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Abstract—

Many scientific simulations, using the Message Passing In-
terface (MPI) programming model, are sensitive to the perfor-
mance and scalability of reduction collective operations such as
MPI_Allreduce and MPI_Reduce. These operations are the most
widely used abstractions to perform mathematical operations
over all processes that are part of the simulation. In this work,
we propose a hierarchical design to implement the reduction
operations on multicore systems. This design aims to improve the
efficiency of reductions by 1) tailoring the algorithms and cus-
tomizing the implementations for various communication mecha-
nisms in the system 2) providing the ability to configure the depth
of hierarchy to match the system architecture, and 3) providing
the ability to independently progress each of this hierarchy. Using
this design, we implement MPI_Allreduce and MPI_Reduce
operations (and its nonblocking variants MPI_Iallreduce and
MPI_Ireduce) for all message sizes, and evaluate on multiple
architectures including InfiniBand and Cray XTS5. We leverage
and enhance our existing infrastructure, Cheetah, which is a
framework for implementing hierarchical collective operations
to implement these reductions.

The experimental results show that the Cheetah reduction
operations outperform the production-grade MPI implementa-
tions such as Open MPI default, Cray MPI, and MVAPICH2,
demonstrating its efficiency, flexibility and portability. On Infini-
Band systems, with a microbenchmark, a 512-process Cheetah
nonblocking Allreduce and Reduce achieves a speedup of 23x and
10x, respectively, compared to the default Open MPI reductions.
The blocking variants of the reduction operations also show
similar performance benefits. A 512-process nonblocking Cheetah
Allreduce achieves a speedup of 3x, compared to the default
MVAPICH2 Allreduce implementation. On a Cray XT5 system,
a 6144-process Cheetah Allreduce outperforms the Cray MPI
by 145%. The evaluation with an application kernel, Conjugate
Gradient solver, shows that the Cheetah reductions speeds up total
time to solution by 195%, demonstrating the potential benefits
for scientific simulations.
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I. INTRODUCTION

MPI_Allreduce operation, as defined in the MPI standard,
combines the data from all participants with an operation, and
distributes the results of the operation to all participants. The
size and type of data from all the participants is the same, and
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all participants receive the same results. In an MPI_Reduce
operation, the root process collects the data from all processes
and performs an operation. Only the root process receives the
result. Hereafter, we refer to MPI_Allreduce and MPI_Reduce
operations as Allreduce and Reduce, respectively.

Reduction operations, Allreduce and Reduce, are the com-
monly used collective operations from among the MPI col-
lective operations, by scientific simulations. Other parallel
programming models such as SHMEM and UPC, also provide
similar collective operations. Research shows that over 40% of
the time spent in MPI operations is spent in the reduction oper-
ations [10] [9]. Scientific applications and benchmarks such as
LAMMPS, Fluent, OpenFOAM, and Paratec spend more than
50% of its collectives time in the MPI_Allreduce operation.
Iterative solvers such as Conjugate Gradient, GMRES, and
Newton, which are important components of many scientific
simulations, use reductions one or more times in each iteration
to compute dot products and/or norms.

Currently used algorithms and implementations for Allre-
duce and Reduce suffer from several performance drawbacks
on multicore systems. These systems typically consist of
tens of Central Processing Unit (CPU) cores on a node,
network interface with bandwidth of tens of Giga bytes per
second and latency of a few microseconds, and have multiple
communication mechanisms - multiple cache levels, intra-node
communication buses, and network interfaces - with varying
performance characteristics. The multicore system architecture
is ubiquitous in extreme scale systems. Also, these systems
are widely used by scientific community for executing the
scientific simulations [1]. Most existing Allreduce and Reduce
implementations do not consider these performance variations
in communication mechanisms in modern systems, and typ-
ically have a single implementation for all these different
communication mechanisms resulting in far from optimal
performance. In this paper, we optimize Reduction operations
for these multicore systems by using a hierarchical design.

The hierarchical design and implementations aim to per-
form and scale better by tailoring the algorithm and customiz-
ing the implementation to various communication mechanisms
in the system. Consider a two-level hierarchical Allreduce,
for example, to understand the design. The Allreduce op-
eration is implemented by combining Reduction primitive,
Allreduce primitive and a Broadcast primitive (We use the term



primitive for collective operation, when it is not necessarily
MPI complaint). Figure 1 shows collective primitives in a
two-level and 8-process Allreduce on two nodes. With the
Reduce and Broadcast primitives optimized for intra-node,
and an Allreduce optimized for inter-node, we expect this
would translate to have better performance compared to a
single implementation that is optimized for all communication
mechanisms. Reduce similarly is implemented by combining
various implementations of Reduce primitives. The hierar-
chical Allreduce and Reduce operations are implemented by
enhancing our previously introduced Cheetah framework. The
Cheetah reductions implemented in this paper, as we are aware,
is a first implementation of Reduction operations that supports
n-levels of hierarchy.

Besides hierarchical design, we extend commonly used
algorithms, support nonblocking semantics and independent
progress of hierarchies to take advantage of modern hardware
characteristics, to arrive at an optimized implementation. To-
ward this end, we introduce Recursive K-ing algorithm for
Allreduce, which has the flexibility to vary the tree width,
or number of processes reducing the data, concurrently. For
Reduce operation, we use a N-ary algorithm.

In summary, we make the following contributions in the paper:

e We provide multiple n-level hierarchical Allreduce
and Reduce implementations optimized for multicore
systems. It supports all message sizes and multiple
architectures including Shared-Memory (SM), Infini-
Band, and SeaStar.

e  We provide both blocking and nonblocking implemen-
tation of the reductions.

e  We demonstrate the use of Recursive K-ing algorithm
for Allreduce operation. The algorithm is known to
provide better support for high-radix systems.

e  We enhance the Cheetah infrastructure to support more
variety of collective operations including the reduction
operations. Thus providing infrastructure to build n-
level hierarchical collectives. All implementations and
infrastructure is integrated into Open MPIL.

e  We systematically evaluate both Allreduce and Reduce
on multiple architectures, and at a higher scale. The
experimental results show that the Cheetah reduction
operations outperform the state-of-the-art implemen-
tations by more a than order-of-magnitude.

The rest of the paper is organized as follows: Section
II compares the approach in the paper with the previous
approaches. Section III provides the details of the Cheetah
infrastructure. Sections IV, V, and VI provide details of
algorithms and implementations of the reduction operations.
Section VII provides the evaluation details of these implemen-
tations with the microbenchmarks and an application kernel,
Conjugate Gradient solver. Section IX concludes the paper.

II. RELATED WORK

Given that the reduction operations are the most important
class of collective operations, there is a huge body of research
in this area. Traditionally, reduction operations were optimized
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for the topology of the systems. Open MPI’s Tuned module
[2] and MPICH2 are examples of this approach. They were
designed for single core systems, and, as a consequence, result
in sub-optimal performance on multicore systems. There have
been several efforts to implement collectives as hierarchical
collectives [12] [5] [6]. However, they treat the multicore
node more as a SMP node, and typically support one-level of
hierarchy. To achieve hierarchical implementation they use the
approach, where a single process combines the data from all
processes on a node, conducts the inter-node communication
and broadcasts results to all local process. For systems with
multiple CPU sockets, which is common in current and emerg-
ing extreme-scale systems, this approach will be very limiting.
It does not accommodate systems with multiple intra-node
data transfer paths with varying performance characteristics,
resulting in increasing inter CPU socket communication, cache
pollution, and, hence, lost performance.

Our work differs from other work in multiple ways. In this
work, we provide a very generic way to implement hierarchical
reductions that can be scaled to implement n-level hierarchical
reductions. We also support configuring reductions with vary-
ing number of hierarchies to suit the system architecture and
performance requirements. Each primitive associated with the
hierarchy, at any level, can be progressed independently while
the semantics permit. The mechanisms are generic enough to
implement both blocking and nonblocking semantics, root-
based (Reduce) and non-root based reductions (Allreduce),
unlike this research [8]. Compared to [5], the concepts and
mechanisms are portable across different architectures.

III. HIERARCHICAL DESIGN AND IMPLEMENTATION

To arrive at the hierarchical implementation of reduction
operations, we enhance our previously implemented Cheetah
framework. An early version of this infrastructure was de-
scribed in our previous paper [3].

A Cheetah collective operation is hierarchical, and it is
composed of multiple independently progressing collective
primitives, each optimized for a particular communication
mechanism. Figure 1 shows a 8-process two-level hierarchical
Allreduce distributed across two nodes. The processes on the
same node are grouped into a group called hierarchy 1. A
process in the group is selected as a leader, and is responsible
for inter-hierarchy communication. The leader processes of
each group is combined into a group called hierarchy 2. In
this example, the communication among the processes in the
hierarchy 1 is intra-node, and the communication between the
processes in hierarchy 2 is inter-node. To realize an Allreduce
operation, the processes in hierarchy 1 execute Reduce prim-
itive with the leader process as the root. Then, leaders with
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Fig. 3. Cheetah Frameworks and components within Open MPIL.
reduction result (all processes in hierarchy 2) participate in
an Allreduce primitive operation, and the results of Allreduce
is broadcast to all processes in hierarchy 1. Extending this
approach to three-level hierarchy is shown in Figure 2. A n-
level hierarchical Allreduce is achieved with n —1 Reduce and
Broadcast primitives, and one Allreduce primitive.

Figure 3 shows Cheetah’s frameworks and its components
to implement hierarchical reductions. It includes components
to create hierarchies (or called as subgroups - SBGP), provide
optimized primitives (BCOL), and Messaging Layer (ML),
which acts as a controller. The ML provides mapping between
primitives and MPI semantics, with the help of enhancements,
DAG Engine and Schedule, it controls and progresses the
collectives. The rest of the section describes these components
in detail.

A. Subgrouping Component

The subgrouping component groups the processes in the
job into multiple subgroups based on the communication
mechanism shared among them; the hierarchy in Figure 1 is
referred as subgroups here, and they are used interchangeably.
Currently we support four subgrouping methods - UMA,
Socket, IBNET, and Point-to-Point (P2P). UMA and Socket
represents intra-node subgrouping methods, while IBNET and
P2P represents the inter-node subgrouping methods. A group
of processes sharing the CPU socket is grouped into Socket
subgroup, and processes sharing the CPU node is grouped
into UMA subgroup. A group of processes connected through
Mellanox’s InfiniBand HCA with Core-Direct is grouped into
IBNET subgroup. The processes connected through none of
these communication mechanisms, but other interconnects
such as Gemini, SeaStar, Ethernet or any thing else is grouped
into a P2P subgroup.

B. Basic Collective (BCOL) Primitives

The BCOL primitives provide a basic implementation of
collective operations, which are not necessarily complaint to
the MPI standard. The primitives are optimized implementa-
tions for a particular communication mechanism. We currently
have optimized primitives for Gemini, Core-Direct, intra- and
inter-CPU socket, and Ethernet.

C. Directed Acyclic Graph (DAG) Collectives Launcher

The DAG collectives launcher provides an DAG abstraction
called Schedule to express the collective operations, and a
mechanism, DAG Engine to control the order and execution
of primitives. The DAG Engine provides the mechanisms that
support nonblocking semantics and concurrent progress of
multiple outstanding collectives.
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Schedule: The Schedule provides an abstraction to express
combination of collective primitives, and its execution order.
For example, the DAG in Figure 4 shows a Schedule for
Allreduce in Figure 4. Each node in the graph represents a
collective primitive. The incoming edges describes the list
of primitives that have been completed before the collective
primitive represented by the node is executed. The outgoing
edges imposes a constraint on the target node. In the figure,
the Broadcast node is required to wait until the Allreduce node
is completed. Each process in the collective operation has its
own Schedule. The figure shows the Schedule for a leader and
non-leader process.

Three types of Schedule’s can express all collective oper-
ations in the MPI standard : Fixed, Sequential, and General.

Sequential: In this type of Schedule, the order of the
primitives executed is typically fixed at the initialization of
library, and not changed between invocations. The collective
operations such as Allreduce require this Schedule. This will
be explained in detail in IV.

Fixed: The order of the primitives are fixed during in-
vocation for this type of Schedule, but they can vary between
invocations. This schedule type is used to express the collective
operations that is dependent on the root of the collective
operation to determine the order. For example, the Broadcast
collective operation requires the subgroup containing root to be
executed first, and the Reduce operation requires the subgroup
containing the root to execute last.

General: The order of primitives executed is not fixed in
this type of Schedule. As a consequence, any primitive that can
be progressed is executed. This is used by collective operations
such as Barrier, as it does not impose dependencies between
the primitives.

DAG Engine: It controls the order and execution of
collective primitives expressed by the Schedule; it acts as an
interpreter of the Schedule. DAG Engine makes use of two
list structures to progress and complete the primitives. When
a collective operation is invoked, the DAG Engine adds each
primitive in the Schedule to the progress list, progresses the
primitive, and when the primitive is waiting for resources, it
removes the collective primitive and adds it to the pending list.
A collective primitive could be waiting on network resources,
memory resources, or other processes to progress. The DAG
Engine then progresses the primitive that can be progressed.
Thus supporting the nonblocking semantics for the collective
operation, and also enabling multiple outstanding primitives.

IV. ALLREDUCE ALGORITHM AND IMPLEMENTATION

This section provides details of algorithms used in Allre-
duce, and the hierarchical Allreduce implementation. Particu-
larly, the implementation used for small messages.

Recursive K-ing Allreduce Algorithm
The Recursive K-ing Allreduce algorithm is similar to a com-
monly used Reduction algorithm, except that instead of two
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process participating in a reduction in every step, k processes
participate in the reduction operation and for logy(n) steps,
instead of loga(n) step. The communication pattern of this
algorithm is shown in Figure 5.

The figures shows an example of Allreduce with nine pro-
cesses (ranks), and with the graph of degree three (k = 3). In
the first step, rank X combines data with rank (X + 1 mod 9)
and rank (X + 2 mod 9). In the second step, it combines data
with rank (X + 3 mod 9) and rank (X + 2 * 3 mod 9).

If the number of processes in the Allreduce are not a power
of k, then all processes above highest power of k (called extra
process) is assigned an proxy process that is ranked within the
power of k. The extra process reduces its data with the proxy
process, and then reduces the data with other process similar
to the Figure 5. Then, the proxy processes send the results
back to the extra process.

Hierarchical Allreduce Implementation

A hierarchical Allreduce is implemented combining Reduce,
Allreduce, and Broadcast primitives. How these primitives
interact was shown in Figure 1. It is easy to extrapolate this
to n level Allreduce. The n-level hierarchical Allreduce is a
combination of n — 1 Reduce and Broadcast primitives, and
one Allreduce primitive.

The execution of an hierarchical Allreduce involves build-
ing a Schedule (required to construct on first invocation or ini-
tialization of library), and executing the schedule. The schedule
needs to be built only on the first invocation. It uses sequential
Schedule as the Reduce, Allreduce, and Broadcast primitives
have to executed in this order for Allreduce collective op-
eration. For example shown in Figure 1, the leader process
Schedule executes all three primitives (Allreduce, Reduce, and
Broadcast) and non-leader process Schedule executes only two
primitives (Reduce and Broadcast); the schedules are shown
in Figure 4. For this architecture and configuration, Reduce
and Broadcast are associated with UMA subgroup and use SM
implementations, and the Allreduce primitive is associated with
P2P subgroup and use inter-node implementation.

The inter-node Allreduce primitive is implemented using
Recursive K-ing algorithm described in the previous section,
the SM Reduce primitive is implemented using N-ary algo-
rithm described in the next section, and the SM Broadcast
primitive is implemented using a binary tree algorithm. Each
of this primitive can independently configured (in this case
the degree of the tree) to match communication mechanism’s
characteristics.

V. REDUCE ALGORITHM AND IMPLEMENTATION

This section provides details of N-ary algorithm used in
Reduce, and the the hierarchical Reduce implementation used
for small messages.

N-ary Algorithm

In the N-ary algorithm, a process is either a root, leaf, or
internal node. The root waits for data from all its children,
reduces the data and completes. The leaf sends the data to
its parent, and completes the reduction operation. The internal
node waits for the data from its children, reduces the data, and
sends the result to its parent. The degree (number of children)
of the N-ary tree is configurable, which is denoted by n.

Hierarchical implementation of Reduce
The n-level hierarchical Reduce is a combination of n Reduce
primitives. Each reduce primitive is expressed over a subgroup.
We currently have two different Reduce implementations, one
implementation optimized for SM (UMA or Socket) and other
optimized for inter-node (P2P subgroup).

The SM Reduce implementation uses a binary tree algo-
rithm, and inter-node Reduce operation uses a N-ary algorithm.
These, two reduce primitives suffices to express the reduction
operation on most modern systems. For example, a system
where each node has one CPU socket, and many CPU cores
could use a configuration with one SM and one inter-node
primitive. However a system where each system node has
many CPU sockets, and CPU cores, (example Smoky system
architecture is described in VII section) would use multiple
SM primitives (and multiple Socket subgroups and one UMA
subgroup) and one inter-node primitive (one P2P subgroup).

The hierarchical Reduce implementation uses a static
Schedule to describe the collective operation. The subgroup
which includes the root process is the last node in the Schedule.

VI. LARGE MESSAGE Allreduce AND Reduce
ALGORITHMS AND IMPLEMENTATIONS

Based on the size of the message, we used two different
implementations. For small messages, we used the latency
driven implementations described in Section IV and V. For
large messages, we used the implementations described in this
section. The message threshold where we make the switch is
a runtime decision.

When a reduction operation either Allreduce and Reduce is
invoked with large message, the large message is fragmented
into multiple message fragments, and each fragmented mes-
sage executes the small message reduction collective operation.
Once, all fragments of the message invokes the small message
reduction operation and completes, the large message reduction
operation is completed and returned. The large message is
fragmented respecting the datatype boundary to ensure the
correct reduction result. To maximize bandwidth, we have
multiple outstanding operations active at any given instance.
The size of the fragment and the number of active invocations
are controlled by a configurable runtime parameters.

Like small message implementations, the large message
implementations are also hierarchical. The large message im-
plementations support n levels of hierarchy. The large message



hierarchical Allreduce uses Reduce, Allreduce, and Broadcast
primitives, while the large message hierarchical Reduce uses
multiple Reduce primitives.

VII. EVALUATION

In this section, we describe the evaluation of Cheetah re-
ductions’ performance characteristics using microbenchmarks
and an application kernel, Conjugate Gradient solver. The
Cheetah reductions are compared with Open MPI’s default
blocking and nonblocking [4] collectives, Cray MPI (vendor
provided MPI implementation on the Cray systems), and
MVAPICH2.

A. Experimental Setup

1) Hardware: We ran all experiments on the Oak Ridge
Leadership Computing Facility’s Jaguar, a Cray XTS5 system,
and Smoky. For each of these experiments, the MPI job
was configured with one MPI process per CPU core. For all
experiments, we used the Smoky system, except for comparison
with the Cray MPI, for which, we used the Jaguar system.

Jaguar has 18,688 compute nodes, each one containing
two 2.6 GHz AMD Opteron (Istanbul) processors, 16 GB of
memory, and a SeaStar 2+ router. The routers are connected
in a 3D torus topology. Each AMD Opteron processor has
six computing cores and three levels of cache memory. The
compute nodes run Compute Node Linux micro-kernel.

Smoky is an 80 node test and development cluster. Each
node contains four 2.2 GHz AMD Opteron processors, 32 GB
of memory, an Intel gigabit Ethernet NIC, and a Mellanox
InfiniHost III Lx DDR HCA. Each AMD Opteron processor
has four processing cores, and three levels of cache memory
128 KB of L1 cache and 512 KB of L2 cache per core, and 8
Megabyte (MB) of L3 cache that is shared among the cores.
The compute nodes run Scientific Linux SL release 5.0, a full
Linux operating system based on the popular Red Hat Linux
distribution.

2) Benchmarks and Application Kernels: The microbench-
mark used to measure the latency, simply invoked the reduction
operations (either Allreduce or Reduce) in a tight loop, mea-
sured the overall time, and reported the average completion
time of the reduction operation.

The application kernel used to evaluate the reduction
operations solved the weak-scaling 1D Poision problem using
the Conjugate Gradient algorithm, and reported the total time
for completion. The 1D Poision problem was discretized using
second-order finite differencing on a uniform grid.

B. Performance characteristics of Allreduce and Reduce im-
plementations

In this experiment, we evaluated the latency characteristics
of the blocking and nonblocking reductions, as the number
of processes participating in the reduction operation increased
from 16 to 512. For each problem size, we measured the
completion time of the reduction for 10000 iterations and
reported the average time. For all of these measurements,
the Cheetah Reduce was configured with two-level hierarchy
(UMA, P2P). The Cheetah reductions were compared with the
default Open MPI reductions.

1) Evaluation of Blocking and Nonblocking Allreduce:
The latency characteristics for a 8 byte blocking Allreduce is
shown in Figure 6, and a nonblocking Allreduce is show in Fig-
ure 8. The 8 byte Allreduce operation uses the implementation
described in Section IV. The latency characteristics of 1 MB
blocking Allreduce is shown in Figure 7 and nonblocking Allre-
duce is shown in Figure 9. We present here only the latency
characteristics of 8 byte and 1 MB reduction operations, as
they were representative for all other small and large message
sizes, respectively.

Latency of Blocking Allreduce: Figure 6 and 7 shows
that the blocking Cheetah Allreduce operation outperforms
the Open MPI’s default Allreduce, both for small and large
messages. The latency of a 512-process and 8 byte Cheetah
Allreduce is 99.67 usecs, and the latency of a 512-process and
1 MB Allreduce operation is 43.2 msec. The Cheetah Allreduce
outperforms the Open MPI operation by 23 times and 5 times,
respectively.

Latency of Nonblocking Allreduce: Figure 8 and 9 shows
that similar to the blocking Allreduce, the nonblocking Cheetah
Allreduce outperforms the Open MPI’s default, both for small
and large messages. The latency of 512-process and 8 byte
Cheetah Allreduce operation is 38.64 usecs, and the latency of
512-process and 1 MB Allreduce operations is 21.4 msec. It
outperforms the Open MPI nonblocking Allreduce operation
by 20 times and 12 times, respectively.

2) Evaluation of Blocking and Nonblocking Reduce:
Figure 10 and 12 shows that the latency of 128 byte blocking
and nonblocking Reduce respectively; the 8 byte Reduce oper-
ation used the implementation described in Section V. Figure
11 and 13 shows the latency of blocking and nonblocking 1
MB Reduce respectively; the 1 MB Reduce operation uses the
implementation described in Section VI. We present here only
the latency characteristics of 128 byte and 1 MB reduction
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operations, as they were representative for all other small and
large message sizes respectively.

Latency of Blocking Reduce: Figure 10 and 11 shows that
the latency of blocking Cheetah Reduce operation outperforms
the Open MPI’s default, both for small and large messages.
The latency of a 512-process and 128 byte blocking Cheetah
Reduce is 8.86 usecs and the latency of 512-process and 1
MB Cheetah Reduce is 12.5 msec, outperforming the Open
MPI operations by 10 times and 13 times, respectively.
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Latency of Nonblocking Reduce: Figure 12 and 13 shows
that the latency of nonblocking Cheetah Reduce operation for
small and large message is lesser than the Open MPI’s default.
The latency of a 512-process and 128 byte Cheetah Reduce
operation is 8.36 usecs, and 1 MB Cheetah Reduce is 11.6
msec. The Cheetah Reduce operations achieved a speedup of
9x and 70%, respectively, compared to the Open MPI’s default.

C. Comparing Cheetah Allreduce with Cray MPI and
MAVPICH?2

We compared the performance of Cheetah Allreduce with
Cray MPI on Cray XT5, and MVAPICH?2 on Smoky to put the
performance characteristics of Cheetah reductions in context
with other state-of-the-art MPI implementations. The Chee-
tah reductions were configured with two-levels of hierarchy
(UMA, P2P), and for Cray MPI and MVAPICH2 we used
thier default configurations.

Figure 14 shows the latency of 6144 process Cheetah
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Allreduce compared to Cray MPI on a Cray XTS5 machine as
we increase the message size. We observe that the latency of
Cheetah Allreduce is consistently less than that of Cray MPI
for all message sizes. For 8192 byte and 6144 process Allre-
duce, Cheetah Allreduce achieves a speedup of about 145%
compared the default Cray MPI. A similar experiment with
MAVPICH2 shows that for a 512-process 64 KB nonblocking
Allreduce, Cheetah shows up to 3x speedup. The spike in the
latency graph in Figure 15 is a result of switching of Allreduce
implementations in the default MVAPICH2.

D. Performance of a Conjugate Gradient Solver

In this experiment, we measured the performance of the
Conjugate Gradient solver. We ran the solver with Open MPI
default and with Cheetah reductions, and measured the time
to completion.

Figure 16 shows the completion time for up to 512 process
problem. The results shows that Conjugate Gradient solver
solves the problem two times faster while using Cheetah
reductions compared to using Open MPI default reductions.
The only difference in this experiment between the Cheetah run
and the Open MPI default run is the reduction implementations
employed. In the Cheetah run, the solver uses two-level
Cheetah Allreduce and Reduce, and the rest of MPI operations
are Open MPI default. In the Open MPI default run, the solver
uses Open MPT’s default reduction and MPI operations.

VIII. ANALYSIS

To summarize the performance results, the Cheetah reduc-
tions, both Allreduce and Reduce, outperformed the default
Open MPI reductions. The Cheetah Allreduce outperformed

300000

Chestah Allreduce (p2p)
Cheetah Allreduce (p2p, uma) =sdbess

250000

200000

150000

Latency (microsec.)

100000

50000

0

Fig. 17. Latency of one-level Allreduce compared to two-level Allreduce
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Fig. 18. Latency of a 1 MB blocking Allreduce operation as number of
processes in the Allreduce is increased

the Cray MPI and MAVPICH2. ! Small and large message
blocking Cheetah Allreduce outperformed the Open MPI im-
plementation, by 23 times and 5 times, respectively. Small
and large message blocking Cheetah Reduce outperformed the
Open MPI implementations by 10 times and 13 times, respec-
tively. Similar performance gains are seen for the nonblocking
reductions. The Cheetah Allreduce outperformed the Cray MPI
for all message sizes for a 6144 processes problem size.
For a 512-process problem, the Cheetah Allreduce achieved
a speed up of 3x, when compared to the MVAPICH2. We
observed similar performance gains for smaller problem size.
In addition, we observed that Cheetah reductions improved the
completion time of Conjugate Gradient solver, demonstrating
the potential gains for many scientific simulations.

The performance gains can be contributed to hierarchi-
cal design and implementation. Hierarchical design achieves
better performance as it tailors the algorithms for each com-
munication hierarchy i.e., it has a different implementation
of collective primitive for each communication hierarchy. In
addition, it supports independent progress of these primitives.
To further corroborate that hierarchical design contributes to
the performance gains, we conducted an experiment where
we changed the Cheetah Allreduce to have no hierarchy, and
compared with Cheetah Allreduce with hierarchy.

Figure 17 shows the results of this experiment. We can
observe that Cheetah with no hierarchy (only P2P) performs
worse than Cheetah with hierarchy (UMA,P2P). We observed
similar performance behavior for other reductions and config-
urations i.e., blocking and nonblocking Reduce, nonblocking
Allreduce, and for both small and large message sizes.

We conducted another experiment on Smoky system, where

IThe Cheetah Reduce also outperformed MAVPICH2, but for a lack of
space, we did not include them.



we increased the number of hierarchies to three-levels (Socket,
UMA, P2P) for a Allreduce operation and compared its perfor-
mance to two-level (UMA, P2P) Allreduce. Figure 18 shows
the latency of each configuration. We observe that the three-
level configuration performs better than the two-level config-
uration. Also, we observe similar performance characteristics
for Conjugate Gradient solver. However, we see negligible
performance gains for some reductions configurations with
three-level hierarchy setup, particularly small message Reduce.
The performance gains can be explained as follows:

e  When moving from one-level to two-level configura-
tion, for this experimental setup, we are maximiz-
ing intra-node data transfers and minimizing inter-
node data transfers. Moving from two-level to three-
level, in addition to reducing inter-node transfers, we
also minimize inter-CPU socket transfers maximizing
intra-CPU socket transfers. This contributes to the
performance gains.

e  When moving from three-level to two-level configu-
ration. The latency difference between a intra-socket
and inter-socket data transfer is lesser compared to
the latency difference between a intra-node and inter-
node data transfer. This while contributes to overall
better performance gains, it results in a lesser gain, as
the overhead to manage the third hierarchy is counter
acting.

e In addition to better managing the data transfers, the
Cheetah’s hierarchical reductions uses the network
interface resources more efficiently. For example, it
uses less connection resources on the InfiniBand HCA,
which is known to have performance drawbacks [11]
[7]. This can be observed as an exponential perfor-
mance degradation in the Open MPI’s 256-process
Reduce operations (seen in Figure 7 and 9), and 512-
process Allreduce operations (seen in Figure 7 and 9).

In conclusion, we see significant performance gain for
going from one-level to two-level configuration, and additional
smaller gain from going from two-level to three-level config-
uration. We anticipate that as the system architecture moves
towards having multiple CPU sockets and many CPU cores on
a node, building collectives with many hierarchies are advan-
tageous. Also, it becomes essential to support varying number
of hierarchies to accommodate the diverse architectures of
multicore systems.

IX. CONCLUSION

In this work, we proposed a hierarchical design for imple-
menting the MPI reduction operations on multicore systems,
which is a commonly used architecture for current and emerg-
ing extreme-scale systems. We provided implementations of
MPI_Allreduce and MPI_Reduce (and its nonblocking vari-
ants), called the Cheetah reductions, that are based on this
approach. To quantify the performance benefits, we systemat-
ically evaluated the Cheetah reduction operations on Jaguar
(Cray XT5) and Smoky (InfiniBand) for various problem
sizes and message sizes. The empirical results demonstrated
that the Cheetah reductions performs and scales better than
the state-of-the-art MPI implementations - Open MPI, Cray
MPI, and MVAPICH2. Furthermore, the evaluation with an

application kernel also demonstrated significant improvements,
demonstrating the potential benefits for scientific simulations.
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