Therefore, the probability
space (Ω,F , P ) is equivalent to (Γ,B(Γ), ρ(y)dy), where B(Γ) is the Borel σ-algebra on Γ and
ρ(y)dy is the finite measure of the random vector y. In this setting the stochastic Banach space
LqP (Ω) is equivalent to Lqρ(Γ), consisting of functions on Γ with respect to the measure ρ(y)dy.

Therefore, the solution of the state equation (1.1) is an unique square integrable function u =
u(y, x) ∈ L2

ρ(Γ)⊗W (D), for any y ∈ Γ and x ∈ D. The goal of this effort is to construct statistical
information related to an output QoI, as a function of the random vector y = [y1, . . . , yN ], by
evaluating the map

Q = Q(u(y, x)) = Q(y) : Γ×D → R, (1.4)

that we assume depends on a high-dimensional subspace Γ ⊂ RN . Here, by high-dimensional we
really mean that N = dim(Γ) ∼ O(100).

Remark 1 (Support of the joint PDF) Even though the support of Γ ⊂ RN may be bounded we
assume that ρ(y) is defined over all of RN . If Γ is a bounded domain then we set ρ(y) = 0 outside
the region Γ. We note that the is strictly an artifact of the projection techniques described in §1.1
and the analysis presented in §3, and has no effect in the main convergence rates described in
Theorems 2 and 3.

Moreover, in this effort we focus on complex stochastic problems defined by (1.1), where, given
a sample y(ω) ∈ Γ evaluating the QoI (1.4) is computationally expensive. However, we assume
that we can compute the gradient of Q(y) at a specific random vector y, denoted ∇Q(y), with
comparable cost to the computation of the value of Q(y). We remark that in this effort the gradient
operator ∇ ≡ ∂

∂y
denotes the gradient with respect to y only. Finally, we focus on constructing a

numerical approximation of the expected value of the QoI, namely

E[Q] =

∫
Γ

Q(y)ρ(y)dy, (1.5)

however, higher order statistics of the QoI and the gradient can can also be approximated by re-
placing Q(y) and ∇Q(y) with

Qk(y) = (Q(y)− E[Q])k, and∇Qk(y) = k(Q(y)− E[Q])k−1∇Q(y), k ∈ N+

respectively. Note from Remark 1 that since ρ(y) = 0 when y 6∈ Γ, we can extendQ(y) arbitrarily
outside Γ (i.e. define Q(y) = 0 for y 6∈ Γ) and thus the integral (1.5) can be defined over all of
RN .

Next we give an example problem posed in this setting:

7



Example 2 (Neutron transport with stochastic cross-sections) In one spatial dimension, i.e. D =
[0, 1], the k-eigenvalue transport problem in strong form with finite uncertainty in the capture, scat-
ter and fission cross-sections, denoted σc(y, x), σs(y, x) and σf (y, x) respectively, is given by [22]

µ
∂ψ

∂x
(y, x, µ)+σT (y, x)ψ(y, x, µ) = σs(y, x)φ(y, x)+

ν

k(y)
σf (y, x)φ(y, x) for a. e. x ∈ D, θ ∈ [0, π],

(1.6)
where µ = cos(θ), σT (y, x) = σc(y, x) + σs(y, x) + σf (y, x) measures the uncertainty in the
total cross-section, ψ(y, x, µ) is the random angular flux measuring the uncertainty in the density
of neutrons at location x ∈ D in the direction θ, φ(y, x) = 1

2

∫ 1

−1
ψ(y, x, µ)dµ is the uncertainty in

the total number of neutrons at location x and ν is the average number of neutrons emitted after a
fission reaction.

If we let the cross-sections have a finite stochastic representation similar to (1.3) that are uni-
formly bounded and coercive, i.e. for the total cross-section σT (y, ·) there exists σTmin > −∞ and
σTmax < +∞ such that

P
[
ω ∈ Ω : σTmin ≤ σT (y(ω), x) ≤ σTmax ∀x ∈ D

]
= 1, (1.7)

and similarly for the fission, capture and scatter cross-sections, then (1.6) satisfies all the above
assumptions with W (D) = L2(H1(D); 0, π). Of course, in this setting, the operator L from (1.1)
corresponds to the eigenvalue problem (1.6), the coefficients correspond the cross-sections and
the QoI described by (1.4) is the stochastic eigenvalue k(y). Similar to (1.5) we are interested
in computing the expected value of k-effective, whose value determines whether a reactor is sub-
critical, E[k] < 1, super-critical, E[k] > 1 or critical, E[k] = 1.

When the amount of uncertain is large, that is N = dim(Γ) is high-dimensional and the range
of each parameter is large, and if calculating the QoI (1.4) is costly (e.g. see Example 2), then
approximating (1.5) becomes computationally infeasible. Any deterministic quadrature approach,
e.g. tensor products, sparse grids, quasi Monte Carlo, latin hypercube sampling, etc. will suffer
from the curse of dimensionality since the rates of convergence depend on the dimension N . Of
course, we could directly apply a random sampling approach, such as Monte Carlo, however, the
convergence rate is quite slow and a high level of accuracy is achieved only with a substantial
amount of function evaluations. As such, the goal of this effort is to reduce the amount of uncer-
tainty by accurately quantifying the Ñ � N most active dimensions having the largest influence
on statistics of the QoI. Then, one can apply any stochastic polynomial approximation technique to
approximate Q(y), e.g. spectral-Galerkin, stochastic collocation, piecewise locally adaptive, etc.,
or a deterministic sampling technique to compute (1.5) directly. To accomplish such stochastic
dimension reduction we utilize a random sampling procedure, however, instead of sampling Q(y)
directly we instead sample information from the gradient ∇Q(y). In doing so, we analytically
show that this approach converges at least linearly in the number of samples when approximating
the expected value of the QoI given by (1.5).
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Figure 1: A two-dimensional simple illustration of a bounded support Γ of the probability density
function as well as the projection on the low dimensional active subspace Λa.

1.1 Active and passive subspaces

In general, the dimension N of the random domain Γ may be very large a priori, however, the
random parameters y1 . . . , yN typically do not all have equal influence on the desired QoI. For
example, in many practical applications, the QoI is close to invariant under perturbations of y
with arbitrary size for most directions. The largest possible subspace over which the QoI exhibits
constant or near constant behavior is what we define as the passive subspace, denoted Λp ⊂ RN .
Moreover, we also define the active subspace Λa ⊂ RN as the orthogonal complement of Λp,
i.e. Λa ⊥ Λp such that every y ∈ Λa⊕Λp = RN can be decomposed as y = ya+yp with ya ∈ Λa,
yp ∈ Λp and 〈ya,yp〉 = 0. Finally, we define the orthogonal projection operators FΛa and FΛp so
that ya = FΛay and yp = FΛpy.

From our assumption in §1 that Q(y) is approximately invariant under perturbations of y in
the direction of yp ∈ Λp, we can define the projection of the QoI (1.4) onto the subspace Λa as Q̂
where

Q̂(ya) =


Q(ya), ya ∈ Γ,
0, ya + yp 6∈ Γ ∀yp ∈ Λp,
Q(ya + yp), for any yp ∈ Λp such that ya + yp ∈ Γ.

(1.8)

A visual representation of subspace project Q̂ can be observed in Figure 1. By this definition,
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Q(ya + yp) ≈ Q̂(y) for all yp ∈ Λp and we can project (1.5) onto Λa by virtue of

∫
RN
Q(y)ρ(y)dy =

∫
Λa

∫
Λp
Q(ya + yp)ρ(yp + ya)dypdya

≈
∫

Λa
Q̂(ya)

∫
Λp
ρ(ya + yp)dypdya =

∫
Λa
Q̂(ya)ρ̂(ya)dya (1.9)

where

ρ̂(ya) =

∫
Λp
ρ(ya + yp)dyp (1.10)

is the projected probability density function defined over Λa. Therefore, our goal is to construct
suitable Λp and, using (1.8)-(1.10), efficiently project the high-dimensional integral (1.5) onto the
low dimensional subspace Λa, with dim(Λa)� N , such that∣∣∣∣∫

RN
Q(y)ρ(y)dy −

∫
Λa
Q̂(ya)ρ̂(ya)dya

∣∣∣∣ ≤ ε, (1.11)

with ε a pre-defined error tolerance. The advantage of working with the lower dimensional pro-
jected integral is that we can compute (1.9) using various collocation or polynomial approximation
techniques. However, assuming we are given Λa and Λp, the next remark describes specifically
how we project the PDF multivariate Gaussian distribution.

Remark 2 (Projecting a Probability Density Function) For the specific case that the PDF is a

multivariate Gaussian distribution, i.e., ρ(y) = e−
1
2 ‖y‖

2

(2π)N/2
, we want to project the PDF on the low

dimensional space Λa. We can exploit the orthogonality of Λa and Λp and obtain

ρ̂(ya) =

∫
Λp
ρ(ya + yp)dyp =

e−
1
2
‖ya‖2

(2π)dim(Λa)/2
.

Similar result holds for other distributions such as uniform distribution on an l2 ball centered at
the origin and truncated Gaussian distribution (so long as the truncation is done at the boundary of
an l2 ball). A more general distribution is not trivial to project and one may be unable to derive a
density function in closed form. In many practical applications, even if computing realizations of
the QoI, given by (1.4), are computationally expensive, computing samples of the random vector
y may be cheap. Hence, we can use these samples to approximate ρ̂ by an integral over a a small
region V around ya, i.e.

ρ̂(ya) ≈ 1

|V |

∫
Λa∩V

∫
Λp
ρ(ya + yp)dypdya =

1

|V |

∫
RN
IV (y)ρ(y)dy, (1.12)

where |V | indicates the multidimensional volume of V ⊂ Λa and

IV (y) =

{
1, FΛay ∈ V,
0, o.w.

10



Without considering the computational cost, assume we can generate a large number of samples
{yi}ki=1, then (1.12) can be approximated by a Monte Carlo method. Furthermore, this sampling
technique can also be useful to find the value of Q̂(ya), when ya 6∈ Γ. That is, if IV (yi) = 1 and
if ya + FΛpyi ∈ Γ, then Q̂(ya) = Q(ya + FΛpyi). We note that the details of such a sampling
approach are described in §3.
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2 The Gradient and the Error

To accomplish our objective of constructing Λp and Λa we utilize random samples of the gradient
of the QoI, denoted {∇Q(yi)}ki=1, described in §3. First, we need a result regarding the relationship
between the error ε in our approximation (1.11) and the gradient of the QoI. In what follows 〈·, ·〉
denotes the standard inner product in RN .

Theorem 1 (Gradient bound) Let subspaces Λa,Λp ⊂ RN be such that Λa ⊥ Λp and Λa ⊕Λp =
RN . Furthermore, suppose the probabilistic domain Γ ⊂ RN is convex, Q(y) is continuously
differentiable over Γ and define for every y ∈ Γ the set Λp(y) = {yp ∈ Λp : y + yp ∈ Γ}, Then,
if there exists a probability density function g : RN → R+, and ε ≥ 0, that satisfy either

|Q(v + w)−Q(v)| ρ(v + w) ≤ εg(v + w), ∀v ∈ Γ,∀w ∈ Λp(v) (2.1)

or ∣∣∣∣∫ 1

0

〈∇Q(v + sw),w〉 ds
∣∣∣∣ ρ(v + w) ≤ εg(v + w), ∀v ∈ Γ,∀w ∈ Λp(v) (2.2)

or

|〈∇Q(v + sw),w〉| ρ(v + w) ≤ εg(v + w), ∀v ∈ Γ,∀w ∈ Λp(v),∀s ∈ [0, 1], (2.3)

then we have that∥∥∥Q(y)− Q̂(FΛay)
∥∥∥
L1
ρ(RN )

=

∫
RN

∣∣∣Q(y)− Q̂(FΛay)
∣∣∣ ρ(y)dy ≤ ε (2.4)

as well as ∣∣∣∣∫
RN
Q(y)ρ(y)dy −

∫
Λa
Q̂(ya)ρ̂(ya)dya

∣∣∣∣ ≤ ε, (2.5)

where the operator with Q̂(ya) and ρ̂(ya) given by (1.8) and (1.10) respectively.

Proof.

We begin by noting that∣∣∣∣∫
RN
Q(y)ρ(y)dy −

∫
Λa
Q̂(ya)ρ̂(ya)dya

∣∣∣∣ ≤ ∫
RN

∣∣∣Q(y)− Q̂(FΛay)
∣∣∣ ρ(y)dy,

and therefore (2.4) implies (2.5). Using the convexity of Γ and the differentiability of Q(·) we
apply the Fundamental Theorem of Calculus to the left-hand-side of (2.1) which yields

|Q(v + w)−Q(v)| ρ(v+w) =

∣∣∣∣∫ 1

0

〈∇Q(v + sw),w〉 ds
∣∣∣∣ ρ(v+w) ≤

∫ 1

0

|〈∇Q(v + sw),w〉| ρ(v+w)ds.

Therefore, (2.3) implies (2.2), which in turn implies (2.1) and thus all we need to show is that
(2.1) implies (2.4). To get this, we assume (2.1), we define D(y) =

∣∣∣Q(y)− Q̂(FΛay)
∣∣∣ ρ(y) as

the integrand of (2.4) and we consider the four possible scenarios for y and the corresponding
projection FΛay (see Figure 1 for a visual of these cases):
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Case 1: if y 6∈ Γ, then ρ(y) = 0 and thus D(y) = 0;

Case 2: If y ∈ Γ ∩ Λa, then Q̂(FΛay) = Q(FΛay) = Q(y) and thus, D(y) = 0;

Case 3: if y ∈ Γ, y 6∈ Λa and ya = FΛay ∈ Γ, then y − ya ∈ Λp(ya), and we can apply
condition (2.1) with v = ya and w = y − ya, to get that D(y) ≤ εg(y); and

Case 4: if y ∈ Γ, y 6∈ Λa, and ya = FΛay 6∈ Γ, then by definition (1.8), there is yp ∈ Λp so that
ya + yp ∈ Γ and Q̂(ya) = Q(ya + yp). Since y − ya − yp ∈ Λp(ya + yp), we can apply
condition (2.1) with v = ya + yp and w = y − ya − yp, to also get that D(y) ≤ εg(y).

As such, in all cases for y we have that D(y) ≤ εg(y), and therefore,∫
RN
|Q(y)− Q̂(FΛay)|ρ(y) ≤

∫
RN
εg(y)dy = ε.

�

Remark 3 (Global support) If Γ = RN , then ya will always be in Γ and we don’t need to con-
sider the fourth case of Theorem 1. Therefore, conditions (2.1) - (2.3) can be weakened, and need
only hold for v ∈ Λa (as opposed to v ∈ Γ).

Remark 4 (Alternative condition) Condition (2.3) is equivalent to

| 〈∇Q(y + yp), syp〉 |ρ(y + syp) ≤ εg(y + syp), ∀y ∈ Γ, ∀yp ∈ Λp(y),∀s > 1, (2.6)

which in turn implies (2.4) and (2.5). We will utilize (2.6) in the sampling algorithm described
in §3, since for point y and corresponding value of ∇Q(y), we can examine all values of s by
considering ρ(·) and g(·) only. This is unlike conditions (2.2) and (2.3) that require knowledge of
∇Q(y) for a range of the uncertainties ya + syp.

Corollary 1 (True dimension) Let Λp
null =

{
v ∈ RN : 〈v,∇Q(y)〉 = 0, ∀y ∈ Γ

}
, then condi-

tions (2.2) and (2.3) are satisfied with ε = 0 for any arbitrary function g : RN → R+. Therefore,
we can project Q : Γ×D → R without loss of information and the actual dimension of the QoI is
N − dim(Λp

null).

Corollary 2 (Low-dimensional surrogate) Suppose there exists a function I(ya) that approxi-
mates Q̂(ya) in the low dimensional space Λa. Then I(FΛay) approximates Q(y) and satisfies the
following estimate:

‖I ◦ FΛa −Q‖L1
ρ(RN ) ≤ ‖I − Q̂‖L1

ρ̂
(Λa) + ‖Q̂ ◦ FΛa −Q‖L1

ρ(RN ).

Our main focus remains the approximation of the integral (1.5), however, Corollary 2 allows us
to utilize the low dimensional space Λa to create a surrogate model for Q(y). Since the dimension
of Λa is small relative to Γ, we can apply various stochastic polynomial methods, such as spectral
Galerkin or collocation approximations. In the next section we explain how our our gradient-based
approach, for stochastic dimension reduction, can be viewed as a generalization to the classic
finite-dimensional Karhunen-Loéve expansion [24, 25].
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2.1 Relationship to the finite-dimensional Karhunen-Loéve expansion

Consider the case where the components of y ∈ RN are identically and independently dis-
tributed as normalized Gaussian variables, i.e., y1 ∈ N(0, 1), . . . , yN ∈ N(0, 1) with ρ(y) =

e−
1
2
‖y‖2/(2π)N/2. Next, we define

u(y) = LTy, and Q(u(y)) = ‖u‖2 = yTLLTy = yTCy, (2.7)

where C = LLT is the covariance matrix of u and the integral of the QoI Q is the variance of u.
Here we assume C is non-singular, that is, the actual dimension of the problem is indeed N . Given
the simple expression for QoI allows us to easily find the gradient of Q(y) as

∇Q(y) = 2Cy. (2.8)

From Theorem 1 and Remark 3, we seek Λa and Λp that minimize ε ≥ 0. First, we consider the
simplest case where dim(Λp) = 1. In this case, we want to find yp that minimizes (2.2), that is:

min
Λp

∣∣∣∣∫ 1

0

〈∇Q(ya + syp),yp〉 ds
∣∣∣∣ ρ(ya + yp), ∀yp ∈ Λp and ya ⊥ yp. (2.9)

Substituting (2.9) into (2.8) yields

min
Λp

∣∣∣∣∫ 1

0

〈∇Q(ya + syp),yp〉 ds
∣∣∣∣ ρ(ya + yp) = min

Λp

∣∣∣∣∫ 1

0

2(yp)TCya + s 2(yp)TCypds

∣∣∣∣ ρ(ya + yp)

= min
Λp

∣∣∣∣2(yp)TCya +
1

2
2(yp)TCypds

∣∣∣∣ ρ(ya + yp).

(2.10)
The minimum of (2.10) is achieved when Λp is the eigenspace that is associated with the smallest
eigenvalue of C, i.e. Cyp = λminy

p. Since C is symmetric positive definite, ya ⊥ Cyp, and
therefore, we get that

|2(ya)TCyp+(yp)TCyp|e
− 1

2
‖ya+yp‖2

(2π)N/2
= (yp)TCyp

e−
1
2
‖ya+yp‖2

(2π)N/2
= λmin‖yp‖2 e

− 1
2
‖ya+yp‖2

(2π)N/2
≡ λming(y).

(2.11)
Since

∫
g(y)dy = 1, if we apply Theorem 1 with condition (2.2) and ε = λmin, the final error as-

sociated with reducing the uncertainty domain by one dimension is bounded by ε. By extrapolating
this result, we can reduce the dimensions recursively and deduce that the passive subspace is the
span of the eigenvectors of C associated with the smallest eigenvalues. Moreover, the theoretical
error bound is the sum of the neglected eigenvalues. This result is equivalent to the classical finite
dimensional Karhunen-Loéve expansion, however, our projection approach extends to problems
with far more complex structure than linear functions u, quadratic functionals Q(u) and Gaussian
random variables y [24].
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3 The sampling approach and error analysis

In practice, we seldom have analytical form of the gradient of the QoI (1.4), and therefore, we
have to create an approximation to both Λp and Λa. More importantly, the possible choices for
Λp and Λa may not be unique and so we define Λa and Λp to be any two subspaces that satisfy
any of the condition in Theorem 1. Without loss of generality, we will focus our attention on the
condition (2.6), defined in Theorem 1, however, our approach and analysis extends to conditions
(2.2) and (2.3) as well. Furthermore, we want to project the QoI on a subspace with smallest
possible dimension. As such, we attempt to discover subspaces such that Λa has the smallest
possible dimension, or alternatively, Λp has the largest possible dimension.

To accomplish these goals we propose a Monte-Carlo-based random sampling approach. That
is, given a desired tolerance ε > 0, we take k random samples, i.e. {yi}ki=1 ∈ RN , where each yi is
independently sampled from distribution with probability density ρ. For each sample, we compute
∇Q(yi) and use the gradients to find a decomposition that approximates Λp and Λa. Since we
cannot analytically verify condition (2.6) over the entire domain, we weaken the requirement so
that it holds only with respect to the computed samples {∇Q(yi)}ki=1. Hence we need a procedure
to form Λa and Λp from an already computed set of gradient samples.

Our specific approach for forming this approximation is problem dependent. We require the
definition of a map J : RN → RN that associates a finite subsets of RN with a subspace of RN .
That is, let T be a finite set of vectors in RN and Λa = J(T ), a subspace of RN , so that if Λp is the
orthogonal complement of Λa. Then (2.6) is satisfied for all ∇Q(yi) ∈ T Of course, the structure
of the map J depends on ε and g(·). One possible choice is to take

J(T ) = span{∇Q(yi)}yi∈T , (3.1)

which guarantees (2.6) remains valid for all ε > 0. However, it is more desirable to choose the
map J that returns a subspace with smallest possible dimension. Hence, a more practical approach
would be to use a procedure that weights ∇Q(yi) and returns the subspace spanned by only some
of the samples. A common approach to this type of problems is to look at different eigenvalue
problems. Below, we give two examples of specific choices for the map J(T ). Here we suppose
we are given a set of vectors T and tolerance ε, and we wish to construct the map J(T ) that
decomposes RN so that condition (2.2) or (2.6) is satisfied for all yi ∈ T .

Example 3 (Compact support and the choice of J(T )) Suppose the PDF ρ has compact support
in RN , i.e., there exists a constant r such that ρ(y) = 0, ∀‖y‖ > r. In this case, if we let g(y) =
ρ(y) the (2.6) is satisfied for all ‖y‖ > r, regardless of ε, and therefore, we only need to consider
‖yp‖ ≤ r or s ≤ r

‖yp‖ . As such, we arrange the vectors ∇Q(yi) into the columns of a matrix H .
We define Λa to be the space spanned by the l dominant singular vectors of H , where l is chosen
so that the (l + 1)st dominant singular value λl+1 satisfies

rλl+1 ≤ ε.

Then, if we take yp ⊥ Λa such that ‖yp‖ ≤ r and consider 〈∇Q(yi), sy
p〉, which is largest when
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s = r
‖yp‖ , we get that

〈∇Q(yi), sy
p〉 ≤

〈
∇Q(yi),

r

‖yp‖y
p

〉
≤ rλl+1 ≤ ε.

Therefore, condition (2.6) is satisfied with Λa = J(T ) for all yi ∈ T .

Example 4 (Finite-dimensional Karhunen-Loéve expansion and the choice of J(T )) Similar to

§2.1 we let Q(y) = yTCy and ρ(y) = e−
1
2 ‖y‖

2

(2π)N/2
. We want to construct a procedure that will map

a set of vectors T to a subspace, with smallest possible dimension, that satisfies condition (2.2).
That is, for λ ∈ R+:

|< ∇Q(yi),y
p >| ≤ 2λ‖yp‖2, ∀yp ⊥ J(T ), ∀yi ∈ T. (3.2)

First, consider Λp = J(T )⊥, and observe that the span{∇Q(yi)}⊥ satisfies (3.2) for all λ ≥ 0,
and thus, span{∇Q(yi)}⊥ ⊂ Λp. Second, we need to classify the span{∇Q(yi)}. Let v ∈
span{∇Q(yi)}, i.e.

v =
m∑
i=1

ci∇Q(yi) ≡ Hc, (3.3)

where m = card(T ), c ∈ Rm and H is the matrix with columns ∇Q(yi). Substituting (3.3) into
(3.2) and observing that yp = <v,yp>

‖v‖2 v, we have that

|< ∇Q(yi), Hc >| ≤ 2λ |< yi, Hc >| . (3.4)

By letting E be the matrix with columns yi (3.4) reduces to the generalized eigenvalue problem

HTHc = 2λETHc, (3.5)

where the eigenvalues {λl}ml=1, placed in descending order, are real and positive. We then take
J(T ) to be the space associated with Hcl, where cl, l = 1, . . . , Na � N , are the Na dominant
eigenvectors. To select the cut-off value of λ, we use the eigenvectors associated with the dominant
eigenvalues. Let FJ(T )⊥ be the operator for orthogonal projection onto J(T )⊥ and multiply both
sides of (3.2) by ρ(yi)

|< ∇Q(yi),y
p >| ρ(yi) ≤ 2λ

∫
‖FJ(T )⊥ξ‖2ρ(ξ)dξ

‖yp‖2ρ(yi)∫
‖FJ(T )⊥ξ‖2ρ(ξ)dξ

,

which matches condition (2.2) with g(y) =
‖F
J(T )⊥y‖

2ρ(y)∫
‖F
J(T )⊥ξ‖2ρ(ξ)dξ

and

ε = 2λ

∫
‖FJ(T )⊥ξ‖2ρ(ξ)dξ = 2λ (N − n) , ⇒ λ =

ε

2 (N − n))
, (3.6)

where n = dim(J(T ). We can use the estimate (3.6) to select a cut-off value for λ, however, we
should note that when dim(J(T )) � N and the eigenvalues of H decay very fast, (3.6) is a big
overestimate.
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Given an appropriate mapping J(T ), we consider the k samples {∇Q(yi)}ki=1. We split the
samples into two groups. First we look for the smallest subset of the samples T̃ ⊂ {∇Q(yi)}ki=1

such that J(T̃ ) is a subspace that satisfies condition (2.6) not only with respect to T̃ but also with
respect to all other samples. Thus, the samples in T̃ we call essential and the remaining ones are
the set of the over-samples. In non-technical terms, the essential samples are used to identify the
dynamics of the QoI and since they are randomly selected, it is possible that they fail to capture
all aspects of the behavior of Q(y). On the other hand, the over-samples had an opportunity to
discover any missing dynamics and no such dynamics were found, hence the more over-samples we
have, the more likely it is that we have identified the full behavior of the QoI. The essential samples
are needed to identify the approximate passive and active subspaces, while the over-samples are
related to the confidence that we have in the approximation. This relationship is quantified in
Theorems 2 and 3.

Algorithm 1 summarizes the sampling procedure, where ε is the desired tolerance, and at iter-
ation k we have Λp

k, Λa
k and dk as respectively the approximate passive and active subspaces and

the number of over-samples.

Algorithm 1 (Approximate the passive subspace) Set Λp
0 = RN , Λa

0 = {0}, d0 = 0 and the
tolerance, ε.
for k = 1, 2, . . . , do

Sample the random vector yk ∈ Γ with PDF ρ(y), and evaluate the gradient at the sample
point, i.e.∇Q(yk).
if (2.6) is satisfied using∇Q(yk) with Λp

k−1, Λa
k−1 then

Set Λp
k ← Λp

k−1 and Λa
k ← Λa

k−1 and increment dk = dk−1 + 1.

else
if (2.6) is not satisfied using∇Q(yk) with Λp

k−1, Λa
k−1 then

Define T =
{
T ∈ 2{y

i}ki=1 : J(T ) satisfies (2.6) ∀yi
}

and T̃ ∈ T with card(T̃ ) ≤
card(S), ∀S ∈ T .
Set the active subspace Λa

k ← J(T̃ ) with Λp
k being its orthogonal complement.

Set dk = k − card(T̃ ).
end if

end if
if dk is sufficiently large then

Stop the iteration and use projection (1.9) with Λa = Λa
k and Λp = Λp

k to reduce the
dimension of the problem.

end if
end for

Obviously, Algorithm 1 requires a proper convergence criteria with respect to the number of over-
samples dk, More importantly, recall from (1.11) that what we really want to know the error we
commit in approximating the expectation of our QoI, when using our projection into the active
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subspace Λa. However, when using the sampling approach described by Algorithm 1 we construct
an approximation Λa

k and thus, we are interested in the error at the k-th iteration, defined by

ek =

∣∣∣∣∣
∫
RN
Q(y)ρ(y)dy −

∫
Λak

Q̂k(y
a)ρ̂k(y

a)dya

∣∣∣∣∣ , (3.7)

where ρ̂k(ya) =
∫

Λpk
Q(ya + yp)dyp and Q̂k denotes the projection of the QoI (1.4) onto the

subspace Λa
k, and Q̂k(y

a) is defined by setting Λp = Λp
k in (1.8). Next, using (3.7) we present two

theoretical results that describe the probability of finding the active subspace Λa
k, using Algorithm

1, and the distribution of the error with respect to the number of samples. These are given in the
following two theorems.

Theorem 2 (Probability of failure) Given a realization of Algorithm 1 with tolerance ε and ek
described by (3.7), there is a sequence of numbers mk ∈ R such that the discrete (or boolean)
probability measure satisfies

P(ek > ε) ≤ (1−mk)
dk , (3.8)

where dk is the number of over-samples at step k. Moreover, there exists an n ∈ N+ that is
independent from the realization of the samples (i.e. it only depends on the properties of ∇Q(y)
and not yi), so that if k < n then mk = 0 and if k ≥ n then mk > 0.

Proof.

Ifmk = 0, then (3.8) is the trivial statement that a probability of an event is bounded by 1. Consider
Λa with smallest dimension that will satisfy condition (2.6) and let this dimension be n = dim(Λa).
On the other hand, the largest subspace that the mapping J can return is given by (3.1) and hence
dim(Λa

k) ≤ card(T ) ≤ k. Therefore, if k < n, then Λa
k necessarily fails (2.6) and hence Theorem

1 does not apply. Therefore, we can make only the trivial statement

P (ek > ε) ≤ 1 = (1− 0)dk = (1−mk)
dk .

If k < n, then (3.8) holds only for the trivial choice of mk = 0.

Suppose k ≥ n and define

Zk = {y ∈ Γ : there is a pair s > 1 and yp ∈ Λp
k such that y + yp ∈ Γ and condition (2.6) fails}

and let
pk = P (Zk) =

∫
Zk

ρ(y)dy.

At iteration k, if pk = 0, then condition (2.6) holds but for a set of zero probability, hence according
to Theorem 1 ek ≤ ε. The probability of ek > ε given that pk = 0 is in fact zero

P (ek > ε|pk = 0) = 0,

and therefore, (3.8) will be true for any 0 < mk ≤ 1.
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Suppose pk > 0 and then consider the number of over-samples. By construction of Λp
k, none

of the over-samples belong to Zk. Therefore, we have dk number of over-samples all of which
were randomly and independently selected outside of the region Zk. The probability of such even
is (1− pk)dk , therefore,

P (ek > ε|pk > 0) ≤ (1− pk)dk .
Thus, we can select mk = pk.

�

From Theorem 2 it follows that if for large enough k, mk are uniformly bounded away from
zero, then the sampling method has exponential convergence. This means that in the best case,
Algorithm 1 could exhibit the fast convergence of the collocation methods, without the curse of
dimensionality. However, in general, mk depends on Zk and thus the distribution of the samples
{yi}ki=1 for each k, and the corresponding mk is a random variable and it is possible for the se-
quence of mk to tend to zero for very large k. We have to consider the probability that the error
will exceed the tolerance ε with respect to the probability distribution of mk.

Theorem 3 (Distribution of the error) Suppose there is a constantM such that for any arbitrary
subset G ⊂ RN ∣∣∣∣∫

G

Q(y)ρ(y)dy

∣∣∣∣ ≤M

∫
G

ρ(y)dy

Then if k ≥ n and ek > ε we have the following bounds, for the expected value E[ek − ε] ≤ M
dk+1

,

and the variance Var[ek − ε] ≤ M2

(dk+1)2
, with respect to the distribution of the number of samples.

Proof.

Let dµk be the probability measure associated with the distribution of mk at step k. Following our
construction in Theorem 2, the measure pk of the set where condition (2.6) fails is at most mk,
therefore, the error in the approximation to the QoI is bounded by Mmk. Furthermore, according
to (3.8) the probability P (ek > ε) is bounded by (1−mk)

dk . Therefore,

E[ek − ε] ≤M

∫ 1

0

x(1− x)dkdµk.

The integrand is bounded and attains its maximum at x = 1/(dk +1) and hence we have the bound

E[ek − ε] ≤M

(
1− 1

(dk+1)

)dk
dk + 1

≤ M

dk + 1
.

In an analogous way we have that

Var[ek − ε] ≤M2

∫ 1

0

x2(1− x)2dkdµk − (E[ek − ε])2 ≤ C2

(
1− 1

(dk+1)

)2dk

(dk + 1)2
≤ M2

(dk + 1)2
.

�
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Remark 5 (Comparisons to Monte Carlo sampling) Note that Theorem 3 doesn’t make any as-
sumptions on the distribution of mk, hence our estimate is perhaps overly conservative for many
applications. However, even in the worst case, the linear convergence O(d−1

k ) is still significantly
faster than O(d

−1/2
k ), i.e. standard Monte Carlo sampling.

Remark 6 (Convergence of rational functions) Here we consider a special case where ε = 0,
Q(y) is a rational function of the components of y and the PDF ρ(y) ∈ L1(RN). According
to Corollary 1 there is a unique pair of Λa and Λp, namely Λa = span{∇Q(y)} and Λp =
span{∇Q(y)}⊥. Thus for each set of sample points we pick Λp

k ⊥ {∇Qi(yi}ki=1, i.e. J(T ) is
given by (3.1). For every v ∈ RN define

Sv =
{
y ∈ RN : 〈∇Q(y), v〉 6= 0

}
,

and consider α(y) = 〈∇Q(y), v〉, which is in itself a rational function. A rational function is zero
either everywhere or on a set of measure zero, and thus if α(y) ≡ 0 then Sv = ∅, otherwise the
measure of Sv is equal to 1. Therefore, P (Sv) =

∫
Sv
ρ(y)dy can attain only the values of 0 and

1, and furthermore, if P (Sv) = 0, then v ⊥ ∇Q(y) for all y and hence v ∈ Λp. Conversely, if
v 6∈ Λp, then P (Sv) = 1.

Consider a realization of Algorithm 1 and suppose that at step k ≥ n = dim(Λa) we have Λa
k,

which is incomplete, i.e. there is a non-zero vector v ∈ Λa ∩ Λp
k. By definition of Λa, we have

that v ∈ span{∇Q(y)}, however, since v 6∈ Λa
k, we have that condition (2.6) fails for all y ∈ Sv.

Assuming the notation of Theorem 2, we note that Sv ⊂ Zk and according to the same theorem,
for k ≥ n, we have that mk ≥ P (Sv) and since v 6∈ Λp we have that

mk ≥ P (Sv) = 1.

Using mk = 1 in equation (3.8) we conclude that the Algorithm 1 can identify the active subspace
in a finite number of steps, namely n = dim(Λa).
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4 Numerical Examples

In this section, we present three numerical examples to illustrate our numerical approach and to
validate our theoretical results. The first example considers a linear problem within the classical
Karhunen-Loève setting. We demonstrate that in the worst case scenario, the bound on the conver-
gence rate predicted by Theorem 3 is indeed sharp. In the second example, we consider an output
of interest with a very low dimensional active subspace. Our method consistently identifies that
subspace with very few samples and hence we achieve convergence with number of over-samples
dk that is orders of magnitude less than what is required by Theorem 3. This demonstrates that for
some problems, we can find the active subspace long before we have a sample size that can give us
sufficient confidence in the result. However, in all cases, our method converges significantly faster
then competing sampling approaches. Finally, we apply our method to a one-dimensional physical
reactor problem, described in Example 2, with a significantly large number of cross-section uncer-
tainties. We demonstrate that for moderate error tolerance ε, we can find a very low dimensional
active subspace that preserves the dynamics of the output of interest. However, when we tighten
the tolerance, the size of the active subspace grows very fast, exhibiting how our gradient-based
reduction technique can only be successfully applied to the neutronics problem for moderate error
tolerance.

4.1 Application to Classical Finite Dimensional Karhunen-Loéve Expansion

Consider the classical finite dimensional Karhunen-Loéve problem,

Q(y) = yTSy, y ∈ RN , and ρ(y) =
e−

1
2
‖y‖2

(2π)N/2
,

where N = 100 and S ∈ R100×100 is a symmetric positive definite matrix. In order to illustrate the
theoretical results given by Theorem 3, we take S to be a random matrix of size 100, specifically
generated through the following procedure:

1. Generate a matrix R ∈ R100×100, where the elements of R are sampled from a standard
Gaussian distribution with zero mean and unit variance;

2. Define S = RTR;

3. Scale the eigenvalues of S with use of a sequence {si}Ni=1 to enforce rapid eigenvalue decay.

Figure 2 shows the eigenvalue decay of the two test matrices that we use for the discussion below.

In order to validate the results form Theorem 3, we need to consider the expectation and vari-
ance of the error in the projection associated with Algorithm 1 with respect to the distribution of
the samples. To that end, we define

e(d) : N→ R,
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where e(d) is a possible realization of the error associated with d number of over-samples. Obvi-
ously, e(d) is a random variable for each d and hence we are interested in the statistical expectation
E[e(d) − ε] and variance V [e(d)]. In order to compute the statistics, we execute the algorithm
multiple times and gather samples for e(d) in a manner consistent with the Monte Carlo method.

Due to the structure of the problem, the exact expectation of Q(y) can be computed by sum-
ming the eigenvalues of S. Furthermore, suppose that we want to project the QoI onto a lower
dimensional active space, then we can take any orthonormal basis for Λa and if we arrange the
basis into the columns of V , then the expectation of the projected QoI is the sum of the eigenvalues
of V TSV . Finding the eigenstrucute of a 100 dimensional matrix is trivial, which makes it feasible
to compute a large number of realizations.

We apply Algorithm 1 using J(T ) described in §4 Example 4 with cut-off λ = 10−4. On the
other hand, the error bound in Theorem 3 uses ε, which is not equal to λ and thus we utilize the
heuristic estimate

ε ≈ min
d

(E[e(d)]),

In every realization of Algorithm 1, we seeks a reduced system of smallest dimension that will
satisfy condition (3.5). However, the probabilistic nature of the algorithm results in an active sub-
space of variable size. On Table 1, we show the statistics for the size of the reduced system.

According to Theorem 3, we should observe the relation

E[e(d)] ≤ ε+
C

d+ 1
, V [e(d)] ≤ C2

(d+ 1)2
.

and figures 3 and 4 give the computed decay rate. In both cases, the error obeys the convergence
bounds of Theorem 3. Furthermore, we note that for one of our random matrices, the rate of con-
vergence O(d−1

k ) is indeed sharp. Even though Theorem 2 suggests the possibility of exponential
convergence, in the general case, we cannot assume faster the linear rate.
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Figure 2: Log plot of the eigenvalue decay for the two random test matrices. The first 12 eigenval-
ues decay as si = exp(−1.727(i − 1)), while the remaining ones are set to 10−14 (left) and 10−9

(right). All eigenvalues are normalizes so that λmax = 1.
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Figure 3: Log plot of E[e(d) − ε] and V [e(d) − ε] as a function of d. The decay rate for the first
20 entries is −1.73 and −3.02.
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Figure 4: Log plot of E[e(d)− ε] and V [e(d)− ε] as a function of d. The decay rate for the entries
2 through 11 is −1.02 and −2.47 respectively.

4.2 Highly Reducible Random Parameter Problem

We present an example of a nonlinear problem with low dimensional active subspace and we
consider the performance of several common methods compared to our gradient-based reduction
approach. Let η(x) be a piecewise constant approximation to an uncorrelated noise field, given by

η(y, x) =
N∑
i=1

yiIi(x),

Table 1: Size of the reduced system.

minimum maximum mean median
Example with faster eigenvalue decay 4 6 4.3 4
Example with slower eigenvalue decay 6 9 7.2 7
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where each yi is uniformly distributed in [−1, 1] and Ii(x) is the indicator function of the interval[
(i−1)
N
, i
N

]
, i.e.

Ii =

{
1, x ∈ [ (i−1)

N
, i
N

]

0, x 6∈ [ (i−1)
N
, i
N

]
.

Define the operator C : L2 ([0, 1])→ L2 ([0, 1]) by

C(f) =
∞∑
k=1

1

(kπ)6
sin(kπx)

∫ 1

0

sin(kπs)f(s)ds,

and consider the L2 inner product 〈η, C(η)〉L2 =
∫ 1

0
ηC(η)dx such that the QoI is given by

Q(y) = e−
1
2
〈η,C(η)〉L2 .

Here we take N = 1000, the random parameter domain is y ∈ Γ = [−1, 1]N and probability
distribution is ρ(y) = 1

2N
. The gradient can be computed by formal differentiation

∂Q(y)

∂yi
= Q(y) 〈Ii, C(Ii)〉L2 yi i = 1, 2, · · · , N,

and the goal is to compute E[Q] =
∫

Γ
Q(y)ρ(y)dy.

We compare the accuracy of different approaches for computing the expectation of the QoI,
against the results of a brute force random sampling with 106 realizations. These include sensitivity
analysis, Karhunen-Loéve projection and our Algorithm 1. For the two projection schemes, if we
project the QoI on a low dimensional active subspace, we could apply the collocation method,
however, this is beyond the scope of our paper. Since we are only interested in the error associated
with the projection, we use Monte Carlo sampling to compute the expected value of both the full
order and projected QoI.

We can compute the gradient ∇yQ(y) and hence we can utilize sensitivity analysis [9]. The
nominal value for the random vector is E[y] = 0 and Q(E[y]) = Q(0) = 1. The nominal gradient
is ∇yQ(0) = 0 and therefore the method yields the approximation E[Q] ≈ 1 with variance of
0. However, the quantity of interest in this example is nonlinear and brute force Monte Carlo
sampling gives E[Q] ≈ 0.8832. Sensitivity analysis results in error of more than 13% and this
single point method does not offer a strategy to improve this approximation.

The operator C was purposely chosen to have very fast eigenvalue decay and the structure of
∇yQ(y) suggests that the active subspace will be associated with only the dominant eigenspace
of C, and therefore it is low-dimensional. However, we cannot rigorously apply the classical KL
approach because Q(y) is not a quadratic functional. Therefore, the KL error bounds will not be
valid. Indeed, if we let Λa be the space spanned by the first four dominant eigenvectors of C, then
the error predicted by KL is ≈ 1.0629 × 10−4, while the actual error is ≈ 5.2550 × 10−4. The
KL approach greatly underestimates the projection error. On the other hand, if we let ε = 10−4

and apply Algorithm 1, then we can take dim(Λa) = 4 and achieve an approximation that is a full
order of accuracy better than the linear KL approach (see Figure 5).
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Finally, we apply Algorithm 1 and compare the convergence to Monte Carlo sampling. Figure
5 superimposes five Monte Carlo simulations and four reduction tests with different values of ε.
Monte Carlo exhibits the familiar O(M−1/2) convergence rate, however, the reduction algorithm
needs only a few samples to approximate Λa and reach the desired tolerance. According to Theo-
rem 3, the expected value of the error is bounded by ε+O(M−1) and the standard deviation is less
than O(M−1), thus our confidence in the reduced model is low. However, even though the rate of
O(M−1) is a conservative estimate, the decay is faster than the brute force sampling approach.
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Figure 5: Comparison of Monte Carlo sampling against the gradient reduction approach of Algo-
rithm 1, for approximating E[Q]. Monte Carlo exhibits the slow convergence rate of O(M−1/2),
where M is the number of samples. The reduction approach needs only a few samples to find a
suitable active subspace and reach the desired tolerance ε = 10−3,−4. The dimension of the active
subspace is dim(Λa) = 3 when ε = 10−3, and dim(Λa) = 4 when ε = 10−4.

4.3 Neutron Transport with Stochastic Cross-Sections

Consider the PDE with stochastic cross-sections described in §1 Example 2 with deterministic
domain illustrated on Figure 6. We consider two “fuel-rods” and a “control-rod” between them,
the space between the rods is filled with “coolant”. The fuel-rod regions have large fission cross-
sections, the control-rod region has a large capture cross-section and the coolant interacts only
weakly with the neutrons. As such, we define the indicator functions for each of the three materials

IU(x) =

{
1, x ∈ fuel-rod
0, o.w.

IB(x) =

{
1, x ∈ control-rod
0, o.w.

IW (x) =

{
1, x ∈ coolant
0, o.w.

,
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Table 2: Nominal values and noise scaling for the cross-sections.

Scatter Capture Fission
Nominal Scaling Nominal Scaling Nominal Scaling

Fuel Rod 1.0 ±0.30 0.10 ±0.05 7.0 ±6.0
Control Rod 1.0 ±0.03 8.15 ±4.00 0.0 ±0.0

Coolant 0.1 ±0.05 0.10 ±0.05 0.0 ±0.0

where the letters U , B and W are chosen to abbreviate the regions of the domain based on the
common material used for nuclear fuel (Uranium), control-rod (Boron) and coolant (Water). We
model the uncertainty in the cross-sections as an additive, scaled, uncorrelated piecewise constant
field

σp(x;ω) = σ̄p(x)+cp(x)yp(x;ω) =
∑

l∈{U,B,W}

σ̄p,lIl(x)+cp,lIl(x)yp(x;ω), p ∈ {s, c, f}, (4.1)

where σ̄p,l are the nominal cross-sections and cp,l are the scaling factors. The numerical values that
we used are given in Table 2. Note that the actual cross-section values used are not the physical
values associated with any real world materials, we are using artificially selected values with very
large range, in order to make the problem more challenging.

Figure 6: Mockup reactor problem.

We focus on the reactor criticallity problem given by equation (1.6). The discretization is
achieved by virtue of a finite difference scheme: we take n points in space {xi}ni=1 ⊂ [0, 1] and m
Clenshaw-Curtis [11] points {µj}mj=1 ⊂ [−1, 1] and we approximate the neutron flux by ψ(x, µ) ≈
ψ(xi, µj) = ψji . The convection operator is discretized via an up-winding scheme

µj
∂ψ

∂x
(xi, µj) ≈

 µj
ψji+1−ψ

j
i

xi+1−xi , µj < 0

µj
ψji−ψ

j
i−1

xi−xi−1
, µj > 0

, (4.2)

where we impose zero-Dirichlet boundary condition at the inflow, i.e. the reactor is shielded from
external neutron sources. We discretize φ with the quadrature rule

φ(xi) =
1

2

∫ 1

−1

ψ(xi, µ)dµ ≈ 1

2

m∑
j=1

wjψ(xi, µj) ≈
1

2

m∑
j=1

wjψ
j
i , (4.3)
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where wj are the Clenshaw-Curtis weights. At each point of the domain, we represent the noise by
three random variables associated with the three types of cross-sections parameters. Each sample
has a uniform distribution on the canonical interval [−1, 1]. Thus we have y ∈ R3×n and (4.1)
becomes

σp(xi) = σ̄p(xi) + cp(xi)y
i
p, p ∈ {s, c, f}.

The discretized version of (1.6) can be written as

Tψji + (Ss(y) + Sc(y) + Sf (y))ψji = Ss(y)Dψji +
ν

k
Sf (y)Dψji ,

where T is the discrete convection operator (4.2), D is the integral operator (4.3), Ss(y), Sc(y),
Sf (y) are diagonal matrices with the cross sections, and ν = 2.4. More generally, the eigenvalue
problem can be expressed as

Aψ = λBψ, (4.4)

where A = T + (Ss(y) + Sc(y) + Sf (y)) − Ss(y)D, B = νSf (y)D and λ = 1
k
. Recall that our

goal is to estimate the expected values E[k(y)]

E[k(y)] =

∫
Γ

k(y)ρ(y)dy, (4.5)

where ρ(y) is the uniform distribution on the hyper-cube Γ = [−1, 1]3n. For our examples, we use
discretizations n = 1000 and m = 14, which means that the integral (4.5) is in 3000 dimensions.

In order to apply Algorithm 1, we need a way to approximate ∂λ
∂yi

. Each of the operators
Ss(y), Sc(y), Sf (y) depend linearly on the uncertainty y and therefore can be easily differentiated.
However, λ has a nonlinear dependence on y. Suppose ψ and λ satisfy equation (4.4) and to
simplify notation define

∂Ai =
∂A

∂yi
, ∂Bi =

∂B

∂yi
, ∂ψi =

∂ψ

∂yi
, ∂λi =

λ

∂yi
,

then formally differentiating (4.4) we have

(∂Ai − λ∂Bi)ψ + (A− λB) ∂ψi = ∂λiBψ. (4.6)

Let ψ̂ be the left generalized eigenvector of Aψ̂ = λBψ̂ associated with λ, then we can multiply
(4.6) by ψ̂T and simplify

ψ̂T (∂Ai − λ∂Bi)ψ = ∂λiψ̂
TBψ,

which allows us to solve for ∂λi.

We first take 2000 samples of∇yk(y) and arrange them into the columns of a snapshot matrix,
revealing the decay of the singular values. Figure 7 shows the initial rapid decay, followed by
a “plateau”. Therefore, for a moderate choice of ε, we expect to find a low dimensional active
subspace, however, if we decrease the tolerance, the dimension of Λa should increase dramatically.

We apply the reduction algorithm with three different values of ε, i.e. 10−3, 10−4 and 10−4,
and we give the results in Table 3. In each case, we stopped the iteration when the number of over-
samples reached around 1000. For the largest tolerance, we can approximate the expected value to
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Table 3: Results from three realizations of Algorithm 1 for three different values of ε. We use
discretization parameters n = 1000 and m = 14 resulting in a problem with 3000 dimensions of
uncertainty. All three realizations were terminated when dk reached 1000.

ε dim(Λa) error
Test 1 10−2 2 1.6× 10−3

Test 2 10−3 4 3.9× 10−4

Test 3 10−4 103 9.7× 10−6

the desired tolerance by keeping only 2 out of the 3000 dimensions. If we decrease the tolerance to
10−3, the size of the active subspace increases to 4, however, the error in the projection decreases.
As expected, when we decrease the tolerance to 10−4, the size of the active subspace increases to
103 and even though the error in the projection is considerably lower, 103 is still prohibitively large
to allow for efficient application of any low dimensional integration scheme. A low dimensional
Λa can be found only for moderate values of ε.
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Figure 7: Decay of the singular values of a set of sample for ∇k(y). We observe a sharp decay
until singular value 6, followed by a “plateau” until singular value 90. Hence, for moderate values
of the tolerance ε, we expect to identify an active subspace Λa with low dimension; if we decrease
ε, we expect the dimension Λa to increase dramatically.

A significant proportion of the dynamics of k(y) are dominated by only a few modes. There-
fore, we can approximate E[k(y)] to less than 1% by projecting the QoI onto an active subspace Λa

of no more than 4 dimensions. Furthermore, Algorithm 1 is a reliable method for identifying Λa at
a computational cost much cheaper than the competing Monte Carlo method. However, if higher
degree of accuracy is desired, then the additional dynamics that need to be identified are associ-
ated with a much larger number of directions. For small ε, the dimension of the active subspace
increases dramatically, which renders infeasible the application of sparse grids collocation.
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5 Conclusions

In this work, we presented a projection approach that utilizes the gradient, for forward uncertainty
quantification of high-dimensional problems. We use Monte Carlo sampling for the sensitivity of
the output of interest (i.e. the gradient at the sample point), we use this information to identify
a low-dimensional active subspace and project the output of interest in a manner similar to the
classical Karhunen-Loéve expansion. However, our method produces results that are valid for
problems with large range of uncertainty and hence more accurate than the single point sensitivity
analysis. Moreover, unlike the classical Karhunen-Loéve expansion, our error bounds are valid
for highly nonlinear problems and achieves faster convergence than the brute force Monte Carlo
approach. Finally, if the resulting projected problem is moderate-dimensional, we could apply
conventional stochastic collocation sampling techniques and benefit from their fast convergence
rate. The success of out method is contingent upon the existence of a low-dimensional active
subspace, which in turn depends on the structure of the problem and the choice of tolerance ε.
Some problems can only be reduced for a moderate error tolerance. Furthermore, in some cases,
our error bounds can be overly conservative producing low confidence in an otherwise accurate
result. Nonetheless, this method can be successfully applied to PDE models with large number of
uncertain parameters, such as the criticality of the nuclear reactor with a large number of uncertain
cross-sections.
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[25] M. LOÈVE, Probability theory. II, Springer-Verlag, New York, fourth ed., 1978. Graduate
Texts in Mathematics, Vol. 46. 4, 6, 13

[26] X. MA AND N. ZABARAS, An adaptive hierarchical sparse grid collocation algorithm
for the solution of stochastic differential equations, Journal of Computational Physics, 228
(2009), pp. 3084–3113. 3

[27] P.-G. MARTINSSON, V. ROCKHLIN, AND M. TYGERT, A randomized algorithm for the
approximation of matrices, DTIC Document, (2006). 4

[28] H. NIEDERREITER, Random number generation and quasi-Monte Carlo methods, vol. 63 of
CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 1992. 3

31



[29] F. NOBILE, R. TEMPONE, AND C. G. WEBSTER, An anisotropic sparse grid stochastic
collocation method for partial differential equations with random input data, SIAM J. Numer.
Anal., 46 (2008), pp. 2411–2442. 3, 6

[30] F. NOBILE, R. TEMPONE, AND C. G. WEBSTER, A sparse grid stochastic collocation
method for partial differential equations with random input data, SIAM J. Numer. Anal.,
46 (2008), pp. 2309–2345. 3, 6

[31] S. SMOLYAK, Quadrature and interpolation formulas for tensor products of certain classes
of functions, Dokl. Akad. Nauk SSSR, 4 (1963), pp. 240–243. 3

[32] C. G. WEBSTER, G. ZHANG, AND M. GUNZBURGER, An adaptive sparse-grid iterative en-
semble kalman filter approach for parameter field estimation, International Journal of Com-
puter Mathematics, 0 (2014), pp. 1–20. 3

[33] D. XIU AND J. HESTHAVEN, High-order collocation methods for differential equations with
random inputs, Siam J Sci Comput, 27 (2005), pp. 1118–1139. 3

[34] D. XIU AND G. E. KARNIADAKIS, Modeling uncertainty in steady state diffusion prob-
lems via generalized polynomial chaos, Comput. Methods Appl. Mech. Engrg., 191 (2002),
pp. 4927–4948. 3

[35] G. ZHANG, D. LU, M. YE, M. GUNZBURGER, AND C. WEBSTER, An adaptive sparse-
grid high-order stochastic collocation method for bayesian inference in groundwater reactive
transport modeling, Water Resources Research, 49 (2013), pp. 6871–6892. 3

32



v1.0




	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	ACKNOWLEDGEMENTS
	Problem setting
	Active and passive subspaces

	The Gradient and the Error
	Relationship to the finite-dimensional Karhunen-Loéve expansion

	The sampling approach and error analysis
	Numerical Examples
	Application to Classical Finite Dimensional Karhunen-Loéve Expansion
	Highly Reducible Random Parameter Problem
	Neutron Transport with Stochastic Cross-Sections

	Conclusions

