
Functional Programming Computational Cores Embedded Into Traditional High Performance Computing Language Programs

Achievement: 
Demonstrated feasibility of embedding functional programming (FP) computational cores written in Scala into programs written in three traditional languages used to implement high performance computing (HPC) applications: Fortran, C, and C++. Measured the performance and overhead of pilot hybrid FP programs.

Significance and Impact: 
Demonstrating the feasibility of embedding Scala computational cores into programs written in traditional HPC languages is a necessary step toward our project goal of comparing the performance of hybrid FP scientific applications against their traditional implementation. Measuring the performance and overhead of hybrid FP programs against their traditional implementations establishes a baseline for future comparisons within real-world applications.

Research Details:
· Embedded five Scala computational cores with complexity ranging from simple transfer of control to five-point stencil over a two-dimensional array.
· Developed tool that, given a Java Native Interface (JNI) signature for the Scala computational core's entry function, automatically generates a “wrapper" function that handles data representation conversions between Fortran and Scala.

Sponsor/Facility: Funding for this work was provided by the Office of Advanced Scientific Computing Research, U.S. Department of Energy. The work was performed at Oak Ridge National Laboratory (ORNL).

PI and affiliation: Philip C. Roth – Oak Ridge National Laboratory

[bookmark: _GoBack]Team: ??

Publications: 
??

Overview:
To demonstrate the feasibility of constructing hybrid FP applications, we have developed five computational cores in Scala and embedded them into programs written in the three traditional language for implementing HPC applications: Fortran, C, and C++. Because Scala programs are executed on a JVM, we embedded a JVM in Fortran, C, and C++ demonstration frame programs using the C-language JNI. We added calls to each Scala FP core within each demonstration frame program. Because the JNI is a C language API, invoking the Scala FP cores from C and C++ was relatively easy. Because Fortran and Scala use substantially different in-memory data representations and calling conventions, we developed an automated tool for generating wrapper functions that handle conversions between the two languages' data representations. We used a five-point stencil FP core to measure the performance and overhead of a hybrid FP program to an iterative implementation of the same stencil operation and an FP implementation using a traditional HPC language. We found the hybrid FP implementation had a substantial performance gap with the iterative and traditional FP implementations, and our measurements suggested that the overhead of constructing a JVM and converting data representations for the Scala FP core were primary contributors to this gap. In this sense, our hybrid FP programs are similar to GPU-accelerated programs, in that much work must be done in GPU kernels to amortize the cost of initializing the GPU device and transferring data to and from the GPU to the frame program.

