
Functional Programming Computational Cores Embedded Into
Traditional High Performance Computing Language Programs

0.01	
  

0.1	
  

1	
  

10	
  

100	
  

0	
   500	
   1000	
   1500	
   2000	
   2500	
   3000	
  

El
ap

se
d	
  
Ti
m
e	
  
(s
)	
  

Matrix	
  Rank	
  

Scala	
  100	
  Iters	
  

Scala	
  Overhead	
  

Na6ve	
  Iters	
  

Na6ve	
  Overhead	
  

Na6ve	
  FP	
  Iters	
  

Na6ve	
  FP	
  Overhead	
  

Figure 1: Performance and overhead of Scala/Fortran hy-
brid stencil application compared to traditional Fortran it-
erative and FP implementations.

Achievement: Demonstrated feasibility of embed-
ding functional programming (FP) computational
cores written in Scala into programs written in three
traditional languages used to implement high perfor-
mance computing (HPC) applications: Fortran, C,
and C++. Measured the performance and overhead
of pilot hybrid FP programs.

Significance and Impact: Demonstrating the fea-
sibility of embedding Scala computational cores into
programs written in traditional HPC languages is
a necessary step toward our project goal of com-
paring the performance of hybrid FP scientific ap-
plications against their traditional implementation.
Measuring the performance and overhead of hybrid
FP programs against their traditional implementa-
tions establishes a baseline for future comparisons
within real-world applications.

0.01	
  

0.1	
  

1	
  

10	
  

100	
  

0	
   500	
   1000	
   1500	
   2000	
   2500	
   3000	
  

El
ap

se
d	
  
Ti
m
e	
  
(s
)	
  

Matrix	
  Rank	
  

Scala	
  100	
  Iters	
  

Scala	
  Overhead	
  

Na6ve	
  Iters	
  

Na6ve	
  Overhead	
  

Na6ve	
  FP	
  Iters	
  

Na6ve	
  FP	
  Overhead	
  

Figure 2: Performance and overhead of Scala/C++ hy-
brid stencil application compared to traditional C++ iter-
ative and FP implementations.

Research Details:

• Embedded five Scala computational cores with
complexity ranging from simple transfer of con-
trol to five-point stencil over a two-dimensional
array.

• Developed tool that, given a Java Native Inter-
face (JNI) signature for the Scala computational
core’s entry function, automatically generates a
“wrapper” function that handles data representa-
tion conversions between Fortran and Scala.

Sponsor/Facility: Funding for this work was pro-
vided by the Office of Advanced Scientific Comput-
ing Research, U.S. Department of Energy. The work was performed at Oak Ridge National Laboratory
(ORNL).

PI and Affiliation: Philip C. Roth, ORNL

Overview: To demonstrate the feasibility of constructing hybrid FP applications, we have developed five
computational cores in Scala and embedded them into programs written in the three traditional languages
for implementing HPC applications: Fortran, C, and C++. Because Scala programs are executed on a JVM,
we embedded a JVM in Fortran, C, and C++ demonstration frame programs using the C-language JNI.
We added calls to each Scala FP core within each demonstration frame program. Because the JNI is a
C language API, invoking the Scala FP cores from C and C++ was relatively easy. Because Fortran and
Scala use substantially different in-memory data representations and calling conventions, we developed an
automated tool for generating wrapper functions that handle conversions between the two languages’ data
representations. We used a five-point stencil FP core to measure the performance and overhead of a hybrid
FP program to an iterative implementation of the same stencil operation and an FP implementation using
a traditional HPC language. We found the hybrid FP implementation had a substantial performance gap
with the iterative and traditional FP implementations, and our measurements suggested that the overhead
of constructing a JVM and converting data representations for the Scala FP core were primary contributors
to this gap. In this sense, our hybrid FP programs are similar to GPU-accelerated programs, in that much
work must be done in GPU kernels to amortize the cost of initializing the GPU device and transferring data
to and from the GPU to the frame program.


