
In Proc. of 2014 International Conference on Parallel, Distributed and network-based Processing (PDP’14)

Supporting the Development of Resilient Message
Passing Applications using Simulation

Thomas Naughton, Christian Engelmann, Geoffroy Vallée, and Swen Böhm
Oak Ridge National Laboratory

Computer Science and Mathematics Division
Oak Ridge, TN 37831, USA

Email: {naughtont, engelmannc, valleegr, bohms}@ornl.gov

Abstract—An emerging aspect of high-performance computing
(HPC) hardware/software co-design is investigating performance
under failure. The work in this paper extends the Extreme-
scale Simulator (xSim), which was designed for evaluating the
performance of message passing interface (MPI) applications on
future HPC architectures, with fault-tolerant MPI extensions
proposed by the MPI Fault Tolerance Working Group. xSim
permits running MPI applications with millions of concurrent
MPI ranks, while observing application performance in a simu-
lated extreme-scale system using a lightweight parallel discrete
event simulation. The newly added features offer user-level failure
mitigation (ULFM) extensions at the simulated MPI layer to
support algorithm-based fault tolerance (ABFT). The presented
solution permits investigating performance under failure and
failure handling of ABFT solutions. The newly enhanced xSim is
the very first performance tool that supports ULFM and ABFT.

Keywords—High-performance Computing; Message Passing In-
terface; Algorithm-based Fault Tolerance ; Parallel Discrete Event
Simulation; Performance Prediction;

I. INTRODUCTION

Today’s large-scale computing platforms are comprised of
tens-of-thousands of compute nodes. For example, the IBM
BlueGene/Q Sequoia supercomputer at Lawrence Livermore
National Laboratory that was fully deployed in June 2012 has
98,304 compute nodes, each with a 16-core processor and 16
GB RAM, totaling 1,572,864 processor cores and 1.57 PB
RAM. These supercomputing systems are projected to grow
to hundreds-of-thousands and even millions of compute nodes
during the next decade on the road to exascale computing.

However, as these machines increase in size and complex-
ity, the expected increase in failure rates must be managed [1]–
[8]. They will experience more failures due to an increase in
the number of components that can fail. Furthermore, as pro-
cess technology continues to shrink, the number of transistors
affected by a single-event multiple-upset incident grows due to
increasing transistor density, resulting in a decrease of individ-
ual component reliability. Meanwhile, reliance on commercial-
off-the-shelf components with consumer-grade reliability is
key to build extreme-scale high-performance computing (HPC)
systems in an affordable way.

A number of advanced technologies been developed and/or
are currently in development dealing with the issue of re-
silience in extreme-scale systems, including checkpoint/restart-
specific file and storage systems, incremental/differential
checkpointing, message logging with uncoordinated check-
pointing, fault-tolerant message passing interface (MPI) exten-

sions, containment domains, algorithm-based fault tolerance
(ABFT), rejuvenation, reliability-aware scheduling, proactive
migration, and redundancy [9]–[22].

The work presented in this paper, particularly targets
ABFT supported by fault-tolerant MPI extensions. In general,
ABFT seeks to balance performance and resilience from an
application perspective. Application programmers often know
which data structures are read-only and can be recovered after
an MPI process failure from an input file. They also often
know which data structures require more extensive recovery,
such as through recomputing lost or corrupted data. To permit
ABFT the system software layer (the MPI runtime) must
enable the application (the MPI job) to continue to run in
spite of MPI process failures (partial degradation) and provide
feedback about failure events to allow the application to
respond accordingly. This not only requires a resilient MPI
runtime, but also extensions to the MPI for fault tolerance.
In the end, this approach permits an application to determine
how best to cope with a failure and balance the benefits of
continued execution and recovery/repair.

A standard practice in HPC is to use performance eval-
uation tools to gain insights into the execution behavior of
an application on a given platform. The impact of different
platform characteristics can have have profound effects on
application performance. As HPC resilience methods emerge
to cope with failures, the applications must incorporate the
effects of fault-tolerance into their study of execution behavior.
This not only targets the issue of performance under failure (ef-
ficiency), but also the state transitions during failure handling
(correctness). Thus, the performance evaluation infrastructure
must provide support for understanding the effects of failures
on applications. For the purpose of the presented work, the
needed support in performance tools targets fault-tolerant MPI
extensions, as well as, fault injection to permit efficiency and
correctness evaluation of applications that implement ABFT.

An emerging aspect of HPC hardware/software co-design
is investigating performance under failure of MPI applications
utilizing ABFT at scale on future HPC architectures and the
impact of different HPC architecture choices on performance
under failure. For example, network interconnect topology
and performance characteristics may have a huge impact on
ABFT notification and recovery phases, especially when col-
lective communication is involved. Similarly, an application’s
recovery from an MPI process failure may offer sufficient
performance with 100,000 compute nodes, but may be unus-
able with 1,000,000 nodes due to unknown scaling limitations



of the ABFT approach, such as exponential message storms.
Simulations are often used for estimating MPI application
performance on future architectures that haven’t been build
yet. Highly accurate simulations are typically employed to
explore compute node architectures, while less accurate and
more scalable solutions are used to study systems at scale.

The work presented in this paper extends the Extreme-
scale Simulator (xSim) [23]–[27] performance investigation
toolkit, which was designed for evaluation of MPI applica-
tions at scale by Oak Ridge National Laboratory, with fault-
tolerant MPI extensions that have been developed by the MPI
Fault Tolerance Working Group (MPI-FTWG). xSim permits
running MPI applications in a controlled environment with
millions of concurrent MPI ranks, while observing application
performance in a simulated extreme-scale system using a
lightweight parallel discrete event simulation (PDES). The
newly added features extend prior work on MPI process fault
injection in xSim [23] with the user-level failure mitigation
(ULFM) [28] extensions that are currently considered as a
proposed extension of the MPI standard to provide support
for ABFT. The presented solution permits investigating per-
formance under failure, as well as, state transitions during
failure handling of ABFT solutions on future-generation HPC
systems as part of performance/resilience hardware/software
HPC system/application co-design. To our knowledge, the
newly enhanced xSim is the very first performance evaluation
tool that supports ULFM and ABFT.

This paper is structured as follows. Section II provides
background on the MPI-FTWG’s proposed enhancements and
the xSim toolkit. Section III describes our implementation of
the MPI-FTWG’s API in the xSim environment, with initial
experiments discussed in Section IV. Further related work is
discussed in Section V. Section VI offers a summary of the
presented work and discusses plans for future work.

II. BACKGROUND

In this section we provide background information about
Algorithm-based Fault Tolerance (ABFT), the related User-
Level Failure Mitigation (ULFM) extensions to the MPI
standard proposed by the MPI Fault Tolerance Working
Group (MPI-FTWG), and the Extreme-scale Simulator (xSim)
performance investigation toolkit.

A. Algorithm-based Fault Tolerance

HPC application developers, such as domain scientists,
often have very deep insight into the resilience properties of
the algorithms they use. There are two separate fault models
ABFT is targeting: 1) a fail-stop of an MPI process, and
2) data corruption undetected by other hardware or software
layers. This paper targets fail-stop scenarios involving one or
more MPI processes. In this failure mode, a MPI process
fails to respond for some reason and is eventually declared
permanently failed by the MPI runtime. All of its data is lost.

Traditional checkpoint/restart regularly saves data on stable
storage to protect it from loss and to recover it after a MPI pro-
cess failure. With system-level checkpoint/restart, all process
data is saved, while in application-level checkpoint/restart the
application itself decides which data to save and to restore. In

both cases, coordination among all MPI processes is required
to maintain consistency in their progress.

ABFT for fail-stop scenarios simply offers more options
for the application to react to a failure. It may perform
application-level checkpoint/restart, but it also has the option
just to recover lost data by maintaining a certain level of data
redundancy. It may also be able to simply recompute the lost
data or ignore it completely. Examples are a partial differential
equation solver that uses recomputation [29], as well as, lossy
iterative linear solvers and Eigensolvers [30]. In any case, the
application also has the option to continue with less resources
when using ABFT, partially degrading its performance but not
failing entirely. This property of progress in the presence of
failures is the most appealing argument for ABFT, considering
the potential overheads for coordinated checkpoint/restart in an
extreme-scale HPC system.

The minimum requirements for ABFT are that the pro-
gramming model (MPI) and its runtime environment support
failure detection, notification, and propagation, as well as, fail-
ure resilience in the runtime environment. While applications
obviously need to be notified about a failure to be able to
react to it, there is also a need to optionally propagate this
failure notification, i.e., across an entire MPI communicator,
to eliminate potential deadlock situations. While recovery is up
to the application in ABFT, the MPI runtime environment itself
needs to be able to detect and handle MPI process failures to
keep the application running with less MPI processes and to
notify it of any failures.

B. User-Level Failure Mitigation

ULFM is a set of enhancements to the MPI standard
proposed by the MPI-FTWG to provide the basis for ABFT in
MPI. An initial prototype showcasing the proposed extensions
is available and based on Open MPI (see http://www.fault-
tolerance.org). In the following, we briefly describe the ULFM
API. A more detailed description is provided in [28].

The default MPI fault behavior forces a job failure upon
a process failure. In contrast, ULFM enables application-level
handling. It relies on using different MPI communicator error
handlers, such as MPI_ERRORS_RETURN or user-defined
error handlers. The ULFM specification defines six new MPI
functions as shown in Listing 1, and two new MPI error types,
for process failures and communicator revocation. An MPI
communication error due to a failed process returns the error
code MPI_ERR_PROC_FAILED (or MPI_ERR_PENDING
for MPI_ANY_SOURCE receive requests).

The ULFM API supports failure notification
and provides the basis to implement fail-stop
fault-tolerance in MPI applications. There are
two functions (MPI_Comm_failure_ack() and
MPI_Comm_failure_get_acked()) to acknowledge
local failures to quell further notices for known failed ranks
in a communicator.

A communicator can be used for point-to-point com-
munications as long as the peer is not a failed rank and
the communicator has not been “revoked”. Communicator
revocation is used to propagate failure information to other
members of the group to avoid deadlocks in collective commu-
nications. This communicator revocation is initiated through



the MPI_Comm_revoke() function. Once a communicator
has been revoked it can no longer be used for communi-
cation (collective or point-to-point) and a new handle must
be formed using the MPI_Comm_shrink() function, which
must be called by all “live” ranks in the communicator. The
MPI_Comm_shrink() is analogous to a communicator split
with only the “live” ranks included in a newly created com-
municator. Restated, MPI_Comm_revoke() can be be used
to notify other processes about a tainted communicator, while
MPI_Comm_shrink() allows to create a new communicator
that excludes failed ranks.

Listing 1. The C interface for the ULFM API.
1

2 i n t MPI Comm agree (MPI Comm comm ,
3 i n t ∗ f l a g ) ;
4

5 i n t MPI Comm iagree (MPI Comm comm ,
6 i n t ∗ f l a g ,
7 MPI Request ∗ r e q u e s t ) ;
8

9 i n t MPI Comm failure ack (MPI Comm comm ) ;
10

11 i n t MPI Comm fai lure get acked (MPI Comm comm ,
12 MPI Group ∗ f a i l e d g r p ) ;
13

14 i n t MPI Comm revoke (MPI Comm comm ) ;
15

16 i n t MPI Comm shrink (MPI Comm comm ,
17 MPI Comm ∗newcomm ) ;

MPI_Comm_agree() facilitates the agreement on a sin-
gle value at all participating ranks, e.g., to check if an operation
was successful on all processes. This distributed consensus
mechanism allows for developing application specific failure
recovery blocks (failure containment domains) and failure-
tolerant collectives (by placing an agree statement at the end of
the collective to ensure all return with consistent return codes
at additional performance cost [31]). MPI_Comm_iagree()
is simply a non-blocking variant of MPI_Comm_agree(),
requiring an MPI_wait() for completion.

The ULFM API is minimalistic and avoids any heavy
burden on the implementer of an MPI runtime. More extensive
recovery schemes can be built atop these 6 functions, such as
within libraries and/or applications.

C. Extreme-scale Simulator

xSim is a performance investigation tool for use with MPI
applications [23]–[27]. It is implemented as a PDES, which
itself is written as a MPI application. The simulator virtualizes
the MPI interface and runs the end-user’s MPI application as
virtual processes. Different network and processor models can
be configured to define the performance characteristics of the
simulated HPC platform. The virtual processes (virtual MPI
ranks) are implemented as user-level threads in xSim, which
are distinct from the native MPI processes used to run the
PDES. This approach allows for heavy over-subscription of
resources to enable extreme scale-up of virtual MPI ranks on
current HPC systems, such as running almost 130,000,000 MPI
ranks on a Linux cluster with only close to 1,000 physical
cores [24]. Despite this over-subscription, the PDES maintains
a virtual process clock for each MPI rank based on the
processor and network models, thus permitting performance
investigation at scale. The simulator prints out the overall

execution time of an MPI application running in the simulated
HPC system. It also permits access to the virtual MPI process
clock at runtime for application-level timing via virtualized
MPI_Wtime() and gettimeofday() calls.

In addition to a fully virtualized MPI layer, the simulator
also supports a fully virtualized filesystem layer and a mem-
ory management interposition layer. The tool has also been
extended to support MPI process and job fault injection for
resilience investigation [23]. The simulator provides a generic
restart mechanism to allow for restarting virtualized applica-
tions, and restoring the xSim state. This permits investigating
performance under failure, as well as, state transitions during
failure handling of checkpoint/restart approaches.

More details about the technical aspects of xSim, such as
the PDES implementation details and the network models, can
be obtained from the xSim publications [23]–[27].

III. IMPLEMENTATION

We have extended the xSim performance investigation
toolkit with the ULFM API, to simulate the ULFM behavior
of an MPI runtime and to support ABFT within xSim for
investigating performance under failure and state transitions
during failure handling. The newly added features will aid in
the co-design of future-generation HPC systems and scalable,
resilient HPC applications, considering performance and re-
silience aspects.

A. Simulated MPI Process Failure Injection and Detection

The following outlines the existing features for simulated
MPI process failure injection in xSim [23], the newly added
ULFM and ABFT support relies on.

Simulated MPI process failures are injected by scheduling
them at the targeted simulated MPI process ahead of or at the
time of failure. It is activated when the simulated process clock
reaches the scheduled time of failure. In this case, the simu-
lated MPI process’ execution ends and all messages directed
to it are ignored and deleted. A simulator-internal message
is broadcast to notify all other simulated MPI processes of
the failure and the time of failure. To simplify the injection of
simulated MPI process failures by the application itself, ending
a simulated MPI process, such as by returning from main()
or calling exit(), without calling MPI_Finalize() will
be considered as a simulated MPI process failure.

The simulated MPI process failure detection is imple-
mented as a simulated communication failure detector and
relies on the simulator-internal message broadcast of a sim-
ulated MPI process failure to fail corresponding message send
and receive requests. The simulated network communication
time of the waiting process is adjusted for the time of failure
and the configurable communication timeout. A simulator-
internal synchronization mechanism, which assures a conser-
vative PDES with deadlock detection, is used to fail unmatched
MPI_ANY_SOURCE receive requests. It also assures that send
requests fail at the correct simulated MPI process time.

The default MPI fault behavior, i.e., the default
MPI_ERRORS_ARE_FATAL error handler on MPI commu-
nicators, forces an MPI job failure through an MPI abort upon
a single MPI process failure. xSim simulates this by default



and prints out a message on the command line about the time
and rank of the failed MPI process.

B. User-Level Failure Mitigation

To extend the xSim simulator to support ULFM we had to
add the API extensions itself and additional tracking informa-
tion for the virtual processes. This included enhancements to
the communicator registries, adding additional message tags
to support “out-of-band” communication that honored ULFM
semantics, and leveraging the failure notification capabilities
outlined in the previous section.

The simulator maintains internal registries for tracking
the simulated MPI job’s virtualized communicators. These
registries are organized to reduce the overall amount of data
required for tracking the simulated MPI. We extended these
internal registries to support tracking of the revocation of com-
municators on a per rank/communicator basis. This required
the addition of a unique communicator identifier (commID) for
internal use during the creation and revocation/shrink of com-
municators. The commID is a globally unique monotonically
increasing value that is managed by the simulator itself, and is
used by the simulated MPI whenever a new communicator
is created. A new function was added to check if a given
communicator had been revoked, at the current simulated time,
in the communicator registry. This check is then used through-
out the simulator when processing messages to determine if
the simulated MPI should return a MPI_ERR_REVOKED (or
MPI_ERR_PENDING when using MPI_ANY_SOURCE). The
previously described fault-injection functionality supported the
process failure notification (i.e., MPI_ERR_PROC_FAILED).
This formed the basis for supporting MPI_Comm_revoke().

The counterpart to communicator revocation is the
MPI_Comm_shrink(). This function is implemented using
a two-phase commit protocol to establish the fail group in a
consistent manner across the “live” members of the commu-
nicator that are involved in the shrink operation. The initial
phase is used to exchange the set of failed ranks, with the
second phase used to ensure consistency for all members. A
new group of “live” ranks is created by excluding the agreed
upon “failed” ranks from the current (revoked) communicator.
This live group is used to create a new communicator (with
a new commID). This is all contained within the shrink
function and failed processes encountered during the shrink
are excluded from the new communicator that is returned
by the collective shrink function. The current implementation
is based entirely on point-to-point communication and relies
on the lower level failure detection/notification to determine
failures during these operations, which includes the advancing
of simulated time for the underlying PDES. We use internal
message tags to differentiate the messages associated with
a shrink or agree operation to allow for internal use of the
revoked communicator by the virtual MPI process, i.e., to
emulate an “out of band” communication mechanism. The
communication is governed by the selected networking model
and therefore the supported network types can be tested to see
their effects when using the ULFM functions.

The MPI_Comm_agree() function performs a “logical
and” of the value provided by all members of the communica-
tor. The function ignores any process failures that occur during

the execution of the function, and all living members of the
communicator obtain a consistent value (i.e., logical and of
all their input). The underlying implementation does a reduce
and broadcast to distribute the flag in a fault-tolerant manner
(i.e., the operations are restarted if they fail due to a process
failure during the agreement function). This is effectively a
MPI_Allreduce() with a MPI_LAND operation. As with
shrink, a simulator internal tag is used to differentiate the
messages for agree to ensure proper operation. The current
implementation also uses point-to-point to implement the col-
lectives based on the selected networking model.

We also extended the communicator registries to sup-
port tracking of ULFM-based failure acknowledgments. These
are implemented as bit arrays on a per communicator ba-
sis to indicate which rank(s) have acknowledge failures
for that group of ranks. This provides the necessary state
tracking to support the MPI_Comm_failure_ack() and
MPI_Comm_failure_get_acked() functions with rea-
sonable memory requirements within the simulator.

IV. EVALUATION

Our experiments were run on a Linux cluster (“SAL9000”)
at Oak Ridge National Laboratory. The system configuration
includes 40 dual-processor compute nodes with 960 cores in
total. The nodes have 2Ghz Intel Xeon 5130 processors with
24 cores per node, 64GB memory and a Nvidia Tesla S2050
GPU. The cluster is connected via a dual-bonded 1Gpbs Eth-
ernet interconnect. The operating system is Ubuntu Linux
12.04 LTS and all tests were run using Open MPI version
1.6.5, which was configured with threading support enabled
(‘–enable-mpi-thread-multiple’) and compiled with debug sup-
port.

All tests were run on xSim using three different network
model configurations that are representative of HPC environ-
ments. The first simulates a Gigabit Ethernet (GigE) with 20
microsecond latency (10 µ between node and switch) with a
rendezvous threshold of 128 KB. The second network roughly
simulates a shared memory (SHMEM) communication network
with 6 µ latency between cores and 3200 Mbps bandwidth. The
third roughly simulates a Cray XT5 3D twisted torus (3dTT)
network with 7µ latency and 8.8 Gbps bandwidth in all three
dimensions.

We have developed a set of small test programs to help
experiment with the ULFM API and to test our implementa-
tion. The first is a Revoke/Shrink synthetic benchmark that is
used to measure the overhead of the MPI_Comm_revoke()
and the collective operation MPI_Comm_shrink() that
is used to create a working communicator without failed
ranks. This ft-shrink-barrier test begins by duplicating the
MPI_COMM_WORLD handle and sets the default error handler
for this new handle to MPI_ERRORS_RETURN. The test then
performs a collective MPI_Reduce() to have all members
exchange an integer (e.g., communicator size) and the root
who prints this value and all ranks exit. To simulate failures,
we have a rank die just before calling the MPI_Reduce().
Additionally, all members call MPI_Barrier() after the
collective to ensure they all stay synchronized and to detect
any failures that might not have been detected at the rank
during their part of the MPI_Reduce(), and the failure gets
detected in the MPI_Barrier().



 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

V
ir

tu
a
l 
T
im

e
 (

se
c)

 Virtual Processes (xsim-np)

Virtual MPI Application Time 
 xSim: ft-shrink-barrier (SAL9000)

3dTT-1-FAIL
SHMEM-1-FAIL

GigE-1-FAIL
3dTT-nofail
GigE-nofail

SHMEM-nofail

Fig. 1. Shrink/Revoke: Virtual MPI process execution time in seconds for
xSim tests running ft-shrink-barrier with 3 network models, both with &
without a single injected failure.

In Figure 1, we demonstrate the support for using the
ULFM functions for Revoke/Shrink on the xSim simulator.
The tests show the results of the ft-shrink-barrier benchmark
at different virtual process (rank) counts with and without an
injected process failure. This graph also demonstrates using
ULFM with xSim’s network models to show the behavior of
ft-shrink-barrier on the different network configurations.

The maximum virtual MPI process’s execution time in
seconds is shown in Figure 1. In this graph, only the tests with
a simulated failure perform any ULFM functions. Therefore
the other lines provide a baseline for comparison to show
the overhead for the ULFM Revoke/Shrink and subsequent
(successful) Reduce operation.

In the tests, the portion associated with the
MPI_Comm_revoke() is very small as this is an
entirely local operation, and most of the time shown
is spent performing the two collective operations:
MPI_Comm_shrink() and the restarted MPI_Reduce().
The overhead for these functions is very small for the
simulated time, with shared memory being slightly faster
for the lower counts due to lower latency for intra-node
communications.

To demonstrate the support for the ULFM agreement func-
tion with xSim we wrote a simple unit test called ft-agree. This
test calls the MPI_Comm_Agree() function for a specified
number of iterations. Then the root rank collects the times to
perform the agreement and reports the average/min/max for
the collective ULFM operation. The tests in Figure 2 show the
results for running ft-agree with an iteration count of 1 (i.e.,
one call to collective function MPI_Comm_agree() for each
run of test).

The ULFM agreement function can be used to ensure all
callers have a consistent value for an operation. For example,
agreement can be used to determine if all callers received
a successful return value for a function and act according
if they are not consistent. Therefore, the tests with ft-agree
in Figure 2 show the overhead for the collective agreement
function. Since there is no recovery in this unit test there are
no failures for this case and the graph shows the overhead for
using the consensus function. As we increase the the number
of virtual processes the network models begin to show the

 0.0001

 0.001

 0.01

 0.1

2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

V
ir

tu
a
l 
T
im

e
 (

se
c)

 Virtual Processes (xsim-np)

Virtual MPI Application Time 
 xSim: ft-agree (SAL9000)

3dTT-nofail
GigE-nofail

SHMEM-nofail

Fig. 2. Agree: Maximum Virtual MPI process execution times in seconds
for xSim tests using ft-agree with 3 network models without failures.

 0.001

 0.01

 0.1

 1

2 4 8 16 32 64 128 256

V
ir

tu
a
l 
T
im

e
 (

se
c)

Virtual Processes (xsim-np)

Virtual MPI Application Time 
 xSim simpleMD-ulfm (SAL9000)

GigE-1-FAIL
3dTT-1-FAIL

SHMEM-1-FAIL
GigE-nofail
3dTT-nofail

SHMEM-nofail

Fig. 3. SimpleMD: Virtual MPI process execution time in seconds for xSim
tests using simpleMD-uflm with 3 network models, both with & without a
single injected failure.

difference in communication costs for the point-to-point based
two-phase commit protocol used in the current implementation
of MPI_Comm_agree().

To show the use of the simulator with a full application,
we extended a basic demonstration code called simpleMD
to use ULFM. The application simulates classical molecular
dynamics (MD) for a system of N atoms that interact through
a Lennard-Jones potential in a closed box with elastic col-
lisions. The application support an optional visualization of
the simulation using the Visual Molecular Dynamics (VMD)
viewer [32]. The MD application has a parameters file that
allows the user to set details about the simulation, which we
used to control the number of “steps” (iterations) to perform for
the run. The code supports application-level checkpoint/restart
with the checkpoint generated in a synchronous manner at
defined intervals when the physical properties of the simulation
are evaluated. These checkpoints are generated at the start
of each new “step”, when the intermediate values for the
MD properties are displayed to the user and written to the
checkpoint file.

The ULFM enhancements to the application included some
addition error checking for MPI calls and a forced roll-back to
a previous time step when a process failure occurs. The roll-
back procedure include the ULFM communicator revocation
and shrinkage to obtain a fully function communicator. Then



the application falls back to a previous successful step in
the MD simulation (reading from the checkpoint file) and
continues the execution. As with the previous examples, we
simulated a failure by modifying the simpleMD-ulfm code
to force a “victim” rank to prematurely terminate, creating
an MPI process failure. All failed communications in the
simulation will just return the error, and the main simu-
lation loop recognizes ULFM’s process failures error types
(MPI_ERR_PROC_FAILED & MPI_ERR_REVOKED). This
triggers the revoke, shrink and roll-back to prior checkpointed
(saved) timestep. We tested the enhanced version of the sim-
pleMD application with the MPI-FTWG’s reference prototype
to validate our test before using it under the xSim implemen-
tation.

The tests with the ULFM enhanced MD application
(simpleMD-ulfm) are shown in Figure 3. The graph shows the
maximum virtual time (v-tmax) in seconds for the virtual MPI
processes. We limit the MD simulation to just four timesteps
to reduce the real wallclock time to perform the experiments
with xSim. The virtual process times includes the time for
the ULFM related communication (revoke and shrink) and
the communication related times spent rolling back to the
prior checkpoint. The tests were run with the same three
network models as those used in the unit tests with a baseline
(no failures) and with a single injected failure at the second
timestep for each of the simulated network topologies. The
pattern for each network type is roughly consistent between
the failure and non-failure cases, showing an increase as the
virtual process counts increase. The initial dip in the graph
is due to parallelism for the application’s small problem size,
however, the small problem size used for this demonstration
preclude problem size scaling studies. The does provide an
indication about the general scaling of the application and
the effects of the network model. The application maintains a
tight synchronization for each timestep of the MD simulation,
which is in part due to the way it performs the synchronous
application-level checkpointing. These synchronizations are
reflected in this graph by the increase in virtual time as process
count increases.

This demonstrates xSim’s support for a real application sce-
nario with application-level checkpoint restart that is triggered
upon process-failure in conjunction with the ULFM support to
revoke and shrink the communicator. The graph in Figure 3
provides a rough idea of how the application will behave
when failures occur and the application-level fault tolerance
is applied as the network topology changes.

V. RELATED WORK

The following discusses further related work in the areas of
HPC resilience modeling and simulation, HPC fault injection
tools and studies, and HPC modeling and simulation toolkits
for performance evaluation/estimation.

The current state-of-practice in HPC to evaluate the per-
formance impact of a resilience solution is modeling and
stochastic evaluation. It mostly focuses on 1) assuring hard-
ware reliability and 2) optimizing checkpoint/restart. Assuring
hardware reliability is performed by component manufacturers
and HPC system integrators using modeling and simulation
to assure a certain upper bound on the failure in time (FIT,

the number of failures that can be expected in 109 hours of
operation) rate. This method is tightly integrated in the design
process and focuses on cost trade-offs. As explained before,
checkpoint/restart is the standard practice for resilience in HPC
today and prior efforts focused on optimizing the application
of this particular mitigation technique, such as by finding the
optimal checkpoint interval [33]. There has been recent work in
incremental checkpointing and in redundancy for HPC, which
used modeling and simulation to compare these mitigation
techniques with checkpoint/restart [9], [20].

Fault injection is an experimental method to investigate
the impact of a fault and of a matching mitigation strategy.
Fault injection can be used to identify fault propagation, fault
detection delay, proper fault handling, and impact in case
of unmitigated faults. The field of fault injection in HPC is
still not explored well. An initial framework [34] utilized the
capabilities of the ptrace(2) system call to inject bit flips
in the core image and registers of a victim process, and of
the fault injection feature in Linux [35] to inject slab, page
allocation, and disk I/O errors. Other recent work leveraged
process-level redundancy [36] to track propagation of injected
data corruption when partially isolating the redundant copies
of the execution. One replica was the victim, while the other
was the live control. The impact of data corruption in MPI-
based applications has also been studied using instrumentation
tools, like Pin [37]. One study found that data corruption
had noticeable effects on MPI applications 28-71 % of the
time [38], including hangs and incorrect output.

There are a few simulation toolkits for estimating the
performance of HPC applications on future-generation HPC
systems. To our knowledge, none of them support ABFT or
ULFM. The Structural Simulation Toolkit (SST) is probably
the most advanced solution. SST/micro [39] offers simula-
tion of novel compute-node architectures, including processor,
memory, and network. It is a modular PDES framework
that utilizes external modeling and simulation tools. SST/-
macro [40] is a complementary toolkit that processes output
from the MPI tracing library DUMPI for performance eval-
uation. SST/micro can be used to generate DUMPI traces at
smaller-scale, which then can be used as input for SST/macro
to extrapolate performance at larger scale. DIMEMAS [41]
is a toolkit similar to SST/macro. It processes traces from
MPIDTrace obtained from an HPC application run on an
existing HPC system and generates output for the performance
tools, PARAVER [42] and Vampir [43]. SimGrid [44] and
OMNeT++ [45] are multi-purpose simulation toolkits that have
also been used to investigate the runtime capabilities of future
system architectures.

VI. SUMMARY AND FUTURE WORK

With this paper, we presented the very first implementation
of a simulation-based performance evaluation tool for MPI
applications that supports the ULFM extensions. The xSim
performance investigation toolkit was extended with ULFM
simulation support, such that fault tolerant MPI applications
relying on ULFM can be investigated with respect to per-
formance under failure and failure handling correctness. The
result is a simulation capability that offers the most important
ULFM MPI calls with their defined functionality and their



simulated timing based on xSim’s architectural model for
simulating a HPC system.

Planned future work includes providing a complete refer-
ence implementation of the proposed ULFM MPI extensions,
e.g., adding MPI_Comm_iagree(). As the ULFM MPI
specification has not been ratified by the MPI Forum yet to be
part of the MPI standard, any changes to it until ratification will
be integrated as well. There are a number of other opportunities
in future work, such as the implementation of different algo-
rithms for the ULFM core functions, MPI_Comm_revoke(),
MPI_Comm_shrink(), and MPI_Comm_agree(), includ-
ing a general implementation of fault-tolerant MPI collectives.
Future work will also look at investigating the failure handling
characteristics of fault-tolerant MPI applications, e.g., the
mentioned ABFT solutions for partial differential equation
solvers, iterative linear solvers, and Eigensolvers.

ACKNOWLEDGMENTS

Research sponsored by the Laboratory Directed Research
and Development Program of Oak Ridge National Laboratory
(ORNL), managed by UT-Battelle, LLC for the U. S. Depart-
ment of Energy under Contract No. De-AC05-00OR22725.
This manuscript has been authored by UT-Battelle, LLC,
under Contract No. DE-AC05-00OR22725 with the U.S. De-
partment of Energy. The United States Government retains
and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish
or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes.

REFERENCES

[1] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson, A. A. Chien,
P. Coteus, N. A. DeBardeleben, P. Diniz, C. Engelmann, M. Erez,
S. Fazzari, A. Geist, R. Gupta, F. Johnson, S. Krishnamoorthy,
S. Leyffer, D. Liberty, S. Mitra, T. Munson, R. Schreiber,
J. Stearley, and E. V. Hensbergen, “Workshop report: Addressing
failures in exascale computing,” Apr. 2013. [Online]. Available:
http://www.christian-engelmann.info/publications/snir13addressing.pdf

[2] J. Daly, B. Harrod, T. Hoang, L. Nowell, B. Adolf, S. Borkar,
N. DeBardeleben, M. Elnozahy, M. Heroux, D. Rogers, R. Ross,
V. Sarkar, M. Schulz, M. Snir, P. Woodward, R. Aulwes, M. Bancroft,
G. Bronevetsky, B. Carlson, A. Geist, M. Hall, J. Hollingsworth,
B. Lucas, A. Lumsdaine, T. Macaluso, D. Quinlan, S. Sachs,
J. Shalf, T. Smith, J. Stearley, B. Still, and J. Wu, “Inter-
Agency Workshop on HPC Resilience at Extreme Scale,” Feb.
2012. [Online]. Available: http://institutes.lanl.gov/resilience/docs/Inter-
AgencyResilienceReport.pdf

[3] F. Cappello, A. Geist, B. Gropp, L. V. Kale, W. Kramer, and
M. Snir, “Toward exascale resilience,” University of Illinois at Urbana-
Champaign (UIUC) - Institut National de Recherche en Informatique
et en Automatique (INRIA) Joint Laboratory on PetaScale Computing,
Tech. Rep. TR-JLPC-09-01, Jun. 2009.

[4] M. Elnozahy, R. Bianchini, T. El-Ghazawi, A. Fox, F. Godfrey,
A. Hoisie, K. McKinley, R. Melhem, J. Plank, P. Ranganathan, and
J. Simons, “System resilience at extreme scale,” Defense Advanced
Research Project Agency (DARPA), Tech. Rep., 2008.

[5] A. Geist and R. F. Lucas, “Major computer science
challenges at exascale,” International Exascale Software Project,
Tech. Rep., Feb. 2009, whitepaper. [Online]. Available:
http://www.exascale.org/mediawiki/images/8/87/ExascaleSWChallenges-
Geist Lucas.pdf

[6] P. Kogge et al., “ExaScale computing study: Technology challenges
in achieving exascale systems,” Defense Advanced Research Project
Agency (DARPA) Information Processing Techniques Office (IPTO),
Tech. Rep., 2008.

[7] B. Schroeder and G. A. Gibson, “Understanding failures in petascale
computers,” in Journal of Physics: Proceedings of the Scientific Discov-
ery through Advanced Computing Program (SciDAC) Conference 2007,
vol. 78. Boston, MA, USA: Institute of Physics Publishing, Bristol,
UK, Jun. 24-28, 2007, pp. 2022–2032.

[8] N. DeBardeleben, J. Laros, J. T. Daly, S. L. Scott, C. Engelmann, and
B. Harrod, “High-end computing resilience: Analysis of issues facing
the HEC community and path-forward for research and development,”
Whitepaper, Dec. 2009.

[9] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, and C. En-
gelmann, “Combining partial redundancy and checkpointing for HPC,”
in Proceedings of the 32nd International Conference on Distributed
Computing Systems (ICDCS) 2012. Macau, China: IEEE Computer
Society, Los Alamitos, CA, USA, Jun. 18-21, 2012.

[10] C. Engelmann and S. Böhm, “Redundant execution of HPC applications
with MR-MPI,” in Proceedings of the 10th IASTED International Con-
ference on Parallel and Distributed Computing and Networks (PDCN)
2011. Innsbruck, Austria: ACTA Press, Calgary, AB, Canada, Feb. 15-
17, 2011, pp. 31–38.

[11] C. Engelmann, G. Vallée, T. Naughton, and S. L. Scott, “Proactive
fault tolerance using preemptive migration,” in Proceedings of the
17th Euromicro International Conference on Parallel, Distributed, and
network-based Processing (PDP) 2009. Weimar, Germany: IEEE
Computer Society, Feb. 18-20, 2009, pp. 252–257.

[12] G. Fagg, E. Gabriel, G. Bosilca, T. Angskun, Z. Chen, J. Pjesivac-
grbovic, K. London, and J. Dongarra, “Extending the mpi specification
for process fault tolerance on high performance computing systems,” in
In Proceeding of International Supercomputer Conference (ICS), 2003.

[13] N. Gottumukkala, B. Leangsuksun, N. Taerat, R. Nassar, and S. L. Scott,
“Reliability-aware resource allocation in hpc systems,” in Proceedings
of the 2007 IEEE International Conference on Cluster Computing, ser.
CLUSTER ’07. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 312–321.

[14] P. H. Hargrove and J. C. Duell, “Berkeley Lab Checkpoint/Restart
(BLCR) for Linux clusters,” in Journal of Physics: Proceedings of the
Scientific Discovery through Advanced Computing Program (SciDAC)
Conference 2006, vol. 46. Denver, CO, USA: Institute of Physics
Publishing, Bristol, UK, Jun. 25-29, 2006, pp. 494–499.

[15] M. Li, S. Vazhkudai, A. Butt, F. Meng, X. Ma, Y. Kim, C. Engel-
mann, and G. Shipman, “Functional partitioning to optimize end-to-end
performance on many-core architectures,” in Proceedings of the 23rd

IEEE/ACM International Conference on High Performance Computing,
Networking, Storage and Analysis (SC) 2010. New Orleans, LA, USA:
ACM Press, New York, NY, USA, Nov. 13-19, 2010, pp. 1–12.

[16] P. Lemarinier, A. Bouteiller, T. Herault, and G. Krawezik, “Improved
message logging versus improved coordinated checkpointing for fault
tolerant mpi,” in in IEEE International Conference on Cluster Comput-
ing (Cluster 2004). IEEE CS. Press, 2004.

[17] N. Naksinehaboon, N. Taerat, C. Leangsuksun, C. F. Chandler, and
S. L. Scott, “Benefits of software rejuvenation on HPC systems,” in
Proceedings of the International Symposium on Parallel and Distributed
Processing with Applications, ser. ISPA ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 499–506.

[18] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott, “A job pause
service under LAM/MPI+BLCR for transparent fault tolerance,” in
Proceedings of the 21st IEEE International Parallel and Distributed
Processing Symposium (IPDPS) 2007. Long Beach, CA, USA: ACM
Press, New York, NY, USA, Mar. 26-30, 2007.

[19] ——, “Proactive process-level live migration in HPC environments,”
in Proceedings of the IEEE/ACM International Conference on High
Performance Computing, Networking, Storage and Analysis (SC) 2008.
Austin, TX, USA: ACM Press, New York, NY, USA, Nov. 15-21, 2008.

[20] ——, “Hybrid checkpointing for MPI jobs in HPC environments,” in
Proceedings of the 16th IEEE International Conference on Parallel and
Distributed Systems (ICPADS) 2010. Shanghai, China: IEEE Computer
Society, Los Alamitos, CA, USA, Dec. 8-10, 2010, pp. 524–533.

[21] ——, “Proactive process-level live migration and back migration in



HPC environments,” Journal of Parallel and Distributed Computing
(JPDC), vol. 72, no. 2, pp. 254–267, Feb. 2012.

[22] J. Dongarra, P. Beckman, and et al., “The international exascale
software roadmap,” International Journal of High Performance
Computer Applications, vol. 25, no. 1, 2011. [Online]. Available:
http://www.exascale.org/mediawiki/images/2/20/IESP-roadmap.pdf

[23] C. Engelmann and T. Naughton, “Toward a performance/resilience
tool for hardware/software co-design of high-performance computing
systems,” in (To appear) Proceedings of the 4th International Workshop
on Parallel Software Tools and Tool Infrastructures (PSTI). IEEE, Oct.
2013.

[24] C. Engelmann, “Scaling to a million cores and beyond: Using light-
weight simulation to understand the challenges ahead on the road
to exascale,” Future Generation Computer Systems (FGCS), 2013, to
appear.

[25] S. Böhm and C. Engelmann, “xSim: The extreme-scale simulator,”
in Proceedings of the International Conference on High Performance
Computing and Simulation (HPCS) 2011. Istanbul, Turkey: IEEE
Computer Society, Los Alamitos, CA, USA, Jul. 4-8, 2011, pp. 280–
286.

[26] C. Engelmann and F. Lauer, ““Facilitating co-design for extreme-scale
systems through lightweight simulation”,” in Proceedings of the 12th

IEEE International Conference on Cluster Computing (Cluster) 2010:
1st Workshop on Application/Architecture Co-design for Extreme-scale
Computing (AACEC). Hersonissos, Crete, Greece: IEEE Computer
Society, Sep. 20-24, 2010, pp. 1–8.

[27] I. S. Jones and C. Engelmann, “Simulation of large-scale HPC architec-
tures,” in Proceedings of the 40th International Conference on Parallel
Processing (ICPP) 2011: 2nd International Workshop on Parallel
Software Tools and Tool Infrastructures (PSTI). Taipei, Taiwan: IEEE
Computer Society, Los Alamitos, CA, USA, Sep. 13-19, 2011, pp. 447–
456.

[28] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and J. J.
Dongarra, “An evaluation of user-level failure mitigation support in
mpi,” in Proceedings of the 19th European conference on Recent
Advances in the Message Passing Interface, ser. EuroMPI’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 193–203.

[29] H. Ltaief, E. Gabriel, and M. Garbey, ““Fault tolerant algorithms for
heat transfer problems”,” Journal of Parallel and Distributed Computing
(JPDC), vol. 68, no. 5, pp. 663–677, 2008.

[30] G. Bosilca, Z. Chen, J. Dongarra, and J. Langou, ““Recovery patterns
for iterative methods in a parallel unstable environment”,” SIAM Journal
on Scientific Computing (SISC), vol. 30, no. 1, pp. 102–116, 2007.

[31] J. Hursey and R. Graham, “Preserving collective performance across
process failure for a fault tolerant MPI,” in 16th International Workshop
on High-Level Parallel Programming Models and Supportive Environ-
ments (HIPS) held in conjunction with the 25th IEEE International
Parallel and Distributed Processing Symposium (IPDPS), Anchorage,
Alaska, May 2011.

[32] “Visual Molecular Dynamics (VMD) project website,” (Last viewed:
23jul2013). [Online]. Available: http://www.ks.uiuc.edu/Research/vmd

[33] J. T. Daly, “A higher order estimate of the optimum checkpoint interval
for restart dumps,” Future Generation Computing Systems (FGCS),
vol. 22, no. 3, pp. 303–312, 2006.

[34] T. Naughton, W. Bland, G. Vallée, C. Engelmann, and S. L. Scott, “Fault
injection framework for system resilience evaluation – Fake faults for
finding future failures,” in Proceedings of the 18th International Sympo-
sium on High Performance Distributed Computing (HPDC) 2009: 2nd

Workshop on Resiliency in High Performance Computing (Resilience)
2009. Munich, Germany: ACM Press, New York, NY, USA, Jun. 9,
2009, pp. 23–28.

[35] “Linux fault injection capabilities infrastructure,” documentation avail-
able at: http://lxr.linux.no/linux/Documentation/fault-injection/.

[36] D. Fiala, F. Mueller, C. Engelmann, K. Ferreira, R. Brightwell, and
R. Riesen, “Detection and correction of silent data corruption for
large-scale high-performance computing,” in Proceedings of the 25th

IEEE/ACM International Conference on High Performance Computing,
Networking, Storage and Analysis (SC) 2012. Salt Lake City, UT, USA:
ACM Press, New York, NY, USA, Nov. 10-16, 2012, pp. 78:1–78:12.

[37] P. P. Bungale and C.-K. Luk, “PinOS: A programmable framework
for whole-system dynamic instrumentation,” in Proceedings of the 3rd

International Conference on Virtual Execution Environments (VEE’07).
New York, NY, USA: ACM, 2007, pp. 137–147.

[38] C. da Lu and D. A. Reed, “Assessing fault sensitivity in mpi appli-
cations,” in SC ’04: Proceedings of the 2004 ACM/IEEE conference
on Supercomputing. Washington, DC, USA: IEEE Computer Society,
2004, p. 37.

[39] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield,
M. Weston, R. Risen, J. Cook, P. Rosenfeld, E. CooperBalls, and
B. Jacob, “The structural simulation toolkit,” SIGMETRICS Perform.
Eval. Rev., vol. 38, no. 4, pp. 37–42, Mar. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1964218.1964225

[40] C. L. Janssen, H. Adalsteinsson, S. Cranford, J. P. Kenny, A. Pinar, D. A.
Evensky, and J. Mayo, “A simulator for large-scale parallel computer
architectures,” International Journal of Parallel and Distributed System
Technology, vol. 1, no. 2, pp. 57–73, Apr. 2010.

[41] S. Girona, J. Labarta, and R. M. Badia, “Validation of dimemas
communication model for MPI collective operations,” in Lecture Notes
in Computer Science: Proceedings of the 7th European PVM/MPI
Users‘ Group Meeting (EuroPVM/MPI) 2000, vol. 1908. Balatonfüred,
Hungary: Springer Verlag, Berlin, Germany, Sep. 10-13 2000, pp. 39–
46.

[42] V. Pillet, J. Labarta, T. Cortes, and S. Girona, “PARAVER: A Tool to
Visualize and Analyze Parallel Code,” in Proceedings of WoTUG-18:
Transputer and occam Developments, Mar. 1995, pp. 17–31.

[43] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler,
M. S. Müller, and W. E. Nagel, “The vampir performance analysis tool-
set,” in Tools for High Performance Computing, M. Resch, R. Keller,
V. Himmler, B. Krammer, and A. Schulz, Eds. Springer Berlin
Heidelberg, 2008, pp. 139–155.

[44] P.-N. Clauss, M. Stillwell, S. Genaud, F. Suter, H. Casanova, and
M. Quinson, “Single Node On-Line Simulation of MPI Applications
with SMPI,” in International Parallel & Distributed Processing Sym-
posium. Anchorange (AK), États-Unis: IEEE, May 2011, rR-7426
RR-7426.

[45] C. Minkenberg and G. R. Herrera, “Trace-driven co-simulation of
high-performance computing systems using omnet++,” in OMNeT++
2009: Proceedings of the 2nd International Workshop on OMNeT++
(hosted by SIMUTools 2009). ICST, Brussels, Belgium, Belgium: ICST
(Institute for Computer Sciences, Social-Informatics and Telecommu-
nications Engineering), 2009.


