
The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February doi:10.1088/0067-0049/210/2/17
C© 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

GenASiS: GENERAL ASTROPHYSICAL SIMULATION SYSTEM. I. REFINABLE MESH
AND NONRELATIVISTIC HYDRODYNAMICS

Christian Y. Cardall1,2, Reuben D. Budiardja1,2,3,4, Eirik Endeve5, and Anthony Mezzacappa1,2,5
1 Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354, USA; cardallcy@ornl.gov

2 Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200, USA
3 Joint Institute for Heavy Ion Research, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6374, USA

4 National Institute for Computational Sciences, University of Tennessee, Knoxville, TN 37996, USA
5 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354, USA

Received 2012 July 14; accepted 2013 December 2; published 2014 January 10

ABSTRACT

GenASiS (General Astrophysical Simulation System) is a new code being developed initially and primarily,
though by no means exclusively, for the simulation of core-collapse supernovae on the world’s leading capability
supercomputers. This paper—the first in a series—demonstrates a centrally refined coordinate patch suitable for
gravitational collapse and documents methods for compressible nonrelativistic hydrodynamics. We benchmark
the hydrodynamics capabilities of GenASiS against many standard test problems; the results illustrate the basic
competence of our implementation, demonstrate the strengths and limitations of the HLLC relative to the HLL
Riemann solver in a number of interesting cases, and provide preliminary indications of the code’s ability to scale
and to function with cell-by-cell fixed-mesh refinement.

Key words: hydrodynamics – methods: numerical

Online-only material: animation, color figures

1. INTRODUCTION

Many problems in astrophysics and cosmology will press
against the boundaries of supercomputer software and hard-
ware development for some time to come. Among the most
challenging are time-dependent systems that should be treated
in three position space dimensions, plus up to three momentum
space dimensions for those that involve radiation transport. Sev-
eral types of physics—and their couplings—must be addressed.
Taken together, physics such as self-gravity, turbulent cascades,
reactions that may or may not be in equilibrium, and the opera-
tion of both microscopic and macroscopic processes often imply
the simultaneous relevance of multiple scales in space and time,
typically requiring some kind of spatial adaptivity and multiple
solvers (at least some of which may be time-implicit). Solvers
deployed with good resolution in as much of phase space as pos-
sible fill the memory and churn through the cycles of the largest
supercomputers available. That the relevant theory is described
by time-dependent partial (and sometimes integro-)differential
equations implies the need for synchronous evolution and com-
munication between different regions of position space (and
sometimes momentum space). These latter aspects seem ever
more difficult to address due to the fact that increases in comput-
ing capability seem only to come with such additional burdens as
distributed memory and distributed (and, more recently, hetero-
geneous) processing capacity. From the perspective of working
astrophysicists and cosmologists, it can seem that the physics
itself recedes ever further away as their efforts are channeled
toward developing and tailoring codes to the specific features
of these increasingly complex high-performance machines. In
this environment, the availability of well-designed codes with
broadly applicable physics capabilities is increasingly valuable
to researchers.

One such computationally demanding problem is the eluci-
dation of the explosion mechanism of core-collapse supernovae
(Mezzacappa 2005; Woosley & Janka 2005; Kotake et al. 2006,
2012a, 2012b; Janka et al. 2007, 2012; Janka 2012; Burrows

2013). A star with mass greater than ∼8 M� develops a de-
generate core during its final burning stage. Once the core be-
comes sufficiently large—roughly the Chandrasekhar mass—it
becomes unstable and undergoes catastrophic collapse on a
nearly free-fall timescale. Collapse of an inner subsonic por-
tion of the core halts around nuclear density (where nucleons
begin to overlap), leading to the development of a shock wave
at the interface between this inner core and the supersonically
infalling outer portion of the core. The shock eventually will
disrupt the entire star and give rise to the luminous supernova,
but it stagnates shortly after its formation due to the endothermic
reduction of heavy nuclei into their constituent nucleons and en-
ervating neutrino losses. The mechanism of shock revival—that
is, the explosion mechanism—remains to be fully elucidated by
numerical simulations, but is expected to involve some combi-
nation of heating by intense neutrino fluxes streaming from the
nascent neutron star, fluid instabilities, rotation, and magnetic
fields. In fact, the relative contributions of these phenomena may
vary from event to event: pre-supernova stars differ in proper-
ties such as mass and rotation, leading to explosions that may
or may not be jet-like with an associated gamma ray burst, and
either a black hole or a neutron star as a compact remnant.

Even this brief description conveys an initial sense of the
multiphysics and multiscale nature of core-collapse supernova
explosion mechanism simulations. The problem manifestly
requires self-gravity, which must be general relativistic to
treat the more rare and extreme case of black hole formation,
and ideally would be at least approximately relativistic even
when the compact remnant is a neutron star. The treatment of
hydrodynamics—and ideally magnetohydrodynamics (MHD),
especially in connection with black hole formation—must be
able to handle shocks. At high density the equation of state
must describe neutron-rich nuclear matter at finite temperature,
and at low density it is desirable to track nuclear composition
with a reaction network spanning a wide range of nuclear
species. Neutrino transport must span diffusive, decoupling, and
free-streaming regimes, and include several species and their

1

http://dx.doi.org/10.1088/0067-0049/210/2/17
mailto:cardallcy@ornl.gov


The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February Cardall et al.

interactions with each other and with various fluid constituents.
Gravitational collapse, a steepening density cliff at the surface
of the nascent neutron star, and regions of turbulence strongly
recommend some form of spatial adaptivity. The stiff equations
of neutrino transport and a nuclear network normally require
time-implicit evolution. At the present time computational
limitations still require dimensional reduction of phase space;
simple estimates suggest that at least exascale resources will
be required for the full transport problem. There is fairly wide
agreement that retention of at least energy dependence in full
neutrino transport is important, and that all three position space
dimensions should be included, but only a couple of simulations
of this type have been reported (Takiwaki et al. 2012; Hanke et al.
2013), with others in progress (Bruenn et al. 2009).

GenASiS (General Astrophysical Simulation System) is a
new code being developed, at least initially and primarily, for
the simulation of core-collapse supernovae on the world’s lead-
ing capability supercomputers. “General” denotes the capac-
ity of the code to include and refer to multiple algorithms,
solvers, and physics and numerics choices with the same ab-
stracted names and/or interfaces. In GenASiS this is accom-
plished with features of Fortran 2003 that support the object-
oriented programming paradigm (e.g., Reid 2007; Adams et al.
2008). “Astrophysical” roughly suggests—over-broadly, at least
initially—the types of systems at which the code is aimed, and
the kinds of physics and solvers it makes available. “Simulation
System” indicates that the code is not a single program, but a
collection of modules, structured as classes, that can be invoked
by a suitable driver program set up to characterize and initialize
a particular problem.

One fundamental characteristic of a simulation code that un-
derpins almost everything else is the nature—or even existence,
when one considers particle methods—of its meshing, as this is
the stage upon which the physics plays out. Smoothed-particle
hydrodynamics has been widely used in the broader astrophysics
community as an efficient way to get to three dimensions, but
its accuracy has been controversial (e.g., Agertz et al. 2007;
Price 2008; Springel 2010b). Unstructured meshes are useful
for the complex geometries of engineering contexts, but their
high overhead is probably not justified for the more simple
geometries of most astrophysics problems. (On the other hand,
the relatively new use of adaptive Voronoi tesselations (Springel
2010a) is an interesting new approach that merits further consid-
eration.) Moving patches may be useful for following compact
objects in orbit (e.g., Scheel et al. 2006), but introduce addi-
tional complicated source terms associated with non-inertial
reference frames, and are not an obvious fit for more cen-
trally condensed problems like core-collapse supernovae. When
more structured grid-based approaches are considered, one ma-
jor choice is whether to use adaptive mesh refinement (AMR) in
an effort to deploy computational resources only where needed,
and if so, what type of AMR should be used.

Most existing core-collapse supernova codes use strategies
other than AMR to handle gravitational collapse. One code uses
smoothed-particle hydrodynamics (Fryer et al. 2006). Others
use an at least relatively high resolution radial mesh, usually
in only one (Rampp & Janka 2002; Thompson et al. 2003;
Liebendörfer et al. 2004; Sumiyoshi et al. 2005) or two (Buras
et al. 2006; Livne et al. 2007; Bruenn et al. 2009) position space
dimensions, often with Lagrangian coordinates (in spherical
symmetry) or a moving radial mesh to follow the infall. Use
of a radial mesh and associated spherical coordinates imposes
severe time step limitations at coordinate singularities unless

special measures are taken, such as suppression of lateral fluid
motion in the few cells nearest the origin (e.g., Swesty & Myra
2009); use of an unstructured mesh to morph to a different
coordinate system at low radius (e.g., Livne et al. 2007); an
overlap of a radial mesh with a Cartesian mesh at low radius
(e.g., Scheidegger et al. 2008); or an overlap of two separate
radial meshes in a so-called “yin-yang” configuration (e.g.,
Wongwathanarat et al. 2010). While these approaches may give
satisfactory gravitational collapse, with a moving radial mesh
also reasonably handling the steepening and moving density
cliff at the neutron star surface, they cannot address regions of
turbulence as well as AMR can. Those codes that do use (or
intend to use) AMR use the block-structured variety (Almgren
et al. 2010; Couch 2013).

The computational demands of the multiphysics nature of
core-collapse supernovae motivate us to explore cell-by-cell
AMR (e.g., Khokhlov 1998) in developing GenASiS. Block-
structured approaches (Berger & Oliger 1984; Berger & Collela
1989; MacNeice 2000) are more common, and certainly there
are efficiencies associated with the use of predictable basic
building blocks. Nevertheless, it remains possible that block-
structured AMR might not prove optimal in a multiphysics
context, for at least two reasons.

One basic consideration with the potential to favor cell-by-
cell AMR is that the computational cost per spatial cell becomes
very high if one aims (at least eventually, if not initially) toward
the high dimensionality of the full neutrino phase space (position
space plus momentum space)—and, for that matter, toward large
nuclear reaction networks. In this case cell-by-cell AMR could
be advantageous if it requires a smaller number of total cells for
a given accuracy than block-structured AMR. This may prove
true in part because it allows more fine-grained control over
cell division and placement, and also because the use of many
blocks at a given level of refinement in block-structured AMR
can lead to a larger ratio of ghost to computational cells.

Moreover, cell-by-cell AMR also may turn out to have some
advantages with respect to the implementation of the types of
solvers needed in a multiphysics context. One initial motivation
for block-structured AMR is the ability to deploy existing “uni-
grid” time-explicit hydrodynamics solvers on individual regular
cell blocks. While this is convenient when hydrodynamics is
the only physics involved, the fact that cell-by-cell AMR is
not conceptualized around local time-explicit solvers raises the
possibility that it might be more amenable to elliptic and other
global solvers, including those that are time-implicit. It is of
course possible to develop global solvers in block-structured
AMR, for instance for gravity (e.g., O’Shea et al. 2005; Ricker
2008; Almgren et al. 2010) and radiation (e.g., Rijkhorst et al.
2006; Wise & Abel 2011; Zhang et al. 2011); but until alterna-
tives are more fully explored, it is not obvious that this is the
most natural environment imaginable for them.

While a handful of other codes used in astrophysics or cos-
mology do use cell-by-cell AMR (e.g., Khokhlov 1998; Teyssier
2002; Gittings et al. 2008), our approach in GenASiS has at least
one notable difference. In arranging storage and writing solvers,
rather than addressing the oct-tree as a single mesh consisting
of the union of leaf cells at all levels of refinement, GenA-
SiS has a more explicit level-by-level orientation. Relative to
the union-of-leaf-cells cell-by-cell perspective, we expect the
level-by-level perspective to facilitate multigrid approaches to
elliptic solves, and possibly time-implicit global solves. Writ-
ing solvers for single levels, with interactions between levels
handled separately, restores some of the flavor of simplicity of

2



The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February Cardall et al.

the independent solves on individual blocks featured in block-
structured AMR; at the same time, treating entire levels at once
eliminates the drawbacks of having to stitch together results
from multiple blocks at the same level (via additional V-cycles,
corner iteration, etc.). The potential benefits for multiphysics
solvers of our level-by-level approach to cell-by-cell AMR re-
main to be tested and reported in future papers in this series that
address gravity and neutrino transport.

Besides a mesh capable of handling gravitational collapse,
another basic requirement for the simulation of core-collapse
supernovae is a hydrodynamics solver. The equations of hydro-
dynamics can be categorized as a system of hyperbolic balance
equations, for which a vast mathematical literature on different
solvers exists (e.g., Shu 1998; LeVeque 2002; also see NUMER-
ICA and references therein6). The multiphysics nature of core-
collapse supernova explosion mechanism simulations requires
that the hydrodynamics solver accommodate a non-ideal equa-
tion of state and other physical ingredients (e.g., magnetic fields,
gravity, neutrino-matter interactions, etc.) in a robust manner.
Core-collapse supernovae are ultimately general relativistic sys-
tems, and the hydrodynamics solvers should be generalizable to
a relativistic description. Moreover, the solver must be able
to accurately describe the formation and evolution of shocks
and other discontinuities. Our choice to use AMR to at least
partially deal with the multiscale nature of core-collapse su-
pernovae also puts constraints on the choice of hydrodynamics
solver.

Finite volume methods based on approximate Riemann
solvers are good candidates under these various considerations.
The hydrodynamics solvers implemented so far in GenASiS are
second-order accurate, are based on the integral formulation of
the underlying hyperbolic system, and use the method of lines
approach to the solution of partial differential equations (e.g.,
Shu 1998; Kurganov et al. 2001). Second-order spatial accuracy
is achieved with monotonic linear spatial interpolation (e.g.,
Kurganov & Tadmor 2000). We employ the so-called Harten-
Lax-van Leer (HLL) family of Riemann solvers (Harten et al.
1983; Einfeldt 1988; Toro et al. 1994; Kurganov et al. 2001)
to compute intercell fluxes. Second-order temporal accuracy is
achieved with a total variation diminishing (TVD) Runge–Kutta
method (e.g., Shu 1998). In particular, schemes based on HLL-
type Riemann solvers rely on minimal information about the
eigenstructure of the underlying hyperbolic system, and have
been promoted as general black-box solvers for conservation
laws and related equations (Kurganov & Tadmor 2000). Indeed,
HLL-type Riemann solvers have been designed for a range of
hyperbolic equations, including nonrelativistic hydrodynamics
and MHD (e.g., Toro et al. 1994; Batten et al. 1997; Linde 2002;
Londrillo & Del Zanna 2004; Miyoshi & Kusano 2005), and
special and general relativistic hydrodynamics and MHD (e.g.,
Del Zanna & Bucciantini 2002; Del Zanna et al. 2003, 2007;
Gammie et al. 2003; Duez et al. 2005; Mignone & Bodo 2005;
Mignone et al. 2009). HLL-type Riemann solvers have also been
used for general relativistic neutrino radiation-hydrodynamics
simulations of core-collapse supernovae (Müller et al. 2010,
2012).

This paper—the first in a series—describes some baseline
capabilities of GenASiS that will be needed in core-collapse
supernova simulations. In particular, we explain some concepts
underlying the refinable discretized spaces on which calcula-
tions are to be performed (Section 2); document methods for

6 http://www.ing-unitn.it/∼toroe/software.html

compressible nonrelativistic hydrodynamics (Section 3); and
benchmark the hydrodynamics capabilities of GenASiS against
many standard test problems (Section 4), including an example
with a fixed centrally refined coordinate patch of a type suitable
for gravitational collapse.

2. REFINABLE MESH

In this section we briefly explain some concepts underlying
the refinable discretized spaces on which calculations are to
be performed with GenASiS, and exhibit a centrally refined
coordinate patch like that we intend to use for gravitational
collapse.

We regard a physical space as a manifold covered by one
or more coordinate patches. A sufficiently simple manifold can
be described with a single coordinate patch; this is the case
with the example in this section, and in all the test problems in
Section 4. But one can imagine many reasons to use multiple co-
ordinate patches. For example, a “yin-yang” manifold includes
two overlapping coordinate patches that—like the two pieces
of leather that form the surface of a baseball—cover a three-
dimensional (3D) space with separate spherical coordinates in
such a way as to avoid a coordinate singularity on the polar
axis (e.g., Wongwathanarat et al. 2010). One could efficiently
handle both spherically symmetric radial gravitational collapse
and multidimensional phenomena at smaller radius by marrying
a central 3D Cartesian coordinate patch to a one-dimensional
(1D) radial coordinate patch that begins near the surface of the
Cartesian box and extends to much larger radius (Scheidegger
et al. 2008). Choices of algorithm and approximation might
suggest that different pieces of physics be treated on separate
coordinate patches, with some facility for interpolation between
them (Rampp & Janka 2002; Buras et al. 2006). A binary stel-
lar system could be handled by covering the two bodies with
separate coordinate patches that move within a larger coordi-
nate patch to follow the orbital motion (Scheel et al. 2006).
Some manifolds, such as some spaces described by general
relativity, may be sufficiently complicated as to require mul-
tiple coordinate patches for a reasonable description. Another
example is the phase space—position space plus momentum
space—needed for relativistic kinetic theory, which in mathe-
matical idealization contains an infinite number of coordinate
patches: this is a “tangent bundle,” consisting of a (curved, in
the general case) base space, i.e., position space, together with
a flat tangent space, i.e., a momentum space, at every point of
the base space.

In representing a single coordinate patch in GenASiS, we
approximate the mathematical ideal of continuity with a finite
sequence of meshes which provide, as necessary, increasing
refinements of the coarsest (top-level) mesh. Our coordinate
patches can be 1D, two-dimensional (2D), or 3D. The refinable
structure that underlies our approximate representation of a 3D
continuous coordinate patch is an oct-tree (or, in restricted
use in two dimensions or even one dimension, a quad- or
binary tree, respectively) that enables cell-by-cell refinement.
The fundamental unit of this structure is a class (in the object-
oriented sense; in Fortran 2003, see, e.g., Reid 2007; Adams
et al. 2008) representing a single finite “cell,” which is a segment,
quadrilateral, or cuboid that can be split into two, four, or eight
cells in one, two, or three dimensions, respectively. Several
constructs provide increasingly comprehensive interfaces to the
oct-tree structure underlying a single refinable coordinate patch.

The first type of construct providing an interface to a portion
of the oct-tree is a “cell list,” or linked list of cells. This can be

3

http://www.ing-unitn.it/~toroe/software.html


The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February Cardall et al.

Figure 1. Domain decomposition of a spherical submesh, illustrating proper cells (left) and the ghost cells partially bounding them (right). The ghost cells of the
different processes partially overlap. Each individual cell is pictured; two dimensions, low resolution, and a small number of processes (16) are used for clarity.

(A color version of this figure is available in the online journal.)

Figure 2. Centrally refined coordinate patch with three “meshes,” i.e., three levels. Shown for each mesh are its Interior and Exterior “submeshes” (left). Together
these comprise all the cells at a particular level of the oct-tree, with the Interior (black) consisting of the normal computational cells and the Exterior (red) constituting
a boundary layer. The Interior of each mesh or level is independently domain-decomposed (right). Children and Parents submeshes are not shown, as there is no
permanent physical field data storage associated with them (and therefore no geometry to display); but their proper and ghost cell lists contain domain decomposition
information needed for the communications required by prolongation and restriction. Each individual cell is pictured; two dimensions, low resolution, and a small
number of processes (16) are used for clarity. The domain decompositions of Levels 1 (coarsest) and 2 (middle) are partially hidden under the display of Levels 2 and
3, respectively.

(A color version of this figure is available in the online journal.)

used to, for example, create lists of selected parent cells in order
to facilitate loops over frequently addressed subsets of cells on
a particular level of the tree.

The next layer of interface to the oct-tree—a “submesh”—is
a grid in its own right. It consists of a subset of cells at a
single level of the oct-tree, whose combined arrangement may
be irregular in shape and even consist of multiple disconnected
pieces. Among the members of a submesh are two cell lists,
for “proper” and “ghost” cells, which allow the submesh to
be domain-decomposed for parallel processing in a distributed-
memory environment. (Proper cells are typically the normal
working computational cells assigned to a particular process.
Ghost cells typically compose a partial boundary layer around
the proper cells; their data is obtained through message passing
with the neighboring processes that own those cells. See for
instance Figure 1.)

A “mesh” includes four submeshes comprising all the cells
at a given level of the oct-tree, and also provides links to

adjacent refinement levels. As illustrated in the left panel of
Figure 2, two of these submeshes together comprise all the cells
at a particular level of the oct-tree: the “Interior” submesh (or
simply “Interior”) contains all the normal computational cells,
and the “Exterior” submesh includes all the cells that form a
boundary layer—either the boundary of the coordinate patch as
a whole, or a coarse/fine boundary at the edge of a particular
level—surrounding the Interior. As shown in the right panel of
Figure 2, the Interior submesh on each level is independently
domain-decomposed. As further discussed below, the need to
exchange data between adjacent levels with independent domain
decompositions gives rise to two additional submeshes at each
level: the Level i “Children” submesh provides a link to the Level
i +1 Interior, while the Level i “Parents” submesh connects with
the Level i − 1 Interior.

Major data storage for physical fields is organized around
the “mesh” concept. Groups of related field variables are stored
in rank-two arrays. Each cell at a given level of the oct-tree is

4



The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February Cardall et al.

assigned a number, which corresponds to the row number (first
index, in Fortran) of this array; the second dimension of the array
indexes different physical fields. The first dimension of the array
is subdivided into sections reserved for data associated with the
cells of the Interior and Exterior submeshes described in the
previous paragraph. To avoid unnecessary (and inconveniently
distributed) memory usage, there is no permanent physical
field data storage associated with the Children and Parents
submeshes, which would be redundant with the data associated
with the Interior and Exterior submeshes on adjacent levels.
As discussed further below, rather than being associated with
permanent field data storage, the purpose of the proper and ghost
cell lists of the Children and Parents submeshes is to facilitate
the communications needed to exchange data between adjacent
levels with independent domain decompositions.

The class implementing the “mesh” concept also has mem-
bers with connectivity information. This involves lists of cell
numbers and corresponding sibling cell numbers, in order to
facilitate certain operations on particular sets of selected cells
without having to walk through the oct-tree, access sibling point-
ers, etc. The application of boundary conditions is one example
of an operation that uses this sort of connectivity information.
Another is the overlapping of work and communication in time-
explicit solves requiring only near-neighbor information (e.g.,
in hydrodynamics): “exchange” cells (those whose data must
be communicated to the ghost cells of other message-passing
processes) can be updated, and non-blocking communication
initiated, before “non-exchange” cells are updated. Connectiv-
ity information for these two categories of cells allows data to be
loaded from their non-contiguous loci in mesh-oriented storage
(described in the previous paragraph) to contiguous storage in
a “packed” rank-two array. This is useful for efficient execution
of intra-cell operations, that is, those that do not relate values in
different cells. Some examples of the use of “unpacked,” mesh-
oriented, connectivity-informed storage on the one hand, and
“packed,” mesh-agnostic storage on the other, will be seen in
the hydrodynamics algorithms described in Section 3.3.

Finally, a class representing a coordinate patch has among
its members an array of “meshes,” each element of which
corresponds to a (potential) level of the refinable oct-tree.
As mentioned above and illustrated already in Figure 2, each
successive level is a refinement of the previous level, allowing
the coordinate patch to approximate the ideal of continuity as
needed. Another example is shown in Figure 3. It consists of 10
levels and illustrates the dynamic range in length scales accessed
during the gravitational collapse of the core of a massive star.

The class representing a coordinate patch also has methods
for “prolongation” (interpolation of Level i data to Level i + 1)
and “restriction” (averaging of Level i data to Level i − 1).
These operations are illustrated in Figure 4. The first step of
prolongation (left panel in Figure 4) is to interpolate data from
the Level i Interior submesh to the Level i Children submesh.7

The Level i Children submesh is refined relative to the Level i
Interior with which it is associated. But in a distributed-memory
message passing environment, the Level i Children follows the
domain decomposition of the Level i Interior, as mentioned
above, making the interpolation step a local operation. This
is why both the Interior and Children submeshes are part of
the same Level i “mesh.” But the distribution of the Level
i + 1 Interior cells among processes in general may differ from
that of the Level i Interior, as the Interior submeshes on each

7 Gradients used in the interpolation optionally can be computed with a slope
limiter in order to respect discontinuities.

level are independently domain-decomposed (right panel in
Figure 2). Thus the second and final step of prolongation is
communication, in general involving message passing, between
from the Level i Children to the Level i + 1 Interior and/or
Exterior. Similarly, restriction (right panel in Figure 4) involves
first an averaging of Level i Interior and/or Exterior data to the
Level i Parents (a local operation), followed by communication
from the Level i Parents to the Level i−1 Interior (which, again,
in general involves message passing).

3. HYDRODYNAMICS METHODS

The equations of hydrodynamics are hyperbolic balance
equations of the form

∂U
∂t

+ ∇ · F(U) = S(U). (1)

Here U is a vector of “conserved” or “balanced” variables,
whose rate of change is determined by the divergence of the
fluxes F(U), and by the sources S(U). In the absence of source
terms, a balance equation reduces to a “conservation law”: for
an infinitesimal volume dV , the rate of change of U dV is equal
to the integrated flux − ∮

S
F(U) · dS flowing in through the

closed surface S surrounding dV . The system described by
Equation (1) is said to be hyperbolic if the Jacobian matrix
associated with the flux divergence is diagonalizable, with
eigenvalues all real (e.g., LeVeque 2002). Associated with U
are two other sets of variables: “primitive” variables W , often
equal in number to the number of balanced variables, and some
additional “auxiliary” variables A, typically determined by one
or more closure relations involving the primitive variables (e.g.,
an “equation of state” in the case of hydrodynamics).

The divergence structure of hyperbolic balance equations
naturally lends itself to a finite-volume approach (e.g., LeVeque
2002). Spatial discretization involves taking the volume average
of Equation (1) over each of the cuboid cells in our multilevel
grid structure:

∂〈U〉
∂t

= − 1

V

∑
q

[(Aq〈Fq〉)q→ − (Aq〈Fq〉)←q] + 〈S〉. (2)

The sum is over dimensions q. Angle brackets of quantities
associated with arrowed subscripts denote an area average over
an outer (→) or inner (←) face of the cell, and angle brackets
without such arrowed subscripts indicate a cell volume average.
The cell volume and face areas are V and Aq, respectively. While
discretized in space, Equation (2) remains continuous in time.
(It is also exact, until numerical approximations to volume-
averaged sources and area-averaged fluxes on the faces are
taken.) Once fully discretized in space, it is viewed as a system
of ordinary differential equations, which then can be discretized
in time and integrated using standard explicit techniques (e.g.,
Runge–Kutta methods). This approach is frequently used to
design higher order methods for hyperbolic systems (e.g., Shu
1998). (We only consider second-order methods in the work
presented here, however.) The spatial order of accuracy can
be different from the temporal order of accuracy, although the
overall formal accuracy of the scheme is limited to the lower
of the two. This general approach—in which all dimensions but
one are discretized, so as to allow application of methods for
ordinary differential equations—is called the method of lines. It
has also been called a semi-discrete method (e.g., Kurganov &
Tadmor 2000).

5



The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February Cardall et al.

Figure 3. Levels of a 2D coordinate patch with 10 levels, illustrating the dynamic range in length scales accessed during the gravitational collapse of the core of a
massive star. Outlines of 2 × 2 cell arrays, rather than individual cells, are displayed. Level 1—the coarsest mesh—encompasses a square domain of width 20,000 km
with 128 × 128 cells of width 1.56 × 102 km. Successive levels are refined by a factor of two in each dimension, labeled by their level number, and outlined in
increasingly dark shades of green. The upper left, upper right, lower left, and lower right panels zoom in to smaller and smaller regions surrounding the origin. Level
10—the finest mesh—has cells of width 0.305 km.

(A color version of this figure is available in the online journal.)

3.1. Reconstruction

Before the face-averaged fluxes in Equation (2) can be
computed, variable values on the faces must be obtained through
a “reconstruction” of the spatial dependence of the variables
within each cell. In GenASiS we first obtain approximate values
for the primitive variables W (as opposed to the characteristic
variables, e.g., Shu 1998; LeVeque 2002) on the cell faces, and
then use them to compute the conserved and auxiliary variables
U and A. In the work presented here we take the primitive
variables to be represented by a linear expansion within a cell.
(For cells of equal size, linear reconstruction results in a second-
order spatial scheme.) For some point inside the cell—which we
shall call the cell center—the values of the primitive variables
are equal to the cell volume averages:

W↔ = 〈W〉, (3)

where the double-headed arrow (↔) denotes evaluation at the
cell center. (In Cartesian coordinates—which we use in all the
test problems in this paper—the cell center defined in this way
coincides with the geometric center, i.e., the point equidistant
from the centers of all cell faces.) Denoting the first derivative
of W in the q dimension by Dq[W↔], the values at the inner
and outer faces are

W←q = W↔ − Dq[W↔](q↔ − q←q), (4)

Wq→ = W↔ + Dq[W↔](qq→ − q↔), (5)

where the last factors are the coordinate distances be-
tween the faces and the cell center. Spurious oscilla-
tions near discontinuities can be reduced by using a slope
limiter that enforces monotonic reconstruction; we use

6



The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February Cardall et al.

Figure 4. Left: prolongation of Level i to Level i + 1. This involves the Interior and Children submeshes of the Level i mesh (left column), as well as the Interior
and/or Exterior submeshes of the Level i + 1 mesh (right column). The Level i Interior submesh consists of cells at Level i of the oct-tree (upper row), while the
Level i Children and Level i + 1 Interior and Exterior submeshes consist of cells at Level i + 1 of the oct-tree (lower row). Interpolation to the Children is followed
by communication to the finer-level Interior and/or Exterior. Right: restriction of Level i to Level i − 1. This involves the Interior, Exterior, and Parents submeshes of
the Level i mesh (right column), as well as the Interior submesh of the Level i − 1 mesh (left column). The Level i Interior and Exterior submeshes consist of cells at
Level i of the oct-tree (lower row), while the Level i Parents and Level i − 1 Interior submeshes consist of cells at Level i − 1 of the oct-tree (upper row). Averaging
to the Parents is followed by communication to the coarser-level Interior.

(e.g., Kurganov & Tadmor 2000)

Dq[W↔]= MM

[
ϑ

(
W↔ − W−q↔
q↔ − q−q↔

)
,

(
W↔q+ − W−q↔
q↔q+ − q−q↔

)
,

× ϑ

(
W↔q+ − W↔
q↔q+ − q↔

)]
. (6)

Center values in left and right (previous and next) neighboring
cells in the q dimension are labeled by subscripts −q ↔ and
↔ q+, respectively. The minmod function MM[·] compares its
arguments and chooses the one with the smallest magnitude.
If the arguments do not all have the same sign, the minmod
function returns zero. The three arguments in Equation (6) are
left, centered, and right slopes, with the left and right slopes
multiplied by the slope limiter parameter ϑ ∈ [1, 2]. Higher
values of ϑ promote the centered difference, and are therefore
less diffusive and more accurate for smooth flows, but also
more prone to oscillations in the presence of discontinuities. The
value ϑ = 1 is equivalent to the traditional minmod that selects
between only the left and right derivatives; this is generally
unacceptably diffusive. We often use ϑ = 1.4.

3.2. Riemann Solvers

Because variables on cell faces are reconstructed indepen-
dently for each cell, the values obtained from the cells on the
left and right sides of an interface do not generally match up,
and must be resolved to obtain a single value of the flux to be
applied to both cells. In the finite-volume approach it is natural
to consider the two states on the immediate left and right side of
the interface as constituting a “Riemann problem” consisting of
two regions of constant data, separated by a single discontinuity,
and governed by a 1D version of Equation (1):

∂U
∂t

+
∂Fq(U)

∂q
= S(U). (7)

(For second-order methods, the extension to the multidimen-
sional case is simple, and is achieved by applying the 1D spatial

discretization prescription separately in each dimension.) The
initial conditions in the two regions are commonly referred to as
the “left” and “right” states; as applied to cell interfaces, these
are

(UL)←q = U−q→, (8)

(UR)←q = U←q (9)

at a cell’s inner face, and

(UL)q→ = Uq→, (10)

(UR)q→ = U←q+ (11)

at a cell’s outer face, where the subscripts −q → and ← q+
respectively denote outer face values of the previous cell and
inner face values of the next cell. As a Riemann problem evolves,
several waves propagate away from the initial discontinuity into
the left and right states, with velocities given by the eigenvalues
λq of the Jacobian matrix ∂Fq/∂U .

A full solution of the Riemann problem consists of finding
the “characteristics,” or trajectories of these several waves, and
determining the (not necessarily constant) values of the variables
in the regions bounded by them (e.g., LeVeque 2002); but in
practical applications, it is often desirable to work with only
approximate solutions to the Riemann problem, and here we
use two variants of the HLL-type approximate Riemann solvers
(Harten et al. 1983; Einfeldt 1988; Toro et al. 1994). These
determine fluxes from the jump conditions

λd (U− − U+) = Fq (U−) − Fq (U+) (12)

that obtain at the boundaries between the regions separated by
the propagating waves (U− and U+ are the states immediately to
the left and right of the discontinuity).

The first variant we use, which we simply label “HLL,” was
devised by Harten et al. (1983). The Riemann problem is ap-
proximated as consisting of only three constant states—UL, U∗,

7



The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February Cardall et al.

andUR—separated by two waves.8 Application of Equation (12)
across the two waves gives

− α
q
− (UL − U∗) = Fq (UL) − Fq (U∗) , (13)

α
q
+(U∗ − UR) = Fq(U∗) − Fq(UR). (14)

Here UL and UR are the reconstructed face values on either
side of a cell interface, as in Equations (8)–(11), and α

q
± =

max[0,±λ
q
±(UL),±λ

q
±(UR)] are the fastest left- (−) and right-

( + ) moving hyperbolic wave speeds (magnitudes of eigenvalues
of ∂Fq/∂U). As the expression for α

q
± indicates, the wave

speed estimates are computed from values on the left and
right side of the interface, and the largest of the two is
used in Equations (13) and (14) (cf. Davis 1988). Note that
α

q
± � 0. Solving Equations (13) and (14) for UHLL = U∗ and

Fq

HLL = Fq(U∗) yields

UHLL = α
q
+ UR + α

q
− UL − [Fq(UR) − Fq(UL)]

α
q
+ + α

q
−

, (15)

Fq

HLL = α
q
+ Fq(UL) + α

q
− Fq(UR) − α

q
+α

q
−(UR − UL)

α
q
+ + α

q
−

. (16)

When this solver is selected, it is Fq

HLL that goes into the cell-
averaged balance equation in Equation (2). For “supersonic”
flow to the left (αq

+ = 0) or to the right (αq
− = 0) the HLL flux

reduces to a pure upwind flux (i.e., information from only one
side of the interface is used to compute the flux). For “subsonic”
flows, the third term on the right-hand side of (16) acts as a
diffusion term which damps out grid-scale oscillations.

The second variant we report here is known as the HLLC
solver (Toro et al. 1994). In this case a third wave, which we
here call the “middle wave,” is included in addition to the fastest
left- and right-moving waves entering into the HLL solver. Thus
the Riemann problem has four constant states: UL, U∗L, U∗R, and
UR, with the middle wave separating the middle states U∗L and
U∗R. The jump conditions at the three waves are

− α
q
−(UL − U∗L) = Fq(UL) − Fq(U∗L), (17)

αq
m(U∗L − U∗R) = Fq(U∗L) − Fq(U∗R), (18)

α
q
+(U∗R − UR) = Fq(U∗R) − Fq(UR). (19)

Here α
q
± are the same as in the HLL case, and α

q
m is the middle

wave speed estimate, which can be positive or negative (unlike
α

q
±, which are restricted to non-negative values). Unlike the

system of Equations (13) and (14) in the HLL case, the present
system of Equations (17)–(19) is underdetermined: there are
now four (sets of) unknowns [U∗L,U∗R,Fq (U∗L) ,Fq (U∗R)] but
only three (sets of) equations given by the jump conditions.
Additional relations must be introduced, the details of which
necessarily depend upon the particular system. (A concrete
example is given in the case of hydrodynamics discussed in
Section 3.5, in which the starting point is to use the HLL states of
Equation (15) to estimate the middle wave speed α

q
m.) Once this

8 Here we assume that at least two wave speeds can be associated with the
hyperbolic system represented by Equation (7).

has been done and Fq (U∗L) and Fq (U∗R) have been obtained,
the HLLC flux is given by

Fq

HLLC =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Fq (UL) if α

q
− = 0,

Fq (U∗L) if α
q
m � 0,

Fq (U∗R) if α
q
m < 0,

Fq (UR) if α
q
+ = 0.

(20)

When this solver is selected, it is Fq

HLLC that goes into the cell-
averaged balance equation in Equation (2). As in the HLL case,
the HLLC flux reduces to an upwind scheme for supersonic
flows to the left (αq

− = 0) or to the right (αq
+ = 0).

The HLLC solver is subject to so-called “odd–even decou-
pling” (e.g., Quirk 1994) when a shock propagates parallel to a
coordinate axis. To prevent this, we have implemented a shock
detection scheme that automatically switches to the HLL solver
in the immediate vicinity of a shock and in directions transverse
to its propagation direction. Our tests show that the greater dif-
fusivity of the HLL solver suppresses the odd–even decoupling
instability without sacrificing the superior results of the HLLC
solver on fluid instability tests in Section 4.3.

3.3. Updates

Our implementation of reconstruction, flux computation (Rie-
mann solve), and assembly of the right-hand side of Equation (2)
is written to address one level of our multilevel grid structure
at a time; that is, one “mesh” in a “coordinate patch” at a time
(see Section 2). There are however two ways in which better
information from a next finer level is utilized. One of these
is applied in the present layer of implementation: for cells on
the coarse side of a coarse/fine boundary with the next level,
flux updates from faces on the coarse/fine boundary computed
by and restricted from the finer level replace those computed
at the present (coarser) level. Aside from making use of more
highly resolved data, this ensures conservative evolution on the
union of leaf cells of all levels (modulo source terms). The sec-
ond use of information from the next finer level is applied at a
higher layer of coding discussed in more detail later: non-leaf
cells have their updated balanced variables replaced by restric-
tion from the next finer level (see Section 3.6). This restric-
tion does not have direct consequences for global conservation
checks, because these are tallied only from leaf cells; neverthe-
less this step is performed for the sake of consistency between
levels.

In pursuit of efficient performance we seek to both (a) overlap
work and communication in a message-passing parallel environ-
ment and (b) work on data stored in contiguous memory when
possible. To accomplish these goals we identify two types of
cells. “Exchange” cells are cells near process boundaries whose
data must be communicated (or exchanged) to fill the ghost cells
on neighboring processes in a “ghost exchange” during the up-
date of the hyperbolic balance equations. (The ghost cells of a
given process are exchange cells on neighboring processes; see
Section 2.) “Non-exchange” cells, in contrast, do not have to
communicate their data to neighboring processes. Goals (a) and
(b) above can be accomplished by processing exchange cells
and non-exchange cells separately in some instances, and by
packing data from these two sets of cells into contiguous mem-
ory before certain operations. Storage we refer to as “unpacked”
is the normal mesh-oriented storage discussed in Section 2. It
is this type of storage in which connectivity information culled
from the oct-tree is available, i.e., location in the mesh and

8



The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February Cardall et al.

knowledge of siblings. Operations that need this information
must be performed with unpacked storage. These include ex-
change of ghost cell data, and operations across cell faces that
require data from sibling cells, in particular calculations of dif-
ferences and fluxes. “Packed” storage, on the other hand, has
no connectivity information. It provides for efficient intra-cell
operations by furnishing sequential memory access to sets of
data—in particular, data only from exchange cells or data only
from non-exchange cells—that are discontiguous in unpacked
storage.

Algorithm 1 outlines a balance equation update on a single
level. Uses of packed and unpacked storage are indicated by
(P) and (U), respectively. One major loop is explicitly shown,
over cell types (exchange versus non-exchange): exchange cells
are operated on first, non-blocking communication is initiated,
and then operations are performed on non-exchange cells while
communication continues in the background. In Algorithm 1
and later listings, right-arrows (→) indicate the flow of various
operations (e.g., Compute, Pack, and Unpack), with the input on
the left and the result on the right.9 Application of the updates
to obtain new values of the variables is deferred to the time
stepper (see Section 3.4). The slowest parts of the algorithm are
those that involve both packed and unpacked storage, as these
necessarily involve indirect indexing of the unpacked storage.
These include computations across cell faces (differences and
fluxes) and moving data between packed and unpacked storage.
Ideally, the efficiency of operations in packed storage makes
up for the overhead of data movement between the two storage
types.

Algorithm 1 Single-level balance equation update

1: for iCells = EXCHANGE, NON-EXCHANGE do
2: Compute: Primitive (U) → Differences (P)
3: Pack: Primitive (U) → Primitive (P)
4: Compute: Primitive (P), Differences (P) → Reconstructed

Primitive (P)
5: Compute: Reconstructed Primitive (P) → Reconstructed

Balanced, Reconstructed Auxiliary (P)
6: Unpack: Reconstructed (P) → Reconstructed (U)
7: Apply Boundary Conditions: Reconstructed Interior (U) →

Reconstructed Exterior (U)
8: Compute: Reconstructed (U) → Riemann Solver Input (U)
9: Compute: Riemann Solver Input (U) → Fluxes (P)

10: Compute: Fluxes (P), Sources (P) → Updates (P)
11: Unpack: Updates (P) → Updates (U)
12: if iCells == EXCHANGE then
13: Begin Exchange: Updates (U)
14: end if
15: end for
16: Finish Exchange: Updates (U)

3.4. Steps

As discussed in connection with Equation (2), a spatially
discretized system with a continuous time derivative can be
considered a system of time-dependent ordinary differential

9 For example, packed finite differences are computed from unpacked
primitive variables in line 2; primitive variables in unpacked storage are copied
into packed storage in line 3; packed reconstructed primitive variables are
computed from packed primitive variables and finite differences in line 4; and
so on.

equations. We write this as

d〈U〉
dt

= L[〈U〉], (21)

where (for example) in the case of balance equations L [〈U〉]
is given by the right-hand side of Equation (2). The system
consists of one equation—or rather, one set of equations, since
U is a vector—for 〈U〉 in every cell. (We suppress indexing not
only over the components of U , but also over cells, taking this
to be implied by the volume-average-denoting angle brackets.)
Equation (21) is amenable to discretization and integration in
time using standard explicit techniques. (By “explicit” we mean
that the solution at time tn+1 depends only on values known at
tn, where the sans-parentheses superscript n denotes a value at
the beginning of the nth time step.)

A basic building block of many such integration algorithms
is a single update:

K(i) = Δt L[〈U〉(i−1)], (22)

where Δt = tn+1 − tn is the full time step. Stable and accurate
schemes typically involve multiple such updates or “substeps,”
indexed by the parenthetical superscript (i), with higher-order
schemes requiring more updates. Typically 〈U〉(0) = 〈U〉n on
the right-hand side of Equation (22) for the first update K(1).
Subsequent intermediate values 〈U〉(i) then depend on prior
updates.

In all the test problems in this paper we use a second-order
TVD Runge–Kutta step (e.g., Shu 1998, also known as Heun’s
method) consisting of two substeps. The two updates K(1) and
K(2) are obtained by respectively using

〈U〉(0) = 〈U〉n, (23)

〈U〉(1) = 〈U〉n + K(1) (24)

on the right-hand side of Equation (22). Then

〈U〉n+1 = 〈U〉n +
1

2
(K(1) + K(2)) (25)

is the solution at tn+1.
There are a couple of points to make in connection with

balance equations. First, in this context 〈U〉n+1 are the balanced
variables, from which the primitive and auxiliary variables
〈W〉n+1 and 〈A〉n+1 are subsequently obtained. These operations,
and also the computations in Equations (23)–(25), are all
performed on all proper and ghost cells of the Interior submesh:
Algorithm 1 implementing computation of an update K based
on Equation (2) already includes a ghost exchange of K. (See
Section 2 for more on proper and ghost cells and the Interior
submesh.) Thus no additional communication is needed at this
point to complete the step. Moreover, being performed over all
Interior cells, application of the updates works on contiguous
memory even though it is “unpacked” storage. Second, flux
updates at faces on the coarse/fine boundary with a coarser level
are recorded in a manner consistent with the update scheme
described above, in order that they can be utilized when the
next coarser level is evolved (as discussed at the beginning of
Section 3.3).

Time step determination, addressing of multiple levels, and
looping over many steps are implemented in a higher layer of
coding and are further discussed later (Section 3.6).

9



The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February Cardall et al.

3.5. Nonrelativistic Fluid

We now discuss a particular example of a system governed by
balance equations of the form of Equation (1): a nonrelativistic
fluid. We describe only ideal fluids; dissipative processes (e.g.,
viscosity and heat conduction) are not included, and the equa-
tions describe adiabatic flows: ∂s/∂t + v · ∇s ≡ ds/dt = 0,
where s is the entropy per baryon (see, for example, Landau &
Lifshitz 1959, for an introduction to fluid mechanics).

First, we specify the most basic fluid variables and the fluxes
appearing in the balance equations. The balanced variables U
are the conserved baryon density D, the momentum density S,
and the balanced energy density G. The primitive variables W
are the comoving baryon density n, the three-velocity v, and
the internal energy density e. The auxiliary variables A are the
average baryon mass m and the pressure p. The relations between
these variables are

D = n, (26)

S = mnv, (27)

G = e +
1

2
mn|v|2. (28)

The baryon, momentum, and energy fluxes F(U) are

F(D) = nv, (29)

F(S) = mnvv + pI, (30)

F(G) =
(

e + p +
1

2
mn|v|2

)
v, (31)

where I is the rank-two unit tensor.
Next we discuss aspects needed for the Riemann solvers

discussed in Section 3.2. There are three distinct wave velocities:
λ

q
− = vq − cs , λ

q
m = vq , and λ

q
+ = vq + cs , where the adiabatic

sound speed cs = √
(∂p/∂ρ)s = √

(Γsp/ρ), with adiabatic
index Γs ≡ (∂ ln p/∂ ln ρ)s and mass density ρ = mn. The
eigenvalues λ

q
− and λ

q
+ are propagation velocities associated with

shock or rarefaction waves, while λ
q
m is the propagation velocity

of contact and shear waves. (The contact wave is also referred
to as the entropy wave.) The HLL solver uses only the largest-
magnitude wave velocities λ

q
±. Moreover, recall (Section 3.2)

that in the supersonic case (either α
q
+ = 0 or α

q
− = 0) the HLLC

solver yields the same result as the HLL solver, namely, upwind
fluxes computed solely from the reconstructed values on either
the left or right side of the interface (see Equation (20)). For
subsonic flows the HLLC solver uses, in addition, an estimate
of the middle wave velocity α

q
m = λ

q
m. We follow Batten

et al. (1997) and form the middle wave speed from the mass
density and momentum density of the HLL average state (cf.
our Equations (15), (26), (27)):

αq
m = S

q

HLL

mDHLL
= S

q

R

(
α

q
+ − v

q

R

)
+ S

q

L

(
α

q
− + v

q

L

) − (pR − pL)

mDR
(
α

q
+ − v

q

R

)
+ mDL

(
α

q
− + v

q

L

) .

(32)

Recall that the three waves in the HLLC framework separate
four constant states: the reconstructed values UL and UR, and

the middle states U∗L and U∗R separated by the middle wave.
In the subsonic case the fluxes are constructed from either U∗L
or U∗R, depending on the sign of α

q
m (Equation (20)). Obtaining

U∗L or U∗R in terms of the known reconstructed values UL or
UR is accomplished by making a key assumption followed by
use of the jump conditions of Equations (17) or (19) across the
outer waves. The key assumption is to set the normal velocity
component equal to the estimated middle wave speed,

v
q

∗L/R = αq
m, (33)

for both the left and right middle states. The density jump
conditions give

D∗L/R = α
q
∓ ± v

q

L/R

α
q
∓ ± α

q
m

DL/R, (34)

with the upper and lower signs corresponding to the left (L) and
right (R) versions of the equation, respectively. Using this in
conjunction with the transverse components of the momentum
jump conditions yields

v
r �=q

∗L/R = v
r �=q

L/R , (35)

while the normal component produces

p∗L/R = pL/R − DL/R
(
α

q
∓ ± v

q

L/R

)(
αq

m ± v
q

L/R

)
. (36)

The energy jump conditions give

G∗L/R =
(
α

q
∓ ± v

q

L/R

)
G∗L/R ± v

q

L/RpL/R ∓ α
q
mp∗L/R

α
q
∓ ± α

q
m

. (37)

Equations (32)–(37) provide the necessary and sufficient infor-
mation needed to build the HLLC flux. As an aside, it is not
immediately apparent from Equation (36), but it turns out that
enforcing the normal velocity to be constant across the middle
wave in the Riemann fan (cf. Equation (33)) implies that the
pressure is also constant across the middle wave. This is be-
cause the normal component of the momentum jump condition
across the middle wave (Equation (18)) yields

p∗L + mD∗Lv
q

∗L

(
v

q

∗L − αq
m

) = p∗R + mD∗Rv
q

∗R

(
v

q

∗R − αq
m

)
.

(38)

It then follows from Equation (33) that p∗L = p∗R.
An equation of state of the form

p = κnγ (39)

closes the system of hydrodynamics equations for all the test
problems in this paper. From the first law of thermodynamics
for an ideal fluid,

de = e + p

n
dn, (40)

it follows that p = (γ − 1) e and that the adiabatic index
Γs = γ . The adiabatic index γ is a constant parameter. In
the absence of energy source terms, the “polytropic constant” κ
remains constant unless shocks generate dissipation (captured
automatically by the finite-volume approach with HLL or HLLC
solvers).

10



The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February Cardall et al.

3.6. Evolution

We now discuss the evolution of a free fluid, which in basic
outline is simply a loop over individual time steps covering the
interval from parameters StartTime to EndTime; see the rou-
tine Evolve in Algorithm 2. However, there are complications
from multiple levels of refinement.10 Our multilevel explicit
evolution features “subcycling” of deeper levels, or “refinement
in time” as well as space. The first hint of this appears in line 3
of Algorithm 2: there is a global Time for the coordinate patch
as a whole, but also an array LevelTime that tracks the time to
which each level has been evolved. At the beginning of a global
time step all elements of LevelTime are initialized to the global
Time. A call to EvolveLevel for the coarsest level (line 4) re-
cursively evolves all the deeper levels, updating the elements
of LevelTime in the process. All levels are synchronized by
the time this call returns, so that the global Time is updated to
the element of LevelTime corresponding to the coarsest level
(line 5).

Algorithm 2 Evolve ()

1: Set: Time = StartTime
2: while Time < EndTime do
3: Set: LevelTime(1 : nLevels) = Time
4: Call: EvolveLevel(LevelTime, iLevel = 1)
5: Set: Time = LevelTime(1)
6: end while

The basic idea of the algorithm for EvolveLevel, called in
line 4 of Algorithm 2, is straightforward (see Algorithm 3): the
fact that two steps of Level i are performed for every step of
Level i−1 makes it convenient to have this routine simply group
two successive calls to a more primitive routine StepLevel
(lines 4 and 11). There are also two if blocks. The one at
the top (lines 1–3) terminates the recursion to deeper levels by
returning when the deepest level has been reached. The one
after the first call to StepLevel (lines 5–7) returns if iLevel
== 1; i.e., only a single step of the coarsest level is performed.
For iLevel > 1, in order to allow updated boundary data for
the current level (Level i) to be generated during the second
call to StepLevel in line 11, lines 8–10 approximately and
temporarily evolve the coarser level (Level i − 1) a “half-step”
to synchronize it with the current level after its first step forward
in line 4. This coarse provisional “half-step,” being for Level i
boundary condition purposes only, is approximate in two time-
saving ways: first, a restriction of updates at the coarse/fine
boundary is omitted; and second, only the first Runge–Kutta
substep, the forward-Euler Equation (24), is performed. Further
economization is achieved by storing the Level i−1 fluxes—the
output of the Riemann solver—computed at this stage for later
reuse. The coarse provisional “half-step” is temporary in that,
after the second step of Level i, the coarser Level i − 1 is reset
to its previous value (line 12); it subsequently will be properly
evolved a full step, with the previously computed fluxes being
used in the first substep (Equation (24)), thereby not wasting
an expensive Riemann solve. Beyond the if blocks and the
approximate coarse step, the only other wrinkle in this routine
is the optional argument ForParentsThisOption, which was
not included in the top-level call in line 5 of Algorithm 2. This

10 There are further complications in the case of a space with multiple
coordinate patches. These would depend on the manner in which the patches
are stitched together to form a manifold. We do not discuss this further as all
the examples in this paper use a single (refinable) coordinate patch.

allows updates at coarse/fine boundaries to be accumulated
between the two steps at Level i for use at Level i − 1.

Algorithm 3 EvolveLevel(LevelTime, iLevel, ForParentsThisOption)

1: if iLevel > nLevels then
2: Return
3: end if
4: Call: StepLevel(LevelTime, iLevel, ForParentsThisOption)
5: if iLevel == 1 then
6: Return
7: end if
8: Set: CoarseFluidOld = Fluid(iLevel - 1)
9: Set: CoarseStep = LevelTime(iLevel) - LevelTime(iLevel - 1)

10: Call: Stepper(iLevel - 1) % Step(CoarseStep, ProvisionalStep
Option =.true.)

11: Call: StepLevel(LevelTime, iLevel, ForParentsThisOption)
12: Set: Fluid(iLevel - 1) = CoarseFluidOld

The time stepper described in Section 3.4 is finally invoked
for Level i in the routine StepLevel (see Algorithm 4), which
is called in lines 4 and 12 of Algorithm 3. Taking a step forward
in time is its main purpose; but most of this routine (in terms
of lines of code) is actually dedicated to interactions between
adjacent levels.

Lines 1–5 of Algorithm 4 show that if a deeper level
exists, that level is evolved before the current level. In line
2, the variable ForParentsNext is allocated to hold updates
at coarse/fine boundaries to be computed on Level i + 1.
The call to EvolveLevel i + 1 follows on line 3. This call
includes the optional argument containing temporary storage
ForParentsNext in which the updates at the coarse/fine
boundary between Levels i and i + 1 are accumulated. After
the call returns, these updates are restricted from Level i + 1
to the member FromChildren of the Level i stepper (lines 4).
(Recall that restriction is the averaging procedure that provides
data for a coarse cell from the finer cells it encompasses; see
Section 2.) When the stepper at Level i takes a time step (line
14), these updates FromChildren overwrite those computed
from Level i at the coarse/fine boundary with those from Level
i + 1, ensuring conservative evolution at this boundary with the
more accurate update computed at the finer level.

A couple of additional tasks must be accomplished before
the current Level i is stepped forward in line 14 of Algorithm
4. Boundary values (i.e., data for the Exterior submesh; see
Section 2) of Level i are filled in by prolongation from Level
i − 1 if this is not the coarsest level (lines 6–8). (Recall that
prolongation is the interpolation operation that provides data
for finer cells from coarser cells; see Section 2.) Then the
time step is set in lines 9–13, either in accordance with the
Courant–Friedrichs–Lewy (CFL) condition for stable explicit
time stepping if this is the deepest level, or to synchronize
the current Level i with the more refined (and just evolved)
Level i + 1. In detail, the CFL-restricted time step at the deepest
level depends on the cell widths Δq and characteristic speeds
|λ−

q |, |λ+
q |. Denoting

ΔtCFL = min
cells

[
min

q

(
Δq

max(|λ−
q |, |λ+

q |)

)]
, (41)

we take the CFL-restricted time step to be

Δt = CCFL × ΔtCFL, (42)

11



The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February Cardall et al.

where CCFL � 1/d for number of spatial dimensions d is an
appropriate “Courant factor” for Runge–Kutta evolution with
the method of lines (e.g., Shu & Osher 1988).

The update of Level i is almost complete. After the Level i
step in line 14 of Algorithm 4, consistency with Level i + 1 is
completed by restriction of the fluid from Level i + 1 to Level
i in cells where these levels overlap (lines 15–17). Then the
appropriate element ofLevelTime is updated in line 18 to reflect
the advance by TimeStep. The final task is to accumulate, in
the optional argument ForParentsThisOption, the coarse/
fine boundary updates stored in the Level i stepper member
ForParents, which will be used later by the Level i−1 stepper
to handle updates at the coarse/fine boundary between Levels
i − 1 and i (lines 19–21).

Algorithm 4 StepLevel(LevelTime, iLevel, ForParentsThisOption)

1: if iLevel + 1 <= nLevels then
2: Allocate: ForParentsNext
3: Call: EvolveLevel(LevelTime, iLevel + 1, ForParentsNext)
4: Restrict: ForParentsNext, Exterior → Stepper(iLevel) %

FromChildren, Interior
5: end if
6: if iLevel > 1 then
7: Prolong: Fluid(iLevel - 1), Interior → Fluid(iLevel), Exterior
8: end if
9: if iLevel == nLevels then

10: Set: TimeStep = CCFL × ΔtCFL

11: else
12: Set: TimeStep = LevelTime(iLevel + 1) - LevelTime(iLevel)
13: end if
14: Call: Stepper(iLevel) % Step(TimeStep)
15: if iLevel + 1 <= nLevels then
16: Restrict: Fluid(iLevel + 1), Interior → Fluid(iLevel), Interior
17: end if
18: Compute: LevelTime(iLevel) = LevelTime(iLevel) + TimeStep
19: if present(ForParentsThisOption) then
20: Compute: ForParentsThisOption = ForParentsThisOption +

Stepper(iLevel) % ForParents
21: end if

We now summarize the recursive multilevel evolution exe-
cuted by the routines Evolve, EvolveLevel, and StepLevel
in Algorithms 2–4. Each iteration of the loop in Evolve takes a
single global time step by calling the method EvolveLevel for
the coarsest level. However, the coarsest level is not immedi-
ately stepped forward. Instead, EvolveLevel and StepLevel
recursively work their way down to the deepest, most refined
level, which is the first to be evolved. From the bottom up, two
steps of each Level i + 1 are performed for each step at Level i.
By construction, the evolution of the entire multilevel structure
ends up fully synchronized once this process works its way up to
complete a single step at the coarsest level. The conservation (in
the absence of sources, as in most of the test problems reported
in this paper) implied by the divergence structure of the balance
equations is ensured by using, at Level i, the updates at coarse/
fine boundaries computed at Level i + 1. Further—less critical
and perhaps fastidious—consistency between levels is achieved
by restriction from Level i + 1 to Level i where these overlap.
Our algorithm for time integration of the balance equations on a
multilevel grid is demonstrated in the 2D and 3D Sedov–Taylor
blast wave problems (Section 4.2.3).

4. HYDRODYNAMICS TESTS

In this section we present results from numerical test problems
demonstrating the capabilities of the numerical methods and
algorithms implemented in GenASiS to solve the equations of
nonrelativistic ideal hydrodynamics. The test problems have
been chosen to validate the correctness of our implementation
and to reveal the scheme’s strengths and weaknesses. Most are
well-known in the literature (e.g., Toro 2009; Fryxell et al. 2000;
Liska & Wendroff 2003; Stone et al. 2008).

By definition a test problem has an accepted solution against
which program output can be compared. For some problems an
analytic solution exists; in other cases no analytic solution exists,
but “known” numerical solutions are available in the literature.
In the cases where no analytic solution is available, it is also
common practice to compare low-resolution results with a high-
resolution reference solution (self-convergence, e.g., Stone et al.
1992), which we do in Section 4.2.2. For test problems where
an analytic solution χ is available, we quantify the quality of the
numerical solution 〈χ〉 produced with GenASiS by computing
the relative L1 error norm:

L1(χ,N ) =

∑
cells

|〈χ〉 − χ |
∑
cells

|χ |
, (43)

where the sums extend over all N cells covering the computa-
tional domain. For a numerical method of spatial order p, the er-
ror |〈χ〉−χ | decreases with the mesh spacing as (Δq)p ∝ N

−p
q ,

where Nq is the number of cells in the qth coordinate direction
(assuming a uniform mesh). A similar argument holds for the
temporal order of the numerical method (due to the CFL con-
dition in Equation (41), the ratio Δt/Δq remains fixed as the
mesh spacing decreases), and the temporal error decreases with
decreasing mesh spacing at a rate determined by the temporal
order of the scheme. We determine the formal order of the nu-
merical method by computing the relative L1 error norm in a
resolution study: by evolving an initial condition to some speci-
fied end time with multiple grid resolutions (e.g., Nq,1 < Nq,2),
the formal order of the scheme p—or the rate at which the nu-
merical solution approaches the analytic solution as the number
of grid cells increases from Nq,1 to Nq,2—is determined from

−p = log[L1(χ,Nq,1)/L1(χ,Nq,2)]

log[Nq,1/Nq,2]
. (44)

The hydrodynamics scheme implemented in GenASiS is de-
signed to be second-order accurate (we use linear interpolation
in space and evolve the resulting system of ordinary differential
equations with a second-order Runge–Kutta time integrator),
and we expect second-order convergence for smooth flows. For
flows containing discontinuities, the scheme switches to con-
stant spatial interpolation in the vicinity of the discontinuities
(cf. Equation (6)), and the formal order of the scheme reduces
to first order.

We perform smooth fluid, discontinuous fluid, and fluid
instability tests. Our results illustrate the basic competence of
our implementation, demonstrate the strengths and limitations
of the HLLC relative to the HLL Riemann solver, and provide
preliminary indications of the code’s ability to scale and to
function with cell-by-cell fixed-mesh refinement. We present
results for problems in one (1D), two (2D), and three (3D) space
dimensions. For the 1D and 2D test problems we set the Courant
factor to CCFL = 0.5, and for the 3D tests we use CCFL = 0.3.

12



The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February Cardall et al.

Table 1
L1 Error Norm and Convergence Rate for 1D Advection Test with Flow Mach Number Ma = 0.6

HLL (t = 1) HLLC (t = 1) HLL (t = 5) HLLC (t = 5)

Nx L1(ρ) Rate L1(ρ) Rate L1(ρ) Rate L1(ρ) Rate

16 3.443 × 10−2 · · · 2.810 × 10−2 · · · 1.306 × 10−1 · · · 9.729 × 10−2 · · ·
32 1.227 × 10−2 −1.49 1.043 × 10−2 −1.43 2.831 × 10−2 −2.21 2.653 × 10−2 −1.87
64 3.294 × 10−3 −1.90 2.770 × 10−3 −1.91 1.046 × 10−2 −1.44 9.421 × 10−3 −1.49
128 8.062 × 10−4 −2.03 6.942 × 10−4 −2.00 2.936 × 10−3 −1.83 2.717 × 10−3 −1.79
256 1.900 × 10−4 −2.09 1.667 × 10−4 −2.06 7.600 × 10−4 −1.95 7.170 × 10−4 −1.92
512 4.460 × 10−5 −2.09 4.074 × 10−5 −2.03 1.900 × 10−4 −2.00 1.827 × 10−4 −1.97

Table 2
L1 Error Norm and Convergence Rate for 1D Advection Test with Flow Mach Number Ma = 0.1

HLL (t = 1) HLLC (t = 1) HLL (t = 5) HLLC (t = 5)

Nx L1(ρ) Rate L1(ρ) Rate L1(ρ) Rate L1(ρ) Rate

16 1.377 × 10−1 · · · 2.777 × 10−2 · · · 1.995 × 10−1 · · · 9.616 × 10−2 · · ·
32 2.591 × 10−2 −2.41 1.026 × 10−2 −1.44 1.044 × 10−1 −0.93 2.621 × 10−2 −1.88
64 8.095 × 10−3 −1.68 2.709 × 10−3 −1.92 1.779 × 10−2 −2.55 9.176 × 10−3 −1.51
128 1.805 × 10−3 −2.17 6.758 × 10−4 −2.00 4.769 × 10−3 −1.90 2.628 × 10−3 −1.80
256 3.894 × 10−4 −2.21 1.616 × 10−4 −2.06 1.119 × 10−3 −2.09 6.893 × 10−4 −1.93
512 8.117 × 10−5 −2.26 3.804 × 10−5 −2.09 2.525 × 10−4 −2.15 1.750 × 10−4 −1.98

4.1. Smooth Fluid Tests

Tests with smooth analytic solutions enable us to determine
the order of accuracy of the hydrodynamics solvers implemented
in GenASiS. We compare the numerical solutions with the ana-
lytic solution for multiple grid resolutions, compute the relative
L1 error norm (Equation (43)), and calculate the rate p (Equa-
tion (44)) at which the error norm decreases with increasing grid
resolution. We demonstrate second-order accuracy with both the
HLL and the HLLC solvers.

4.1.1. Fluid Advection

In this test a smooth density profile is advected with a
constant velocity field. A constant pressure field is also present,
and we evolve the full system of hydrodynamics equations,
not just the continuity equation; thus the tests in this section
involve the entropy (or contact) wave. We present and compare
results obtained with the HLL and HLLC Riemann solvers, and
investigate the sensitivity of the results to the flow Mach number
Ma = |v|/cs . It is reasonable to expect that the results obtained
with the HLL solver are sensitive to Ma, since this Riemann
solver considers only the acoustic waves in the Riemann fan,
and ignores the entropy wave. This is especially true for highly
subsonic flows where the entropy wave is clearly separated
from the acoustic waves in the Riemann fan. Periodic boundary
conditions are used in all the tests presented in this section. We
show 1D and 2D results.

In the 1D tests the computational domain is confined to x ∈
[0, 1]. The initial density is set to ρ = ρ0 + δρ × sin(2πx/Lx),
with ρ0 = 1.0 and δρ = 0.1, and the only nonzero velocity
component is vx = 1. The (constant) pressure is parameterized
by the Mach number p = ρ0|v|2/(γ Ma2). The adiabatic index
is set to γ = 1.4. The density profile is advected across the
domain five times, until t = 5.0.

Results from the 1D advection tests with Ma = 0.6 are
tabulated in Table 1, where we list the L1 error norms of the
density L1(ρ), for multiple grid resolutions, at t = 1.0 and
t = 5.0, computed with the HLL and the HLLC Riemann
solvers. We also list the rate at which the numerical solution

converges to the true solution (the initial condition in this case)
as the grid resolution is increased. From Table 1 we see that the
numerical scheme is second-order accurate for this test, both
with the HLL and the HLLC Riemann solvers. The L1 error
norms are somewhat smaller (about 20% for Nx = 16) when
the HLLC solver is used, but the rate of convergence is slightly
higher with the HLL solver, and the difference is reduced to a
few percent for the highest resolution runs.

Results from the 1D advection test with Ma = 0.1 are
tabulated in Table 2. The difference between the HLL and
HLLC results becomes more pronounced when the Mach
number is reduced. Both Riemann solvers result in second-order
convergence of the L1 error norm when Ma = 0.1, but the errors
obtained with the HLL solver are significantly larger—about a
factor of two compared to the corresponding results listed in
Table 1. Errors with the HLLC results are somewhat smaller
than those in Table 1. In fact, the HLLC solver becomes exact
for this test when the advection velocity is zero, as demonstrated
with the isolated contact discontinuity Riemann problem in
Section 4.2.1.

In the 2D advection tests the sine wave propagates parallel
to k = (2π/Lx)x̂ + (2π/Ly)ŷ, that is, with an angle α =
tan−1(Lx/Ly) with respect to the x-axis. The computational
domain is now restricted to [x, y] ∈ [0, Lx]× [1, Ly], the initial
density is set to ρ = ρ0 + δρ × sin(2π [x/Lx + y/Ly]), and
the velocity vector is v = [vx, vy, vz] = [cos α, sin α, 0] =
[L−1

x , L−1
y , 0]/(L−2

x +L−2
y t)1/2. With Lx = 2Ly and Ly = √

5/2
the propagation angle is α ≈ 63.4◦, and the sine wave returns
to its initial position for t = 1.0. We set Ma = 0.6 and evolve
until t = 5.0. All other parameters are the same as in the 1D
tests.

Results from the 2D advection tests at t = 1 and t = 5,
computed with the HLL and HLLC Riemann solvers for
different grid resolutions, are tabulated in Table 3. The results
reveal a trend similar to that seen in the 1D tests: with both
Riemann solvers, the numerical solution eventually converges
to the analytic solution at the expected second-order rate. The
errors decrease at a somewhat faster rate when the HLL solver
is used, but the L1 error norms obtained with the HLLC solver

13



The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February Cardall et al.

Figure 5. Relative L1 error norms vs. number of grid cells Nx from the 1D linear wave tests. The results are obtained with the HLL (gray) and HLLC (black) Riemann
solvers in GenASiS. Error norms from the acoustic (left panel) and shear (right panel) wave tests decrease with the expected second-order rate. The dashed reference
lines are proportional to N−2

x .

Table 3
L1 Error Norm and Convergence Rate for 2D Advection Test with Flow Mach Number Ma = 0.6

HLL (t = 1) HLLC (t = 1) HLL (t = 5) HLLC (t = 5)

Nx L1(ρ) Rate L1(ρ) Rate L1(ρ) Rate L1(ρ) Rate

32 1.019 × 10−2 · · · 8.028 × 10−3 · · · 3.944 × 10−2 · · · 2.722 × 10−2 · · ·
64 3.577 × 10−3 −1.51 2.897 × 10−3 −1.47 8.376 × 10−3 −2.24 7.892 × 10−3 −1.79
128 9.485 × 10−4 −1.92 7.816 × 10−4 −1.89 3.014 × 10−3 −1.47 2.698 × 10−3 −1.55
256 2.311 × 10−4 −2.04 1.933 × 10−4 −2.02 8.419 × 10−4 −1.84 7.715 × 10−4 −1.81
512 5.421 × 10−5 −2.09 4.688 × 10−5 −2.04 2.167 × 10−4 −1.96 2.026 × 10−4 −1.93

are smaller than those obtained with the HLL solver (about 7%
smaller at t = 5 with Nx = 512).

4.1.2. Linear Fluid Waves

Our linear wave tests are similar to those in Stone et al.
(2008). We initialize a 1D periodic domain x ∈ [0, 1] with a
background state ρ0 = 1, p0 = 3/5. The adiabatic index is set
to γ = 5/3, so that the background sound speed is cs,0 = 1.
The background medium is at rest for the sound wave test,
while for the shear wave tests we set v · x̂ = 0.5 (i.e., Ma =
0.5). We initialize sound waves by setting [ρ, vx, vy, vz, p] =
[ρ0, 0, 0, 0, p0] + A RT

±cs
sin(2πx/Lx), while shear waves are

initialized by setting [ρ, vx, vy, vz, p] = [ρ0, 0.5, 0, 0, p0] +
A (RT

vy
+ RT

vz
) sin(2πx/Lx). The amplitude of the linear waves

is set to A = 10−6. When initializing the different wave
types, RT

±cs
= [c−2

s,0,±c−1
s,0ρ

−1
0 , 0, 0, 1], RT

vy
= [0, 0, 1, 0, 0],

and RT
vz

= [0, 0, 0, 1, 0] are right eigenvectors obtained from
the quasilinear form of the Euler equations in primitive variables,
and are associated with left (−) and right ( + ) propagating sound
waves, and shear waves associated with the y- and z-components
of the velocity, respectively. We let the waves propagate a
distance Lx (until t = 1.0 for sound waves and t = 2.0 for
shear waves) and compute the L1 error norm.

Results from the convergence tests are displayed in Figure 5,
where we plot the L1-error norm versus Nx for acoustic (left

panel) and shear (right panel) waves. Results obtained with the
HLL and HLLC Riemann solvers are shown in gray and black,
respectively. We obtain second-order convergence in these tests.
For sound waves, the results obtained with the HLL and HLLC
solvers are identical, while the errors obtained with the HLLC
solver are somewhat smaller for the shear wave tests (about 30%
for Nx = 16 and about 8% for Nx = 1024).

4.2. Discontinuous Fluid Tests

Here we test the ability of GenASiS to handle shocks and
other discontinuities, which are ubiquitous in astrophysical
flows. Finite-volume methods based on the integral formulation
in Equation (2) are particularly well suited for flows that may
develop discontinuities (e.g., LeVeque 2002).

4.2.1. Riemann Problem

A Riemann problem involves a set of piecewise constant
initial data separated into left (L) and right (R) states by an
initial discontinuity. The solution for t > 0 typically consists of
a finite set of waves propagating away from the initial location
of the discontinuity. The adiabatic index is set to γ = 1.4 in all
the Riemann problems presented here. In the 1D tests the initial
discontinuity is located at x = 0.5.

Contact Discontinuity. A 1D Riemann problem involving an
isolated contact discontinuity illustrates an advantage of using
the HLLC Riemann solver as opposed to the HLL Riemann

14



The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February Cardall et al.

Figure 6. Results from the stationary (left) and the slowly moving (right) contact discontinuity at t = 2, computed with a grid of 128 zones. The mass density is
plotted. Results computed with the HLLC Riemann solver are shown in black, and results computed with the HLL Riemann solver are shown in red.

(A color version of this figure is available in the online journal.)

solver. Here we present results from the stationary and slowly
moving contact discontinuity tests (cf. Toro 2009; Liska &
Wendroff 2003) with initial conditions (left and right states)

[ρ, v, p]L = [1.4, vC, 1.0]

[ρ, v, p]R = [1.0, vC, 1.0], (45)

where the speed of the contact discontinuity is vC = 0.0 and
vC = 0.1 for the stationary and the slowly moving contact
discontinuity, respectively. The system is evolved until t = 2.0,
at which time the moving contact discontinuity is located at
x = 0.7.

Results from the stationary and slowly moving contact
discontinuity tests for t = 2 are plotted in Figure 6 (left and
right panel, respectively). These tests clearly demonstrate the
improved resolution of the contact discontinuity when the HLLC
Riemann solver is used. The HLLC solver is exact for the
stationary contact discontinuity. This is because the middle wave
speed estimate given by Equation (32) is exact in this case, and
results in zero mass flux across the discontinuity. The diffusive
part of the HLL flux (cf. the third term on the right-hand side of
Equation (16)) results in a non-zero mass flux across the contact
discontinuity, even as vx remains zero. Both solvers are inexact
for the moving contact discontinuity test, but the HLLC solver
remains superior.

Sod Shock Tube. The Sod shock tube is a well-known Riemann
problem with an analytic solution. It was introduced by Sod
(1978) to benchmark algorithms for solving the Euler equations.
The problem is initialized with left and right states given by

[ρ, v, P ]L = [1.0, 0.0, 1.0],

[ρ, v, P ]R = [0.1, 0.0, 0.125]. (46)

For t > 0, nonlinear waves are generated and propagate away
from the initial discontinuity. A shock wave propagates to the
right and a rarefaction wave propagates to the left. Also, a contact
discontinuity propagates to the right, between the shock and the
rarefaction waves.

Figure 7 shows results from this test problem for t = 0.25.
GenASiS captures all the essential features of this Riemann

problem with good accuracy. In particular, we have compared
the numerical results with the analytic solution using the L1 error
norm: Table 4 shows the L1 error norm and the convergence rate
(for mass density and pressure) obtained with both the HLL and
the HLLC Riemann solvers. The errors obtained when using
the HLLC Riemann solver are slightly smaller, especially in the
mass density. This is because the HLLC solver better resolves
the contact discontinuity, across which only the density varies.
However, both solvers result in similar first-order convergence
rate, which is expected for problems involving discontinuities.
(We also ran this problem in 2D and 3D mode by letting the
waves propagate along the y- and z-coordinate directions, and
the results from those runs are exactly the same as the results
listed in Table 4.)

We have also used a 3D version of the Sod shock tube to
study the parallel scaling behavior of the hydrodynamics solver
in GenASiS (cf. Algorithm 1). Figure 8 shows results from a pure
Message Passing Interface (MPI) weak-scaling test on Titan, the
Cray XT7 machine at the Oak Ridge Leadership Computing Fa-
cility. The hydrodynamics algorithms implemented in GenASiS
scale well up to about 105 MPI tasks with a single-level mesh.

Double Rarefaction. The double rarefaction problem was
introduced by Einfeldt et al. (1991) to test the behavior of
Riemann solvers on problems where a “vacuum” is created in a
region between two strong rarefaction waves propagating away
from an initial discontinuity in the velocity vx . In particular,
the problem was designed to reveal the lack of positivity
conservation (e.g., resulting in negative pressure) by Riemann
solvers based on linearization (e.g., the solver provided by Roe
1981), while showing that the HLLE solver (which is similar to
the HLL scheme in Equation (16)) is positivity conserving (in
1D), provided that certain constraints on the wave speeds αx

±
are satisfied.

We initialize the double rarefaction problem as described
by Einfeldt et al. (1991) (problem 1-2-0-3; see also Toro
2009). The left and right states of the Riemann problem are
given by

[ρ, v, p]L = [1.0, −2.0, 0.4]

[ρ, v, p]R = [1.0, +2.0, 0.4]. (47)

15



The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February Cardall et al.

Figure 7. Results from running Sod’s shocktube test at t = 0.25, using 128 cells and the HLLC Riemann solver. The mass density (left) and pressure (right) are
plotted in the upper panels, and the specific internal energy (e/ρ; left) and the velocity (vx ; right) are plotted in the lower panels. The analytic solution is shown as a
black line in each panel.

(A color version of this figure is available in the online journal.)

Table 4
L1 Error Norm and Convergence Rate for Sod’s Shocktube Problem

HLL HLLC

Nx L1(ρ) Rate L1(p) Rate L1(ρ) Rate L1(p) Rate

32 2.982 × 10−2 · · · 2.567 × 10−2 · · · 2.809 × 10−2 · · · 2.553 × 10−2 · · ·
64 1.529 × 10−2 −0.96 1.293 × 10−2 −0.99 1.452 × 10−2 −0.95 1.269 × 10−2 −1.01
128 8.098 × 10−3 −0.92 6.500 × 10−3 −0.99 7.803 × 10−3 −0.90 6.388 × 10−3 −0.99
256 4.383 × 10−3 −0.89 3.289 × 10−3 −0.98 4.256 × 10−3 −0.88 3.233 × 10−3 −0.98
512 2.434 × 10−3 −0.85 1.692 × 10−3 −0.96 2.362 × 10−3 −0.85 1.658 × 10−3 −0.96
1024 1.311 × 10−3 −0.89 7.911 × 10−4 −1.10 1.279 × 10−3 −0.89 7.748 × 10−4 −1.10
2048 7.495 × 10−4 −0.81 4.095 × 10−4 −0.95 7.322 × 10−4 −0.81 4.013 × 10−4 −0.95

16



The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February Cardall et al.

Figure 8. MPI weak scaling of the hydrodynamics algorithms in GenASiS. Sod’s shocktube test in 3D was run on a single-level cell-by-cell mesh, keeping the number
of computational cells per MPI task fixed to 483. The wall time per time step for the first data point is 3.10 s.

Figure 9 shows results from running the double rarefaction
problem with GenASiS to time t = 0.15, using 128 cells
and the HLLC Riemann solver. A referential solution using
1000 cells is plotted with a solid black line. The referential
solution was obtained with an exact Riemann solver program
(e1rpexf.f) from the NUMERICA library (Toro 1999, see
also the discussion in Chapter 4 in Toro 2009).

The result shows that GenASiS follows the solution obtained
with the exact Riemann solver well. Moreover, the density
and pressure remain positive. However, the specific internal
energy e/ρ shows a pathology around the location of the
initial discontinuity x = 0.5. (Both the density and pressure
approach zero, while the specific internal energy remains finite
in this problem.) This pathology is likely due to our use of
the conservative formulation of the Euler equations (i.e., we
evolve the total energy density) in a situation where the kinetic
energy density is significantly larger (a factor of two initially)
than the internal energy density (see also results from this test
(test 2) in Liska & Wendroff 2003, obtained with multiple
Eulerian schemes for hydrodynamics), which can result in
an inaccurate internal energy density when it is obtained
by subtracting the kinetic energy density from the total (or
balanced) energy density G (cf. Equation (28); Blondin & Lufkin
1993). For the specific internal energy, we also plot results from
runs using 256 cells (blue dashed line) and 512 cells (green
dotted line). The results converge to the exact solution, albeit
very slowly near the center.

Implosion. This is a 2D Riemann problem with initial con-
ditions similar to the Sod shock tube. It was used by Liska
& Wendroff (2003) to compare several numerical schemes for
solving the Euler equations (see also Stone et al. 2008). The
problem is solved on a square computational domain confined
to [x, y] ∈ [0, 0.3] × [0, 0.3], with reflecting boundary condi-
tions everywhere. The fluid is initially at rest, and the density
and pressure are set to ρ = 0.125 and p = 0.14 in the region
where x + y � 0.15, and to ρ = 1 and p = 1 elsewhere.

Results obtained with GenASiS using 400×400 cells and the
HLLC Riemann solver are shown for select times (t = 0.045
and t = 2.5) in Figure 10, which is a color map of the pressure,

with density contours and velocity vectors overlaid. (Figure 10
can be compared directly with Figures 4.10 and 4.11 in Liska
& Wendroff (2003), and Figure 17 in Stone et al. (2008).) At
t = 0.045 a shock propagates diagonally toward the origin, and a
rarefaction wave propagates in the opposite direction. A contact
discontinuity is trailing the shock (cf. the density contours in
the left panel in Figure 10). The evolution along the diagonal
is similar to that of the Sod shock tube for t = 0.045. At later
times, wave–boundary and wave–wave interactions eventually
result in a very complex flow structure.

The results obtained with GenASiS compare favorably with
results obtained with other dimensionally unsplit codes (e.g.,
Liska & Wendroff 2003; Stone et al. 2008). In particular, the
symmetry about the diagonal connecting (0, 0) and (0.3, 0.3)
is perfectly preserved. There is no analytical solution to the
implosion problem. However, Stone et al. (2008) argue that the
production of a jet along the diagonal is part of the correct
result for this test. The jet along the diagonal is clearly seen
in the density contours in the right panel of Figure 10. The
formation and subsequent evolution of the jet is very sensitive to
the numerical scheme’s ability to preserve the initial symmetry.
We also find the formation and evolution of the jet to be sensitive
to the scheme’s ability to track the intermediate waves: the jet
is absent when the HLL Riemann solver in GenASiS is used,
and the solution then resembles the results produced with the
Positive scheme (LL) in Liska & Wendroff (2003). This is not
surprising, as the jet is formed from vortices produced near the
origin, which are later advected with the fluid velocity along the
diagonal (Stone et al. 2008).

4.2.2. Interacting Blast Waves

This problem, discussed in detail by Woodward & Colella
(1984), involves multiple interactions between shocks, rarefac-
tion waves, and contact discontinuities. It is considered an ex-
tremely difficult test for methods employing a uniform Eule-
rian mesh (Woodward & Colella 1984), and has been used by
many authors to benchmark solvers for the Euler equations (e.g.,
Kurganov et al. 2001; Liska & Wendroff 2003; Stone et al. 2008).

17



The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February Cardall et al.

Figure 9. Results from the double rarefaction problem at t = 0.15, computed with 128 cells and using the HLLC Riemann solver. The density (left) and pressure
(right) are plotted in the upper panels, and the velocity (vx ; left) and specific internal energy (e/ρ; right) are plotted in the lower panels. The solid black line is a
reference solution obtained with an exact Riemann solver using 1000 cells. For the specific internal energy, results from runs with 256 cells (blue dashed line) and 512
cells (green dotted line) are also plotted.

(A color version of this figure is available in the online journal.)

The problem is initialized on a computational domain confined
to x ∈ [0, 1] with reflecting boundary conditions. The fluid is
initially at rest with constant background density ρ0 = 1 and
pressure p0 = 0.01. Two initial pressure jumps are introduced
by setting the pressure to p = 1000 in the region where x < 0.1,
and to p = 100 in the region where x > 0.9. For t > 0, strong
shocks, rarefactions, and contact discontinuities develop as a
result of the initial pressure jumps, which later interact multiple
times to create a complex flow structure.

Figure 11 shows results obtained with GenASiS for t =
0.038, using 400 cells and the HLLC Riemann solver. A high-
resolution reference solution, obtained by using 104 cells, is also
included in the plot (solid black line). The results obtained with
GenASiS are comparable to those obtained by other authors
(cf. Figures 4.7 and 4.9 in Kurganov et al. 2001, Figure 3.10 in
Liska & Wendroff 2003, and Figure 9 in Stone et al. 2008).
For t = 0.038, the maximum density is about 5.4, which
is significantly lower than in the reference solution (6.4), but
comparable to the results presented by Kurganov et al. (2001),
and the results obtained with many of the schemes tested by

Liska & Wendroff (2003). However, our maximum density
is somewhat lower than the value obtained by Stone et al.
(2008), who used third-order spatial reconstruction. Moreover,
the contact discontinuity located around x = 0.6 is poorly
resolved, but the results obtained with GenASiS are comparable
to results obtained with other schemes based on a fixed Eulerian
mesh (e.g., Kurganov et al. 2001; Liska & Wendroff 2003; Stone
et al. 2008). Schemes based on a moving (e.g., Lagrangian)
meshes perform very well on this test (e.g., Woodward & Colella
1984; Springel 2010a).

4.2.3. Sedov–Taylor Blast Wave

The Sedov–Taylor blast wave is a classic test in computational
astrophysics. It has been used by many authors to benchmark
multidimensional hydrodynamics algorithms (e.g., Fryxell et al.
2000; Almgren et al. 2010; Springel 2010a; Käppeli et al.
2011). It follows the self-similar evolution of a strong shock
wave expanding into a uniform medium. We follow closely
the problem setup described in Fryxell et al. (2000), and
we present results from 2D (cylindrical detonation) and 3D

18



The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February Cardall et al.

Figure 10. Results from running the implosion problem with GenASiS using 400×400 cells and the HLLC Riemann solver. The left and right panels can be compared
directly with Figures 4.10 and 4.11 of Liska & Wendroff (2003). The color maps represent the fluid pressure. The density is plotted with contours. Left panel: 36
contours from 0.125 to 1 (in steps of 0.025). Right panel: 31 contours from 0.35 to 1.1 (in steps of 0.025). The arrows indicate the flow velocity.

(A color version of this figure is available in the online journal.)

Figure 11. Density (left) and pressure (right) from the two-interacting-blast-waves test problem at t = 0.038, computed using 400 cells and the HLLC Riemann solver
in GenASiS. The solid black line is a high-resolution reference solution obtained by using 104 cells.

(A color version of this figure is available in the online journal.)

(spherical detonation) computations, employing both a single-
level and a fixed multilevel grid. The problem is initialized
with a fluid at rest, with uniform density ρ0 = 1 and (small)
pressure p0 = 10−5. The computational domain is confined
to [−0.5, 0.5] in each coordinate dimension in these runs. The
adiabatic index is set to γ = 1.4. An amount of thermal energy
Ed = 1 is instantaneously released inside a finite detonation
radius, Rd, resulting in a pressure

pd = 3(γ − 1)Ed

(α + 1)πRα
d

(48)

in the detonation region r � Rd , where α = 2 and r =
√

x2 + y2

for the 2D version of the test, and α = 3 and r =
√

x2 + y2 + z2

for the 3D version. For t > 0, the detonation results in the
formation and expansion of a strong cylindrical (2D) or spherical
(3D) shock wave. From dimensional arguments, the shock radius
is approximately RSh(t) ≈ (Edt

2/ρ0t)1/(α+2), and the velocity
of the expanding shock wave is ṘSh ≈ 2(α + 2)−1(RSh/t). At
t = 0.05 the shock has reached r ≈ 0.224 in the 2D version
of the test and r ≈ 0.302 in the 3D version. From the shock
jump conditions in Equation (12) we find the following values
for density, flow velocity, and pressure immediately behind the
shock for t = 0.05: ρ−

Sh ≈ 6.0, vSh ≈ 1.867, and p−
Sh ≈ 4.181

(2D), and ρ−
Sh ≈ 6.0, vSh ≈ 2.013, and p−

Sh ≈ 4.864 (3D).
We find that the outcome of this test—in particular, the

final shock position—is sensitive to the way the detonation
is initiated. Ideally, the detonation occurs in a single point.

19



The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February Cardall et al.

Figure 12. Scatter plots of the 2D Sedov–Taylor blast wave problem computed with the HLL Riemann solver.

(A color version of this figure is available in the online journal.)

However, for practical computations with a finite volume
scheme employing an Eulerian Cartesian mesh, the detonation
radius is typically spread out over three cells (Fryxell et al.
2000). To further improve the initialization of the blast wave,
we subdivide each cell that is intersected by the surface of
the sphere with radius Rd into a subgrid with 20 cells in each
coordinate direction (Almgren et al. 2010). The pressure in the
intersected cells is then obtained from a volume average over
the subgrid.

Results from 2D and 3D single-level mesh calculations using
the HLL Riemann solver are displayed in Figures 12 and 13.
(Results obtained with the HLL and the HLLC Riemann solvers
are nearly identical for this test, which primarily involves an
expanding strong shock, so that the contact wave captured by
the HLLC solver plays a minimal role.) Scatter plots of the
density, the velocity magnitude, and the pressure versus radius,

obtained by using 256 cells per dimension, are displayed in the
two upper panels and in the lower left panel in each figure,
respectively. Despite the fact that our results are obtained by
using a single-level mesh, they compare reasonably well with the
results presented in Fryxell et al. (2000), which were obtained
with an adaptively refinable mesh. Most noticeably, the peak
values of the density and pressure just behind the shock are
somewhat lower than the analytic solution, but the agreement
improves with increasing spatial resolution (cf. lower right
panel in Figure 12). The shock position (relative to the analytic
solution) also improves with increasing spatial resolution. The
shock position in the 3D run overshoots the analytic value by
about 3% at t = 0.05, but the agreement between the analytic
and numerical results seems to improve for later times (cf.
Figure 16). The color plot of the pressure in the xy-plane (z = 0)
from the 3D run with 2563 cells (lower right panel in Figure 13)

20



The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February Cardall et al.

Figure 13. Plots of the 3D Sedov–Taylor blast wave problem computed with the HLL Riemann solver with 2563 zones.

(A color version of this figure is available in the online journal.)

illustrates the spherical shape of the shock surface at t = 0.05;
i.e., “grid imprints” in the shape of the shock, due to our use of
Cartesian coordinates, are minimal.

Figures 14–16 display results from the Sedov–Taylor blast
wave test obtained with the fixed multilevel grid capabilities in
GenASiS. The 2D results (employing seven mesh levels) are
shown in Figures 14 and 15, and the 3D results (employing
four mesh levels) are shown in Figure 16. For both tests, the
multilevel mesh results are compared with corresponding single-
level mesh results. The multilevel meshes consist of concentric
nested spheres (embedded in a square or cubic box at the coarsest
level) with increasing resolution toward the origin. The spatial
resolution of adjacent levels differs by a factor of two. This type
of mesh is well suited for problems with a centrally condensed
matter distribution, and we intend to employ a similar multilevel

mesh in future initial simulations of core-collapse supernovae
with GenASiS. (The current multilevel mesh capabilities in
GenASiS only allow for evolution on a static mesh, but we
intend to implement AMR capabilities in the future.) For a
“fair” comparison, the single-level mesh results are obtained
with a resolution equal to the resolution of the deepest level in the
multilevel mesh (i.e., 10242 cells in 2D and 1283 cells in 3D). Of
course, the multilevel mesh results become poorly resolved after
the shock has crossed multiple fine-to-coarse mesh boundaries.
The single-level mesh results are only included to show that
the multilevel mesh results look reasonable in comparison (e.g.,
the shock positions are similar). Besides showing reasonable
comparison with the single-level mesh results, the main purpose
of including these tests is to demonstrate that the multilevel
time integration algorithm, with subcycling of deeper levels and

21



The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February Cardall et al.

Figure 14. Pressure at t = 0.01 in the 2D Sedov–Taylor blast wave problem
computed with the HLL Riemann solver. Results obtained with the multilevel
mesh solver (using seven mesh levels) are shown above the diagonal y = x and
compared with single-level results shown below the diagonal. (The multilevel
mesh is also shown for y > x.)

(A color version of this figure is available in the online journal.)

Figure 15. Same as Figure 14, but for t = 0.04.

(A color version of this figure is available in the online journal.)

conservative flux updates across coarse-fine mesh boundaries
(cf. Algorithms 2–4), work as intended.

The shock has crossed one level boundary in the 2D run
displayed in the left panel in Figure 14. The shock radius is very
similar in the two runs. (In the analytic solution, RSh ≈ 0.1.)
The maximum pressure (i.e., just behind the shock) is ∼17
in the multilevel mesh run, and ∼18.5 in the single-level

Figure 16. Plots of the pressure in the xz-plane (y = 0) from the 3D
Sedov–Taylor blast wave problem at t = 0.1, computed with the HLL Riemann
solver. Results obtained with the multilevel mesh solver (using four mesh levels)
are shown for z > 0, and compared with unigrid results (z � 0). (The mesh is
shown for x > 0.)

mesh run (versus p−
Sh ≈ 20.8 in the analytic solution). Later

(t = 0.04), when the shock has crossed three fine-to-coarse level
boundaries, the shock positions are still reasonably similar in
the two runs (considering the factor of eight difference in spatial
resolution), with RSh ∼ 0.2 (RSh ≈ 0.2 in the analytic solution).
Just behind the shock, the pressure is ∼3.7 in the multilevel mesh
run, and about 4.8 in the single-level mesh run (p−

Sh ≈ 5.2 in
the analytic solution for t = 0.04). The comparison between
the multilevel and single-level mesh 3D runs in Figure 16 also
indicates reasonable agreement (considering that the shock in
the multilevel mesh run has reached level 2, where the effective
resolution is only 323, for t = 0.1). Moreover, the total mass,
linear momentum, and energy in the multilevel mesh runs are
conserved to numerical precision.

We have also run a larger-scale 3D Sedov–Taylor blast
wave simulation, visualized in Figure 17 and in an animation
available online. The multilevel mesh has seven levels, with six
spherical meshes nested inside the coarsest rectangular mesh
in a manner like that in Figure 3 (and episodically visible
in the online animation). The coarsest level has 1283 cells
of width ∼7.8 × 10−3 in a domain spanning [−0.5, 0.5] in
each dimension. The cells at the finest level have a width of
∼1.2 × 10−4, filling a domain of radius ∼7.8 × 10−3—the
size of a single cell at the coarsest level. (A single level mesh
covering the outermost domain [−0.5, 0.5] in each dimension
with this resolution would have 81923 cells—a problem size that
would be truly heroic, if not prohibitive, even on machines the
size of Titan at the Oak Ridge Leadership Computing Facility.)
The visualization boxes in the two panels in a given row of
Figure 17 have the same spatial scale; this scale changes by a
factor of four between each successive row. Cross sections of the
pressure, through the origin, are projected onto the rear walls
of the visualization box in each dimension. The gray sphere

22



The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February Cardall et al.

Figure 17. Snapshots of a larger-scale 3D Sedov–Taylor blast wave simulation with seven mesh levels and 1283 cells on the coarsest level. Pictured in each panel
are a gray shock surface, and cross sections through the origin of the pressure, projected onto the rear walls of the visualization box. The visualization boxes in the
two panels in a given row have the same spatial scale; this scale changes by a factor of four between each successive row. Animated version online includes episodic
depictions of the multilevel mesh.

(An animation and a color version of this figure are available in the online journal.)

is a contour plot of the shock surface. Barely visible in the
upper left panel at t = 0 is a tiny spherical region of radius
∼8.5 × 10−4 with pressure ∼7.0 × 105. At t ∼ 3.5 × 10−3 the
maximum pressure immediately behind the shock is down to
∼5.1 (upper right and middle left panels, visualized at different
spatial scales). At t ∼ 0.11 the maximum pressure immediately
behind the shock is down to ∼0.08 (middle right and lower left
panels, visualized at different spatial scales). The final maximum
pressure is ∼1.1 × 10−3 when the simulation ends at t ∼ 3.9
(lower right panel). This blast wave simulation, in which large
dynamic ranges in time, space, and pressure (or energy density)

have been handled successfully with modest resources (512 MPI
processes), suggests that the multilevel hydrodynamics solver
in GenASiS will be well suited to the hydrodynamics needs of
core-collapse supernova simulations.

The weak scaling behavior of the hydrodynamics evolution
on a centrally refined mesh with five levels is shown in
Figure 18. The data points are for coarsest-level resolutions
of 643, 1283, and 2563, corresponding to effective finest-level
resolutions of 10243, 20483, and 40963. The fact that the
communications involved in the prolongations and restrictions
of the multilevel evolution are not overlapped with work clearly

23



The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February Cardall et al.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100  1000  10000

P
ar

al
le

l E
ffi

ci
en

cy

Number of Processes

Figure 18. Weak scaling of hydrodynamics evolution on a centrally refined mesh
with five levels. On the coarsest level, the number of computational cells per
MPI task is 323. The data points are for coarsest-level resolutions of 1283, 2563,
3843, and 5123, corresponding to effective finest-level resolutions of 20483,
40963, 61443, and 81923. The wall time per time step for the first data point is
2.59 s.

has an impact on the parallel efficiency. Moreover, if one
compares the time per step per cell of multilevel versus single
level simulations, there is significant overhead, and we observe
numbers in the same ballpark as Teyssier (2002). Work to
reduce such overhead is worthwhile to be sure, and we will
continue to investigate improvements. But we caution that undue
fixation on per-cell overhead risks obscuring a larger and more
important practical point: despite the overhead, simulations
of high effective resolution and large dynamic ranges, that
otherwise would be out of reach (or require drastically more
resources)—such as the multilevel Sedov run in the previous
paragraph—become much more accessible thanks to mesh
refinement and multilevel evolution.

4.3. Fluid Instability Tests

Finally, we demonstrate how two instabilities of astrophysical
relevance—the Kelvin–Helmholtz (KH) and Rayleigh–Taylor
(RT) instabilities—grow and develop in GenASiS simulations.

4.3.1. Kelvin–Helmholtz

The KH instability is relevant to a broad range of astrophysical
applications. For example, the shear flows induced by the spiral
mode of the standing accretion shock instability (SASI; Blondin
et al. 2003) are KH unstable. Energy transfer, mediated by
the KH instability, from flows associated with low-order SASI
modes to small-scale turbulent flows, can possibly result in the
nonlinear saturation of the SASI (Guilet et al. 2010; Endeve et al.
2012). We include a 2D version of the KH test here to further
highlight differences between simulation results obtained with
the HLL and HLLC Riemann solvers in GenASiS, and to
compare with (and hopefully corroborate) findings reported
by other authors. In particular, simulations of the relativistic
MHD KH instability (e.g., Mignone et al. 2009; Beckwith &
Stone 2011) have revealed that schemes based on approximate
Riemann solvers that include the intermediate waves in the
Riemann fan have significantly improved spectral resolution
when compared to schemes that do not. Note that the inclusion
of this test is not an attempt to study in detail any aspect of the
KH instability.

Our numerical setup of the KH instability test follows
closely the description detailed on the Athena Web site.11 The
computational domain is confined to [x, y] ∈ [0, 1] × [0, 1],
with periodic boundary conditions in both spatial dimensions.
We denote the lengths of the x and y sides of the computational
domain Lx and Ly, respectively. Velocity shear layers are located
at y = 0.25 and y = 0.75. The pressure is initially uniform
everywhere, with p = 2.5. In the region with |y−0.5| < 0.25 we
set ρ = 2 and vx = 0.5, while in the region of the computational
domain where |y − 0.5| � 0.25 we set ρ = 1 and vx = −0.5.
For the unperturbed initial state we set vy = vz = 0 everywhere.
The adiabatic index is set to γ = 1.4.

The shear layers in the initial configuration are KH unstable
to perturbations in the velocity components perpendicular to the
initial flow (e.g., vy ; Chandrasekhar 1981). For our initial setup,
the growth rate of a single-mode perturbation with associated
wavenumber kx is (cf. Section 101 in Chandrasekhar 1981)

ΓKH = kx

√
2

3
Δyvx, (49)

where Δyvx is the jump in vx across the velocity shear layer. Thus
the amplitude of a single mode perturbation with associated
wavelength λx grows exponentially with growth time Γ−1

KH ≈
0.34 (λx/Lx); perturbations associated with shorter wavelengths
grow at a faster rate. We initiate the KH instability with
perturbations in the initial velocity field v0 by setting

v = v0 + δv, (50)

where we use a combination of single-mode and random-mode
perturbations:

δv = [AS sin (2πx/Lx) + AR] × ψ(y) ŷ. (51)

The amplitude of the single-mode perturbation is AS = 10−2,
and AR(x, y) assumes random numbers between −10−3 and
10−3. The function ψ(y) concentrates the perturbations in the
shear layers:

ψ(y) = exp

[
−1

2

(
cos(2πy/Ly)

2πσ/Ly

)2
]

, (52)

where we set σ = 0.1. The random perturbations seed small-
scale modes, whose growth may be suppressed by an excessively
dissipative numerical scheme.

We have carried out simulations using 2562 (low resolution)
and 5122 (high resolution) cells, using both the HLL and HLLC
Riemann solvers in GenASiS. The simulations are evolved until
t = 5.0. We display the density distribution at select times
in Figures 19–21 (t = 0.6, Figure 19; t = 1.0, Figure 20;
t = 2.0, Figure 21), which illustrate the results from the high
resolution runs. (Results obtained with the HLL and HLLC
solvers are displayed in the left and right panels, respectively.)
The differences in the results obtained with the two Riemann
solvers become apparent at an early stage. The run with the
HLLC solver has developed small-scale “KH rolls” in the shear
layer at t = 0.6. These are absent in the run with the HLL solver,
which seems to have only been affected by the sinusoidal part
of the perturbation at this point. The interfaces between the low
and high density fluids are clearly more diffuse in the HLL

11 www.astro.princeton.edu/∼jstone/Athena/tests/kh/kh.html

24

http://www.astro.princeton.edu/~jstone/Athena/tests/kh/kh.html


The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February Cardall et al.

Figure 19. Plots of density from the Kelvin–Helmholtz instability test at t = 0.6, computed with 512 × 512 zones. The left and right panels show results computed
with the HLL and HLLC Riemann solver, respectively.

Figure 20. Same as Figure 19, but for t = 1.0.

run, which is also to be expected, as this solver ignores the
contact and shear waves in the Riemann fan. Small-scale KH
rolls, although clearly affected by the more diffuse interface,
have developed in the HLL run for t = 1.0. The shear layers
in the HLLC run are much more disturbed by the instability
at this time. The two runs share some qualitative similarities
at t = 2.0 (i.e., the largest-scale component of the dense-
fluid deformation), but visual comparisons reveal increasing
differences with evolving time. The shear layers in the HLL
run are clearly populated with KH rolls of roughly equal size
at t = 2.0, while the deformations of the same layers in the
HLLC run can be characterized as covering a broader spectrum
of spatial scales.

Figure 22 provides additional quantitative results from the
KH runs. In the left panel we plot the y-component of kinetic
energy,

Ekin,y =
∫

V

1

2
ρv2

y dV, (53)

versus time for the two high-resolution runs. The gray line is
from the HLL run, while the black line is from the HLLC run.
Note that Ekin,y grows faster initially in the HLLC run than in
the HLL run. This growth is due to the developments seeded
by the small-scale random perturbations. In both runs, Ekin,y
reach similar levels at late times (t � 2.0), but the distribution
of kinetic energy on various spatial scales remains different. In
the right panel of Figure 22, we plot the spectral distribution

25



The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February Cardall et al.

Figure 21. Same as Figure 19, but for t = 2.0.

Figure 22. Some quantitative results from the Kelvin–Helmholtz instability test: y-component of the kinetic energy versus time (left panel) and the spectral kinetic
energy density (right panel). Results obtained with the HLLC and HLL Riemann solvers are represented with black and gray lines, respectively. Solid lines represent
results obtained with a 512 × 512 grid, while dashed lines represent results obtained with a 256 × 256 grid. The energy spectra in the right panel are time-averaged
over the time period extending from t = 1.9 to t = 2.1.

of the kinetic energy êkin(k) at t = 2.0 from the low (dashed
lines) and high (solid lines) resolution runs. (The wavenumber,
k = 2π/λk , is the magnitude of the wavevector k.) The energy
spectra are obtained from Fourier transforms of the components
of

√
ρv, and satisfy∫ ∞

0
êkin(k) dk =

∫
V

1

2
ρ|v|2 dV (54)

(cf. Ryu et al. 2000). Clearly, the HLLC solver results in higher
spectral resolution for a given spatial resolution. The spectra
from the high-resolution runs begin to separate already around
k = 40 (i.e., λk ≈ 80 Δx), and the spectrum from the HLL
run falls below 10−9 around k ≈ 560, while the spectrum from

the HLLC run stays above 10−9 out to k ≈ 920. Moreover,
the spectrum from the low-resolution run with the HLLC solver
follows very closely the spectrum from the high-resolution run
with the HLL solver. Thus the low-resolution run with the HLLC
solver offers the same spectral resolution as the high-resolution
HLL run. This is a potentially substantial computational savings,
especially for 3D simulations.

In general, the conclusions we can draw from these runs agree
very well with those of other authors (e.g., Mignone et al. 2009;
Beckwith & Stone 2011). The inclusion of the intermediate
waves in the approximate Riemann solver results in sharper
contact and shear discontinuities, and unphysical suppression of
the growth of KH unstable modes may be avoided, which also

26



The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February Cardall et al.

Figure 23. Plots of the density from the Rayleigh–Taylor instability test at t = 8.5, computed with 256 × 768 zones. The left panel shows results obtained the HLLC
Riemann solver. In the right panel we plot contours of constant density ρ = 1.25: computations using the HLL (solid black) and HLLC (dashed gray) Riemann solvers
are compared.

impacts the overall evolution of the instability—in particular
its growth rate. Significantly improved spectral resolution of
the nonlinear flows is also obtained when the HLLC solver is
employed in GenASiS.

4.3.2. Rayleigh–Taylor

The RT instability is another important fluid instability
with relevance to astrophysical applications. The RT instability
is extensively analyzed in Chandrasekhar (1981). Again, we
follow closely the initial setup described on the Athena Web
site (see also Liska & Wendroff 2003, who compared results
from this test computed with eight different schemes). The 2D
computational domain is confined to [x, y] ∈ [−0.25, 0.25] ×
[−0.75, 0.75], and we use periodic boundary conditions at
|x| = 0.25 and reflecting boundary conditions at |y = 0.75|.
This test involves a uniform external force, and is the only
test with nonzero sources included in this paper. The problem
consists of a denser fluid above a less dense fluid at rest, with
ρ = ρ2 = 2 for y > 0 and ρ = ρ1 = 1 for y � 0. The external
force acts anti-parallel to ŷ with a constant acceleration g = 0.1.
Setting Φ(yl) = 0, the corresponding potential is Φ = g(y−yl).
The pressure is p = pb − ρgy with pb = 2.5. Thus the initial
configuration is in hydrostatic equilibrium ∇p +ρ∇Φ = 0. The
adiabatic index is set to γ = 1.4.

We specify the potential in the cell centers and compute
its gradient using second-order finite differences. Because the
analytic potential is linear in y, the computation of its gradient
is exact. In particular,

〈S〉 = [0, 0,m〈D〉, 0, 〈Sy〉]T ×
(

Φ↔y+ − Φ−y↔
y↔y+ − y−y↔

)
(55)

are the source terms in Equation (2)—the external force and
power.

In the absence of surface tension at the interface between the
two fluids, the initial configuration described above is unstable to
perturbations in all wavenumbers kx = 2π/λx . The growth rate

of a single-mode perturbation is (cf. Section 92 Chandrasekhar
1981)

ΓRT =
√

gkxA, (56)

where A = (ρ2 − ρ1)/(ρ2 + ρ2) is the Atwood number, which is
1/3 for our initial setup. Thus the growth time for a single-mode
perturbation with wavelength λx is Γ−1

RT ≈ 1.55 (λx/Lx)−1/2.
We initiate the RT instability by perturbing the initial velocity

field v = v0 + δv, with v0 = 0 and a single-mode perturbation
of the form

δv = AS

4
[1 + cos(2πx/Lx)] × [1 + cos(3πy)] ŷ, (57)

with amplitude AS = 10−2.
Figure 23 displays results from the RT instability test com-

puted with 256 × 768 cells. The left panel shows the density
distribution at t = 8.5 from a simulation using the HLLC Rie-
mann solver. The instability has evolved well into the nonlin-
ear stage at this time, with the characteristic rising bubble (or
“mushroom cap”) and falling spikes clearly displayed. On the
top side of the bubble there are signs of emerging secondary KH
instabilities at the interface between the dense and light fluids.
In the right panel we plot contours of constant density ρ = 1.25,
comparing results obtained with the HLL (solid black) and the
HLLC (dashed gray) Riemann solvers. The results computed
with the two Riemann solvers agree qualitatively, but again the
HLLC solver preserves a sharper interface between the fluids.
This becomes particularly evident when looking at the “coil-up”
of the two fluids below the mushroom cap.

5. CONCLUSION

This paper is the first in a series on GenASiS, a new code
ultimately aimed at state-of-the-art simulations of core-collapse
supernovae and other astrophysical problems. Distinguishing
features include an object-oriented approach and cell-by-cell
mesh refinement (albeit with a more explicitly level-by-level

27



The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February Cardall et al.

approach than in some other codes). In this first paper we
explain some concepts underlying the refinable discretized
spaces on which calculations are to be performed; document
methods for compressible nonrelativistic hydrodynamics; and
benchmark the hydrodynamics capabilities of GenASiS against
many standard test problems, including an example with a
fixed centrally refined coordinate patch of a type suitable for
gravitational collapse.

Mathematically, a continuous coordinate patch covers an
individual region of a manifold. The class that represents a single
coordinate patch in GenASiS approximates the mathematical
ideal of continuity with a finite sequence of meshes which
provide, as necessary, increasing refinements of the coarsest
(top-level) mesh. The refinable structure that underlies our
approximate representation of a 3D continuous coordinate patch
is an oct-tree (or, in restricted use in two dimensions or even one
dimension, a quad- or binary tree, respectively) that enables cell-
by-cell refinement. Several constructs—cell lists, submeshes,
and meshes—provide increasingly comprehensive interfaces to
the oct-tree structure underlying a single refinable coordinate
patch. These facilitate such tasks as the storage of physical
variables associated with the oct-tree, overlapping of work
and communication of ghost cell data, and the transfer of
data between different levels of refinement (prolongation and
restriction). Each level of refinement is independently domain-
decomposed.

We have developed a rather generic solver for hyperbolic bal-
ance equations, whose divergence structure naturally lends it-
self to a finite-volume approach naturally suited to the handling
of shocks. We have implemented second-order spatial recon-
struction and the HLL and HLLC Riemann solvers, along with
a second-order Runge–Kutta time stepper. (In the immediate
vicinity of a shock and when running with the HLLC option,
the Riemman solver automatically switches to HLL in the direc-
tions transverse to shock propagation; the greater diffusivity of
the HLL solver successfully eliminates odd–even decoupling.)
Our single-level solver aims for efficiency both by overlapping
work and communication in a message-passing environment and
by working on data stored in contiguous memory when possible.
In the context of mesh refinement, recursive, multilevel evolu-
tion works from the bottom up, with two steps at Level i + 1
for each step at Level i. (After the first step at Level i + 1 there
is a temporary step bringing Level i bringing it into synchrony
with Level i + 1, in order that updated values for a coarse/fine
boundary layer surrounding Level i + 1 can be obtained.)

We use the hyperbolic balance equation solver on several test
problems involving a nonrelativistic polytropic fluid. Included
are smooth fluid tests that enable us to determine the order
of accuracy of the hydrodynamics solvers; discontinuous fluid
tests that test the ability of GenASiS to handle shocks and other
discontinuities; and fluid instability tests that demonstrate how
two instabilities of astrophysical relevance grow and develop
in GenASiS simulations. On the whole, these tests illustrate the
basic competence of the classes relevant to nonrelativistic hydro-
dynamics; demonstrate second-order convergence for problems
with smooth analytic solutions, and first-order convergence for
problems with discontinuous solutions; and produce results that
are comparable to and consistent with those presented by other
authors. The superiority of the HLLC Riemann solver over the
HLL Riemann solver is especially apparent in the contact dis-
continuity test (Figure 6) and tests of the KH (Figures 19–22)
and RT (Figure 23) instabilities. The Sedov–Taylor blast wave
exercises the functionality of our explicit multi-level time step-

ping algorithm for the evolution of balance equations with cell-
by-cell fixed-mesh refinement (Figures 14–17); that large dy-
namic ranges in time, space, and pressure (or energy density)
have been handled successfully with modest resources suggests
that the multilevel hydrodynamics solver in GenASiS will be
well suited to the hydrodynamics needs of core-collapse super-
nova simulations. As we continue the development of GenASiS,
the test problems presented here will form the basis for a com-
prehensive regression test suite in Bellerophon (Lingerfelt et al.
2011), in order to ensure continued reliable performance and
guard against the unintentional introduction of code bugs.

Subsequent papers in this series will document additional
functionality that will make GenASiS suitable for multiphysics
simulations of core-collapse supernovae and other astrophysical
problems. Development of additional solvers and physics is
already underway. A nuclear equation of state is one obvious
requirement. We have implemented MHD capabilities in a “draft
version” of GenASiS (Endeve et al. 2012a), which has been
used to study SASI-driven magnetic field amplification (Endeve
et al. 2010, 2012). In the current version of GenASiS we plan
to implement MHD capabilities based on the HLLD solver
(Miyoshi & Kusano 2005; Mignone et al. 2009). For Newtonian
gravity, a multi-level Poisson solver will use a distributed fast
Fourier transform solver (Budiardja & Cardall 2011) for the
coarsest level, in conjunction with finite-difference solves on
individual levels, in a multigrid approach. Work on general
relativistic gravity—a major undertaking—is also underway in
GenASiS (Tsatsin et al. 2011). The greatest challenge of all
is neutrino transport. Building on our group’s past experience
(Liebendörfer et al. 2004; Bruenn et al. 2009, 2013), theoretical
developments (Cardall & Mezzacappa 2003; Cardall et al.
2005a), and initial forays into transport in the earliest version
of GenASiS (Cardall et al. 2005b; Cardall 2009), we plan to
deploy a multigrid approach here as well, using a multigroup
Variable Eddington Tensor formulation (Cardall et al. 2013b;
Endeve et al. 2012b) with closures of increasing sophistication,
ultimately culminating in a full “Boltzmann solver” (Cardall
et al. 2013a).

In conjunction with additional physics capabilities—partic-
ularly radiation transport—future work will also report further
progress on the goal of more fully exploiting the evolving nature
of the world’s leading capability supercomputers with GenA-
SiS. We address the architectural features of distributed memory
and distributed processing capacity with MPI in the work pre-
sented here. But parallelism through MPI alone will become
untenable as many-core architectures become more prevalent;
additional or alternative possibilities for parallelism must be
identified and implemented through “threading” (for instance,
with OpenMP) in order to exploit the possibilities of many-
core processing units. Heterogeneous processing capacity, in
which co-processors or accelerators provide (in principle) large
flop counts with low power consumption, may also become a
common feature of capability machines; exploitation of these
architectures will require reconsideration of algorithms in light
of, for example, memory and data transfer issues associated
with use of such accelerators. We expect to address many-core
and accelerator architectures more directly as the capabilities for
radiation transport are further developed, for it is here that mem-
ory and processing requirements will increase greatly beyond
the requirements of hydrodynamics reported here.

Finally, the suitability of exascale machines for cell-by-cell
AMR remains to be determined. The cost of data movement on
such machines is expected to grow faster than the cost of flops

28



The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February Cardall et al.

on these machines, which may be a disadvantage for cell-by-cell
AMR. On the other hand, the amount of memory may not grow
as quickly as the processing capacity, and cell-by-cell AMR
may prove advantageous in memory-constrained environments.

This research was supported by the Office of Advanced Sci-
entific Computing Research and the Office of Nuclear Physics,
US Department of Energy. This research used resources of the
Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory provided through the INCITE program.

REFERENCES

Adams, J. C., Brainerd, W. S., Hendrickson, R. A., et al. 2008, The Fortran
2003 Handbook: The Complete Syntax, Features and Procedures (London:
Springer), 712

Agertz, O., Moore, B., Stadel, J., et al. 2007, MNRAS, 380, 963
Almgren, A. S., Beckner, V. E., Bell, J. B., et al. 2010, ApJ, 715, 1221
Batten, P., Clarke, N., Lambert, C., & Causon, D. M. 1997, SIAM J. Sci.

Comput., 18, 1553
Beckwith, K., & Stone, J. M. 2011, ApJS, 193, 6
Berger, M., & Collela, P. 1989, JCoPh, 82, 64
Berger, M., & Oliger, J. 1984, JCoPh, 53, 484
Blondin, J. M., & Lufkin, E. A. 1993, ApJS, 88, 589
Blondin, J. M., Mezzacappa, A., & DeMarino, C. 2003, ApJ, 584, 971
Bruenn, S. W., Mezzacappa, A., Hix, W. R., et al. 2009, JPhCS, 180, 012018
Bruenn, S. W., Mezzacappa, A., Hix, W. R., et al. 2013, ApJL, 767, L6
Budiardja, R. D., & Cardall, C. Y. 2011, CoPhC, 182, 2265
Buras, R., Rampp, M., Janka, H.-T., & Kifonidis, K. 2006, A&A, 447, 1049
Burrows, A. 2013, RvMP, 85, 245
Cardall, C., & Mezzacappa, A. 2003, PhRvD, 68, 023006
Cardall, C. Y. 2009, in Numerical Methods in Multidimensional Radiative

Transfer, ed. G. Kanschat, E. Meinköhn, R. Rannacher, & R. Wehrse (Berlin:
Springer), 27

Cardall, C. Y., Endeve, E., & Mezzacappa, A. 2013a, PhRvD, 88, 023011
Cardall, C. Y., Endeve, E., & Mezzacappa, A. 2013b, PhRvD, 87, 103004
Cardall, C. Y., Lentz, E. J., & Mezzacappa, A. 2005a, PhRvD, 72, 043007
Cardall, C. Y., Razoumov, A. O., Endeve, E., & Mezzacappa, A. 2005b, in

Open Issues in Core Collapse Supernova Theory, ed. A. Mezzacappa &
G. M. Fuller (Singapore: World Scientific), 196

Chandrasekhar, S. 1981, Hydrodynamic and Hydromagnetic Stability (Interna-
tional Series of Monographs on Physics; New York: Dover), 652

Couch, S. M. 2013, ApJ, 765, 29
Davis, S. F. 1988, SIAM J. Sci. Stat. Comput., 9, 445
Del Zanna, L., & Bucciantini, N. 2002, A&A, 390, 1177
Del Zanna, L., Bucciantini, N., & Londrillo, P. 2003, A&A, 400, 397
Del Zanna, L., Zanotti, O., Bucciantini, N., & Londrillo, P. 2007, A&A, 473, 11
Duez, M., Liu, Y., Shapiro, S., & Stephens, B. 2005, PhRvD, 72, 024028
Einfeldt, B. 1988, SJNA, 25, 294
Einfeldt, B., Munz, C., Roe, P., & Sjögreen, B. 1991, JCoPh, 92, 273
Endeve, E., Cardall, C. Y., Budiardja, R. D., & Mezzacappa, A. 2010, ApJ,

713, 1219
Endeve, E., Cardall, C. Y., Budiardja, R. D., & Mezzacappa, A. 2012a, JPhCS,

402, 012027
Endeve, E., Cardall, C. Y., Budiardja, R. D., et al. 2012, ApJ, 751, 26
Endeve, E., Cardall, C. Y., & Mezzacappa, A. 2012b, arXiv:1212.4064
Fryer, C. L., Rockefeller, G., & Warren, M. S. 2006, ApJ, 643, 292
Fryxell, B., Olson, K., Ricker, P., et al. 2000, ApJS, 131, 273
Gammie, C. F., McKinney, J. C., & Toth, G. 2003, ApJ, 589, 444
Gittings, M., Weaver, R., Clover, M., et al. 2008, CS&D, 1, 015005
Guilet, J., Sato, J., & Foglizzo, T. 2010, ApJ, 713, 1350
Hanke, F., Mueller, B., Wongwathanarat, A., Marek, A., & Janka, H.-T.

2013, ApJ, 770, 66
Harten, A., Lax, P. D., & Leer, B. V. 1983, SIAMR, 25, 35
Janka, H., Langanke, K., Marek, A., Martinezpinedo, G., & Muller, B. 2007,

PhR, 442, 38
Janka, H.-T. 2012, ARNPS, 62, 407
Janka, H.-T., Hanke, F., Hüdepohl, L., et al. 2012, PTEP, 2012, A309

Käppeli, R., Whitehouse, S. C., Scheidegger, S., Pen, U.-L., & Liebendörfer,
M. 2011, ApJS, 195, 20

Khokhlov, A. 1998, JCoPh, 143, 519
Kotake, K., Sato, K., & Takahashi, K. 2006, RPPh, 69, 971
Kotake, K., Sumiyoshi, K., Yamada, S., et al. 2012a, PTEP, 2012, A301
Kotake, K., Takiwaki, T., Suwa, Y., et al. 2012b, AdAst, 2012, 39
Kurganov, A., Noelle, S., & Petrova, G. 2001, SIAM J. Sci. Comput., 23, 707
Kurganov, A., & Tadmor, E. 2000, JCoPh, 160, 241
Landau, L. D., & Lifshitz, E. M. 1959, Course of Theoretical Physics, Fluid

Mechanics, Vol. 6 (Reading, MA: Addison-Wesley), 536
LeVeque, R. J. 2002, in Finite Volume Methods for Hyperbolic Problems

(Cambridge Texts in Applied Mathematics; Cambridge: Cambridge Univ.
Press), 578

Liebendörfer, M., Messer, O. E. B., Mezzacappa, A., et al. 2004, ApJS,
150, 263

Linde, T. 2002, IJNMF, 40, 391
Lingerfelt, E., Messer, O., Osborne, J., Budiardja, R., & Mezzacappa, A.

2011, Procedia Comput. Sci., 4, 2076
Liska, R., & Wendroff, B. 2003, SIAM J. Sci. Comput., 25, 995
Livne, E., Dessart, L., Burrows, A., & Meakin, C. A. 2007, ApJS, 170, 187
Londrillo, P., & Del Zanna, L. 2004, JCoPh, 195, 17
MacNeice, P. 2000, CoPhC, 126, 330
Mezzacappa, A. 2005, ARNPS, 55, 467
Mignone, A., & Bodo, G. 2005, MNRAS, 364, 126
Mignone, A., Ugliano, M., & Bodo, G. 2009, MNRAS, 393, 1141
Miyoshi, T., & Kusano, K. 2005, JCoPh, 208, 315
Müller, B., Janka, H.-T., & Dimmelmeier, H. 2010, ApJS, 189, 104
Müller, B., Janka, H.-T., & Marek, A. 2012, ApJ, 756, 84
O’Shea, B. W., Bryan, G., Bordner, J., et al. 2005, in Adaptive Mesh

Refinement—Theory and Applications, ed. T. Plewa, T. Linde, & V. G.
Weirs (Lecture Notes in Computational Science and Engineering, Vol. 41;
Berlin: Springer), 341

Price, D. J. 2008, JCoPh, 227, 10040
Quirk, J. J. 1994, IJNMF, 18, 555
Rampp, M., & Janka, H.-T. 2002, A&A, 396, 361
Reid, J. 2007, SIGPLAN Fortran Forum, 26, 10
Ricker, P. M. 2008, ApJS, 176, 293
Rijkhorst, E.-J., Plewa, T., Dubey, A., & Mellema, G. 2006, A&A, 452, 907
Roe, P. 1981, JCoPh, 43, 357
Ryu, D., Jones, T. W., & Frank, A. 2000, ApJ, 545, 475
Scheel, M. A., Pfeiffer, H. P., Lindblom, L., et al. 2006, PhRvD, 74, 104006
Scheidegger, S., Fischer, T., Whitehouse, S. C., & Liebendörfer, M. 2008, A&A,

490, 231
Shu, C., & Osher, S. 1988, JCoPh, 77, 439
Shu, C.-W. 1998, in Advanced Numerical Approximation of Nonlinear Hy-

perbolic Equations, ed. A. Quarteroni (Lecture Notes in Mathematics, Vol.
1697; Berlin: Springer), 325

Sod, G. 1978, JCoPh, 27, 1
Springel, V. 2010a, MNRAS, 401, 791
Springel, V. 2010b, ARA&A, 48, 391
Stone, J. M., Gardiner, T. A., Teuben, P., Hawley, J. F., & Simon, J. B.

2008, ApJS, 178, 137
Stone, J. M., Hawley, J. F., Evans, C. R., & Norman, M. L. 1992, ApJ, 388, 415
Sumiyoshi, K., Yamada, S., Suzuki, H., et al. 2005, ApJ, 629, 922
Swesty, F. D., & Myra, E. S. 2009, ApJS, 181, 1
Takiwaki, T., Kotake, K., & Suwa, Y. 2012, ApJ, 749, 98
Teyssier, R. 2002, A&A, 385, 337
Thompson, T. A., Burrows, A., & Pinto, P. A. 2003, ApJ, 592, 434
Toro, E. F. 1999, NUMERICA: A Library of Source Codes for Teaching,

Research and Applications
Toro, E. F. 2009, Riemann Solvers and Numerical Methods for Fluid Dynamics:

A Practical Introduction (Berlin: Springer), 724
Toro, E. F., Spruce, M., & Speares, W. 1994, ShWav, 4, 25
Tsatsin, P., Budiardja, R., Cardall, C., et al. 2011, in APS Meeting Abstracts,

12006
Wise, J. H., & Abel, T. 2011, MNRAS, 414, 3458
Wongwathanarat, A., Hammer, N. J., & Müller, E. 2010, A&A, 514, A48
Woodward, P., & Colella, P. 1984, JCoPh, 54, 115
Woosley, S., & Janka, T. 2005, NatPh, 1, 147
Zhang, W., Howell, L., Almgren, A., Burrows, A., & Bell, J. 2011, ApJS,

196, 20

29

http://dx.doi.org/10.1111/j.1365-2966.2007.12183.x
http://adsabs.harvard.edu/abs/2007MNRAS.380..963A
http://adsabs.harvard.edu/abs/2007MNRAS.380..963A
http://dx.doi.org/10.1088/0004-637X/715/2/1221
http://adsabs.harvard.edu/abs/2010ApJ...715.1221A
http://adsabs.harvard.edu/abs/2010ApJ...715.1221A
http://dx.doi.org/10.1137/S1064827593260140
http://dx.doi.org/10.1137/S1064827593260140
http://dx.doi.org/10.1088/0067-0049/193/1/6
http://adsabs.harvard.edu/abs/2011ApJS..193....6B
http://adsabs.harvard.edu/abs/2011ApJS..193....6B
http://adsabs.harvard.edu/abs/1989JCoPh..82...64B
http://adsabs.harvard.edu/abs/1989JCoPh..82...64B
http://adsabs.harvard.edu/abs/1984JCoPh..53..484B
http://adsabs.harvard.edu/abs/1984JCoPh..53..484B
http://dx.doi.org/10.1086/191834
http://adsabs.harvard.edu/abs/1993ApJS...88..589B
http://adsabs.harvard.edu/abs/1993ApJS...88..589B
http://dx.doi.org/10.1086/345812
http://adsabs.harvard.edu/abs/2003ApJ...584..971B
http://adsabs.harvard.edu/abs/2003ApJ...584..971B
http://adsabs.harvard.edu/abs/2009JPhCS.180a2018B
http://adsabs.harvard.edu/abs/2009JPhCS.180a2018B
http://dx.doi.org/10.1088/2041-8205/767/1/L6
http://adsabs.harvard.edu/abs/2013ApJ...767L...6B
http://adsabs.harvard.edu/abs/2013ApJ...767L...6B
http://adsabs.harvard.edu/abs/2011CoPhC.182.2265B
http://adsabs.harvard.edu/abs/2011CoPhC.182.2265B
http://dx.doi.org/10.1051/0004-6361:20053783
http://adsabs.harvard.edu/abs/2006A&A...447.1049B
http://adsabs.harvard.edu/abs/2006A&A...447.1049B
http://adsabs.harvard.edu/abs/2013RvMP...85..245B
http://adsabs.harvard.edu/abs/2013RvMP...85..245B
http://adsabs.harvard.edu/abs/2003PhRvD..68b3006C
http://adsabs.harvard.edu/abs/2003PhRvD..68b3006C
http://adsabs.harvard.edu/abs/2013PhRvD..88b3011C
http://adsabs.harvard.edu/abs/2013PhRvD..88b3011C
http://adsabs.harvard.edu/abs/2013PhRvD..87j3004C
http://adsabs.harvard.edu/abs/2013PhRvD..87j3004C
http://adsabs.harvard.edu/abs/2005PhRvD..72d3007C
http://adsabs.harvard.edu/abs/2005PhRvD..72d3007C
http://adsabs.harvard.edu/abs/2005oicc.conf..196C
http://dx.doi.org/10.1088/0004-637X/765/1/29
http://adsabs.harvard.edu/abs/2013ApJ...765...29C
http://adsabs.harvard.edu/abs/2013ApJ...765...29C
http://dx.doi.org/10.1137/0909030
http://dx.doi.org/10.1051/0004-6361:20020776
http://adsabs.harvard.edu/abs/2002A&A...390.1177D
http://adsabs.harvard.edu/abs/2002A&A...390.1177D
http://dx.doi.org/10.1051/0004-6361:20021641
http://adsabs.harvard.edu/abs/2003A&A...400..397D
http://adsabs.harvard.edu/abs/2003A&A...400..397D
http://dx.doi.org/10.1051/0004-6361:20077093
http://adsabs.harvard.edu/abs/2007A&A...473...11D
http://adsabs.harvard.edu/abs/2007A&A...473...11D
http://adsabs.harvard.edu/abs/2005PhRvD..72b4028D
http://adsabs.harvard.edu/abs/2005PhRvD..72b4028D
http://adsabs.harvard.edu/abs/1988SJNA...25..294E
http://adsabs.harvard.edu/abs/1988SJNA...25..294E
http://adsabs.harvard.edu/abs/1991JCoPh..92..273E
http://adsabs.harvard.edu/abs/1991JCoPh..92..273E
http://dx.doi.org/10.1088/0004-637X/713/2/1219
http://adsabs.harvard.edu/abs/2010ApJ...713.1219E
http://adsabs.harvard.edu/abs/2010ApJ...713.1219E
http://adsabs.harvard.edu/abs/2012JPhCS.402a2027E
http://adsabs.harvard.edu/abs/2012JPhCS.402a2027E
http://dx.doi.org/10.1088/0004-637X/751/1/26
http://adsabs.harvard.edu/abs/2012ApJ...751...26E
http://adsabs.harvard.edu/abs/2012ApJ...751...26E
http://www.arxiv.org/abs/1212.4064
http://dx.doi.org/10.1086/501493
http://adsabs.harvard.edu/abs/2006ApJ...643..292F
http://adsabs.harvard.edu/abs/2006ApJ...643..292F
http://dx.doi.org/10.1086/317361
http://adsabs.harvard.edu/abs/2000ApJS..131..273F
http://adsabs.harvard.edu/abs/2000ApJS..131..273F
http://dx.doi.org/10.1086/374594
http://adsabs.harvard.edu/abs/2003ApJ...589..444G
http://adsabs.harvard.edu/abs/2003ApJ...589..444G
http://adsabs.harvard.edu/abs/2008CS&D....1a5005G
http://adsabs.harvard.edu/abs/2008CS&D....1a5005G
http://dx.doi.org/10.1088/0004-637X/713/2/1350
http://adsabs.harvard.edu/abs/2010ApJ...713.1350G
http://adsabs.harvard.edu/abs/2010ApJ...713.1350G
http://dx.doi.org/10.1088/0004-637X/770/1/66
http://adsabs.harvard.edu/abs/2013ApJ...770...66H
http://adsabs.harvard.edu/abs/2013ApJ...770...66H
http://dx.doi.org/10.1137/1025002
http://adsabs.harvard.edu/abs/2007PhR...442...38J
http://adsabs.harvard.edu/abs/2007PhR...442...38J
http://adsabs.harvard.edu/abs/2012ARNPS..62..407J
http://adsabs.harvard.edu/abs/2012ARNPS..62..407J
http://dx.doi.org/10.1093/ptep/pts067
http://adsabs.harvard.edu/abs/2012PTEP.2012aA309J
http://adsabs.harvard.edu/abs/2012PTEP.2012aA309J
http://dx.doi.org/10.1088/0067-0049/195/2/20
http://adsabs.harvard.edu/abs/2011ApJS..195...20K
http://adsabs.harvard.edu/abs/2011ApJS..195...20K
http://adsabs.harvard.edu/abs/1998JCoPh.143..519K
http://adsabs.harvard.edu/abs/1998JCoPh.143..519K
http://adsabs.harvard.edu/abs/2006RPPh...69..971K
http://adsabs.harvard.edu/abs/2006RPPh...69..971K
http://dx.doi.org/10.1093/ptep/pts009
http://adsabs.harvard.edu/abs/2012PTEP.2012aA301K
http://adsabs.harvard.edu/abs/2012PTEP.2012aA301K
http://dx.doi.org/10.1155/2012/428757
http://adsabs.harvard.edu/abs/2012AdAst2012E..39K
http://adsabs.harvard.edu/abs/2012AdAst2012E..39K
http://dx.doi.org/10.1137/S1064827500373413
http://adsabs.harvard.edu/abs/2000JCoPh.160..241K
http://adsabs.harvard.edu/abs/2000JCoPh.160..241K
http://adsabs.harvard.edu/abs/1959thel.book.....L
http://dx.doi.org/10.1086/380191
http://adsabs.harvard.edu/abs/2004ApJS..150..263L
http://adsabs.harvard.edu/abs/2004ApJS..150..263L
http://adsabs.harvard.edu/abs/2002IJNMF..40..391L
http://adsabs.harvard.edu/abs/2002IJNMF..40..391L
http://dx.doi.org/10.1016/j.procs.2011.04.227
http://dx.doi.org/10.1137/S1064827502402120
http://dx.doi.org/10.1086/513701
http://adsabs.harvard.edu/abs/2007ApJS..170..187L
http://adsabs.harvard.edu/abs/2007ApJS..170..187L
http://adsabs.harvard.edu/abs/2004JCoPh.195...17L
http://adsabs.harvard.edu/abs/2004JCoPh.195...17L
http://adsabs.harvard.edu/abs/2000CoPhC.126..330M
http://adsabs.harvard.edu/abs/2000CoPhC.126..330M
http://adsabs.harvard.edu/abs/2005ARNPS..55..467M
http://adsabs.harvard.edu/abs/2005ARNPS..55..467M
http://dx.doi.org/10.1111/j.1365-2966.2005.09546.x
http://adsabs.harvard.edu/abs/2005MNRAS.364..126M
http://adsabs.harvard.edu/abs/2005MNRAS.364..126M
http://dx.doi.org/10.1111/j.1365-2966.2008.14221.x
http://adsabs.harvard.edu/abs/2009MNRAS.393.1141M
http://adsabs.harvard.edu/abs/2009MNRAS.393.1141M
http://adsabs.harvard.edu/abs/2005JCoPh.208..315M
http://adsabs.harvard.edu/abs/2005JCoPh.208..315M
http://dx.doi.org/10.1088/0067-0049/189/1/104
http://adsabs.harvard.edu/abs/2010ApJS..189..104M
http://adsabs.harvard.edu/abs/2010ApJS..189..104M
http://dx.doi.org/10.1088/0004-637X/756/1/84
http://adsabs.harvard.edu/abs/2012ApJ...756...84M
http://adsabs.harvard.edu/abs/2012ApJ...756...84M
http://adsabs.harvard.edu/abs/2008JCoPh.22710040P
http://adsabs.harvard.edu/abs/2008JCoPh.22710040P
http://adsabs.harvard.edu/abs/1994IJNMF..18..555Q
http://adsabs.harvard.edu/abs/1994IJNMF..18..555Q
http://dx.doi.org/10.1051/0004-6361:20021398
http://adsabs.harvard.edu/abs/2002A&A...396..361R
http://adsabs.harvard.edu/abs/2002A&A...396..361R
http://dx.doi.org/10.1145/1243413.1243415
http://dx.doi.org/10.1086/526425
http://adsabs.harvard.edu/abs/2008ApJS..176..293R
http://adsabs.harvard.edu/abs/2008ApJS..176..293R
http://dx.doi.org/10.1051/0004-6361:20053401
http://adsabs.harvard.edu/abs/2006A&A...452..907R
http://adsabs.harvard.edu/abs/2006A&A...452..907R
http://adsabs.harvard.edu/abs/1981JCoPh..43..357R
http://adsabs.harvard.edu/abs/1981JCoPh..43..357R
http://dx.doi.org/10.1086/317789
http://adsabs.harvard.edu/abs/2000ApJ...545..475R
http://adsabs.harvard.edu/abs/2000ApJ...545..475R
http://adsabs.harvard.edu/abs/2006PhRvD..74j4006S
http://adsabs.harvard.edu/abs/2006PhRvD..74j4006S
http://dx.doi.org/10.1051/0004-6361:20078577
http://adsabs.harvard.edu/abs/2008A&A...490..231S
http://adsabs.harvard.edu/abs/2008A&A...490..231S
http://adsabs.harvard.edu/abs/1988JCoPh..77..439S
http://adsabs.harvard.edu/abs/1988JCoPh..77..439S
http://adsabs.harvard.edu/abs/1978JCoPh..27....1S
http://adsabs.harvard.edu/abs/1978JCoPh..27....1S
http://dx.doi.org/10.1111/j.1365-2966.2009.15715.x
http://adsabs.harvard.edu/abs/2010MNRAS.401..791S
http://adsabs.harvard.edu/abs/2010MNRAS.401..791S
http://dx.doi.org/10.1146/annurev-astro-081309-130914
http://adsabs.harvard.edu/abs/2010ARA&A..48..391S
http://adsabs.harvard.edu/abs/2010ARA&A..48..391S
http://dx.doi.org/10.1086/588755
http://adsabs.harvard.edu/abs/2008ApJS..178..137S
http://adsabs.harvard.edu/abs/2008ApJS..178..137S
http://dx.doi.org/10.1086/171164
http://adsabs.harvard.edu/abs/1992ApJ...388..415S
http://adsabs.harvard.edu/abs/1992ApJ...388..415S
http://dx.doi.org/10.1086/431788
http://adsabs.harvard.edu/abs/2005ApJ...629..922S
http://adsabs.harvard.edu/abs/2005ApJ...629..922S
http://dx.doi.org/10.1088/0067-0049/181/1/1
http://adsabs.harvard.edu/abs/2009ApJS..181....1S
http://adsabs.harvard.edu/abs/2009ApJS..181....1S
http://dx.doi.org/10.1088/0004-637X/749/2/98
http://adsabs.harvard.edu/abs/2012ApJ...749...98T
http://adsabs.harvard.edu/abs/2012ApJ...749...98T
http://dx.doi.org/10.1051/0004-6361:20011817
http://adsabs.harvard.edu/abs/2002A&A...385..337T
http://adsabs.harvard.edu/abs/2002A&A...385..337T
http://dx.doi.org/10.1086/375701
http://adsabs.harvard.edu/abs/2003ApJ...592..434T
http://adsabs.harvard.edu/abs/2003ApJ...592..434T
http://adsabs.harvard.edu/abs/1994ShWav...4...25T
http://adsabs.harvard.edu/abs/1994ShWav...4...25T
http://adsabs.harvard.edu/abs/2011APS..APRT12006T
http://dx.doi.org/10.1111/j.1365-2966.2011.18646.x
http://adsabs.harvard.edu/abs/2011MNRAS.414.3458W
http://adsabs.harvard.edu/abs/2011MNRAS.414.3458W
http://dx.doi.org/10.1051/0004-6361/200913435
http://adsabs.harvard.edu/abs/2010A&A...514A..48W
http://adsabs.harvard.edu/abs/2010A&A...514A..48W
http://adsabs.harvard.edu/abs/1984JCoPh..54..115W
http://adsabs.harvard.edu/abs/1984JCoPh..54..115W
http://adsabs.harvard.edu/abs/2005NatPh...1..147W
http://adsabs.harvard.edu/abs/2005NatPh...1..147W
http://dx.doi.org/10.1088/0067-0049/196/2/20
http://adsabs.harvard.edu/abs/2011ApJS..196...20Z
http://adsabs.harvard.edu/abs/2011ApJS..196...20Z

	1. INTRODUCTION
	2. REFINABLE MESH
	3. HYDRODYNAMICS METHODS
	3.1. Reconstruction
	3.2. Riemann Solvers
	3.3. Updates
	3.4. Steps
	3.5. Nonrelativistic Fluid
	3.6. Evolution

	4. HYDRODYNAMICS TESTS
	4.1. Smooth Fluid Tests
	4.2. Discontinuous Fluid Tests
	4.3. Fluid Instability Tests

	5. CONCLUSION
	REFERENCES

