
Using Performance Tools to Support Experiments in
HPC Resilience

Thomas Naughton1,2, Swen Böhm1, Christian Engelmann1, and Geoffroy Vallée1 ?

1 Computer Science and Mathematics Division
Oak Ridge National Laboratory, Oak Ridge, TN, USA.

{naughtont,bohms,engelmannc,valleegr}@ornl.gov
2 School of Systems Engineering

The University of Reading, Reading, UK.

Abstract. The high performance computing (HPC) community is working to
address fault tolerance and resilience concerns for current and future large scale
computing platforms. This is driving enhancements in the programming environ-
ments, specifically research on enhancing message passing libraries to support
fault tolerant computing capabilities. The community has also recognized that
tools for resilience experimentation are greatly lacking. However, we argue that
there are several parallels between “performance tools” and “resilience tools”. As
such, we believe the rich set of HPC performance-focused tools can be extended
(repurposed) to benefit the resilience community.
In this paper, we describe the initial motivation to leverage standard HPC per-
formance analysis techniques to aid in developing diagnostic tools to assist fault
tolerance experiments for HPC applications. These diagnosis procedures help to
provide context for the system when the errors (failures) occurred. We describe
our initial work in leveraging an MPI performance trace tool to assist in provid-
ing global context during fault injection experiments. Such tools will assist the
HPC resilience community as they extend existing and new application codes to
support fault tolerance.

1 Introduction

As large-scale systems increase in size and complexity the high performance comput-
ing (HPC) community is exploring ways to cope with the emerging and projected de-
pendability challenges. This is driving research in the area of fault tolerance (FT) and
resilience for HPC. The efforts range from algorithmic approaches that seek to make ap-
plications failure-oblivious or naturally fault tolerant down to system level changes that
offer modular redundancy and differentiated resource allocations based on resilience re-
quirements. These advances have been highlighted in recent whitepapers and workshop
reports [4, 6, 11, 5].

? This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. De-
partment of Energy. The United States Government retains and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government
purposes.



The dominant programming model for current HPC systems is based on the mes-
sage passing interface (MPI). Therefore it is understandable that a number of efforts
have focused on enhancing MPI to support fault tolerant computing. The resilience
community has also recognized that there is a significant need for tools to assist in
resilience experimentation. Unfortunately, there exist very few resilience tools. Most
existing tools provide monitoring capabilities to gather metrics about the health of a
system, but there is a significant lack of tools to analyze and interpret this data in or-
der to create a global view of the system status and resiliency. Furthermore, users, re-
searchers and system administrators have very different views of the resiliency of the
system and existing tools are not appropriate for capturing meaningful resilience data
for users and researchers (including data mining tools).

Performance tools on the other hand have been widely studied, deployed and used
in the context of HPC. We believe that reusing and possibly extending these “perfor-
mance tools” can assist the HPC resilience community as it begins to develop “re-
silience tools”. Then the rich set of HPC tools for MPI applications can be extended or
repurposed to benefit the resilience community. For instance, much of the focus on re-
silience for MPI is limited to fail-stop errors [2] but tools are lacking to capture the local
& global state of the job in the event of a failure. We believe it is possible to use perfor-
mance tools for MPI on HPC systems to obtain data that can be useful in this resilience
oriented context and expose valuable information about the job state in the context of
failures. In addition, fault injection (FI) is a standard approach to controllably introduce
synthetic errors into a target to aid in the study of the system’s fault tolerance properties.
These FI tools are beginning to emerge in the context of HPC to assist in the study of
application resilience. These tools provide the basis for experimental studies and must
be adapted to work in a large-scale computing context. Beyond the basic mechanisms,
these tools should also provide support for understanding the state of the system under
test to aid in the analysis phase of the experiments. These diagnosis procedures help to
provide context for the system when the errors (failures) occurred.

In this paper, we describe the motivation to leverage an existing HPC technique
to help develop a diagnostic tool that can benefit users and developer experimenting
with MPI FT. We describe our initial work in leveraging an MPI performance trace tool
to assist in providing global context during resilience experiments, e.g., fault-injection
studies. The following sections are organized as follows: in Section 2 we provide back-
ground on resilience and performance tools. In Section 3 we outline the scope and
discuss our initial approach for realizing a diagnostics tool for MPI resilience to as-
sist with application fault tolerance experiments. Then in Section 4 we experiment with
the approach using the MPI Fault Tolerance Working Groups (MPI-FTWG)’s reference
prototype. Section 5 mentions some related work that has leveraged performance ori-
ented tools for resilience experimentation. Finally, in Section 6 we discuss plans for
future work and conclusions for this paper.

2 Background

It is common for HPC software developers to employ tools to aid with the analysis
of their parallel applications. Performance tools enable the user to obtain supplemen-



tary information to better understand the execution behavior of the parallel applications
running on the machine. There are different approaches and methods to obtaining this
performance data. A common approach is to trace the execution, recording the time for
each event under observation. These traces can then be used in postmortem analysis to
identify functions or regions of the execution where performance degraded.

In this section, we present an overview of HPC performance tools, their benefits,
how they could be used in the context of system resiliency, as well as the associated
challenges. We more precisely focus on tracing tools for MPI applications and their
usage for postmortem analysis to gather data about system and application resilience,
as well as the impact of failures on application performance (including the impact on
fault-tolerant or failure-aware applications). The MPI trace file provides useful data for
establishing local and global context for the tasks in the parallel job. This can include
very simple information like which rank(s) failed? Which ranks were communicating
when failure was detected? How long did collectives delay when failure occurred? What
functions had the failed rank(s) executed before the failure? Some of these questions
can be aided by the fact that it is possible to get traces for “golden” and “failed” runs
of the application and do postmortem comparisons. This includes looking at the perfor-
mance/resilience trade-offs for the application. This can help to answer questions like
what MPI functions did the application spend the most time in: (i) during non-error
cases?, and (ii) during error cases?

2.1 Benefits of Performance Tools in the Context of Resilience

As previously said, performance tools typically provide the capability of producing an
execution trace associated with timing details. From this data, it is possible to extract
both the dependencies between parts of the parallel applications (between ranks in the
context of MPI), as well as timing details for the entire parallel application by combin-
ing timing data from all the nodes involved in the computation. This data is useful for
creating diagnostic data, especially when applications incorporate API’s for managing
errors: this trace data can be used to explain where additional time is being spent for
fault-tolerance and possibly to understand the propagation of errors throughout the par-
allel application. Therefore, these “performance tools” may provide the basis to gather
data to assist in developing HPC “resilience tools”.

For instance, in the context of MPI, trace files provide several useful pieces of data
in the form of a log of events from the execution of a parallel job. These are time
stamped event logs that may include all or a subset of the MPI functions that the ap-
plication has executed. The logs provide the ordering of functions on a per rank basis
within the overall job. Depending on the tool used, the traces may also contain the ar-
guments/parameters and return values for the functions. In the case of MPI, this can
include the communicator identifier that is in use. The function entry and exit time are
also included, which is typically used to establish performance bottlenecks and attribute
portions of the overall wall-clock and CPU time to sections of the execution.

In fault injection experiments, establishing the context for the target is crucial to
understanding how failures propagate. The distributed nature of MPI applications adds
to the complexity of the problem because the dependencies are not just in a single loca-
tion, but potentially distributed across multiple processes in the parallel job. Therefore,



establishing the context at both the local and global levels is beneficial. What functions
are executing at the target rank and at other ranks is useful information.

2.2 Challenges Created by the Use of Performance Tools

One challenge of tracing that must be controlled for when using these tools in a re-
silience context is file generation. In some instances, if a rank fails, the trace file might
not be generated. Also, the file may only contain a partial trace for the failed rank(s)
due to buffering. Again, this requires that the methods used to introduce synthetic er-
rors (failures) for resilience testing may have to modify the tracing system to flush logs
before injecting the failure. This idealized failure to aid experiments/data gathering is
typical for FI tools to provide controlled behavior under failure. The point being that
care must be taken to avoid losing or corrupting traces during resilience experiments.

2.3 MPI-FT API

The MPI Fault Tolerance Working Group (MPI-FTWG) has developed additions for
the standard that are to be reviewed for inclusion by the MPI Forum. The extensions
for MPI are defined in the User Level Failure Mitigation (ULFM) proposal, which is
described in [2]. These ULFM extensions provide support for detection and notification
of process failures for communicating MPI processes. These changes are to provide a
basis for building applications that can be extended to be failure-aware, i.e., applications
can be notified of rank failures during their execution. The following provides a very
brief summary of the ULFM extensions.

The proposed specification [2] adds two new MPI error types: MPI_ERR_REVOKED
and MPI_ERR_PROC_FAILED. Failure notification is done through communicator
error handlers. An application can change the default handler (MPI_ERRORS_ARE_
FATAL) to MPI_ERRORS_RETURN and when an error occurs the associated error han-
dler will be called to allow the application to cope with the issue. The ULFM API pro-
vides a function, MPI_Comm_agree(), to establish consensus over a group of pro-
cesses in a communicator. When an application is notified of failed ranks, it can revoke
(MPI_Comm_revoke()) the communicator to force other members of the group to
recognize the failure as well. Once revoked, the failed ranks can be removed from a
communicator by calling MPI_Comm_shrink(), which reduces the size of the asso-
ciated group. This function is similar to MPI_Comm_split(comm,newcomm) with
the live ranks of comm forming the group returned in newcomm. There are functions to
locally acknowledge failures on the communicator (MPI_Comm_failure_ack()),
which quells future notifications about that rank’s failure. Additionally, a user can query
for failures that have been locally acknowledged via MPI_Comm_failure_get_
acked(). The MPI-FTWG’s reference prototype is implemented in Open-MPI.

3 Requirements & Approach

This investigation is interested in adding assistance for applications taking advantage of
the fault-tolerance mechanisms that are being introduced for MPI. We are focused on



two classes of users: application developers and fault-tolerance implementers. We will
limit the error model to fail-stop, where a fault in a MPI process results in a detectable
error that causes the process to fail and stop executing. This is the error model that is
being focused upon by the MPI Forum’s Fault Tolerance Working Group (MPI-FTWG).
The model assumes that failure detection occurs when communication takes place with
the failed process(es), e.g., point-to-point, collectives, etc. (Note, the proposed MPI-
FTWG extensions also provide a method for forcing the propagation of errors to other
members of a group, e.g., MPI_Comm_revoke().)

It can be very difficult to have a global view of the execution state for a parallel job.
A MPI tracing tool provides details about what actions have been performed by each
process (rank) in the parallel job. The results of these traces can provide details on appli-
cation characteristics without doing detailed source code analysis as the actual functions
and the communication patterns among the ranks are available for postmortem analy-
sis. The trace files provide empirical data that can be used to establish dependencies.
The dependencies can then be used to focus further resilience experiments, e.g., fault-
injection campaigns. They can also be used to reason about the state of the application
upon failure and the propagation of the failure throughout the application.

We assume the testing environment can be managed to avoid trace data corruption
and/or loss. This includes controlling the I/O buffering within the trace to ensure we get
output from the ranks even if a failure occurs in the job. This likely requires some addi-
tional considerations when introducing the errors, e.g., ensuring that failing ranks call
exit() before terminating. These are part of the controlled environment that should
be provided to support fault-injection experiments.

Our approach is to instrument each rank of the MPI job to generate trace files.
These files capture all MPI functions at a given rank and the arguments passed to the
functions. The application should not need to be modified for the purpose of gathering
the data, with the exception of possibly adding support to control failure behavior to
ensure traces are generated (i.e., process signal handlers for controlled exit, etc.). The
FT-enabled applications will run in both a standard (failure-free) and failure mode.

To evaluate this approach we have prototyped the idea using existing performance
tools. We used the DUMPI MPI tracing library that was developed by Sandia as part
of their SST/macro project [8]. The traces are recorded in a binary format with utilities
to convert the results to plain text. The library records both the input arguments and
return values1 for the MPI functions. The library can also support tracing individual
functions, and can be configured to record performance counter data using PAPI [8].
There are utilities for converting DUMPI trace files to Open Trace Format (OTF) files,
which could be used with existing performance visualization tools like Vampir.

The DUMPI library was extended to support the MPI-FTWG’s proposed ULFM
extensions [2]. This allows us to gather trace data for the existing MPI-1 and MPI-2
functions supported by DUMPI, as well as the ULFM functions while experimenting
with applications that have been enhanced to take advantage of the FT extensions.

1 The documentation states the return codes are tracked but the version we used only tracked
MPI_Init().



4 Experimentation

We performed a set of experiments on a single desktop and a small Linux testbed to
investigate our approach with trace data for example codes. The tests used a basic
molecular dynamics code (simpleMD) that performs a Lennarad-Jones simulation. The
application is written in C and accepts an input files for parameters (e.g., number of
time steps, report frequency, etc.). At set intervals the rank-0 of the application prints
computed properties (e.g., temperature, kinetic, potential and total energies) and writes
to a checkpoint file. The application support restart from the checkpoint file using a
command-line option on the mpirun command line.

The existing MPI application was enhanced to use the MPI-FTWG’s ULFM API.
The changes added additional error checking to the MPI calls and forced roll-back to
a previous time step if an error occurred during the simulation. This roll-back does not
require a full restart of the application but does use the checkpoint data from previ-
ous successful steps. The application uses a single communicator, but to accommodate
ULFM’s shrink functionality, we duplicate MPI_COMM_WORLD to have a consistent
handle (smd_comm) that can be used throughout the application. Lastly, to simulate
failures, we modified the simpleMD application to force a rank to terminate if the
environment variable ULFM_TEST_FAIL was enabled. In summary, the steps to add
ULFM support to the simpleMD application where:

Step-1: Change all instances of MPI_COMM_WORLD to use “smd comm” handle
Step-2: Change error handlers to MPI_ERRORS_RETURN
Step-3: Modify main simulation loop to recognize process failures

(MPI_ERR_REVOKED and MPI_ERR_PROC_FAILED)
Step-4: On error, all call MPI_Comm_revoke() and MPI_Comm_shrink()
Step-5: Replace “smd comm” handle with newcomm obtained from shrink
Step-6: Roll back to previous iteration and continue from previous checkpoint

4.1 Performance+Resilience

We ran the simpleMD application on our test cluster to gather non-failure and induced-
failure trace data. The non-failure traces showed that the application was entirely sym-
metric and used a large number of explicit synchronizations (MPI_Barrier(). This
is understandable because this is a demonstration application and not necessarily in-
tended to scale to large process counts. We confirmed that none of the ULFM functions
were used during the non-failure runs. We also noticed that during our induced-failure
tests we called the revoke function twice when only one should be necessary. The tests
used 32 nodes of the cluster with 1 rank per node. We could see from the test runs that
the wall-time for the shrink was small (less than a half second) but the time spent in
the two revokes was between 2-5 seconds (approx. 1− 2% of job wall-time) for the job
with 1 of the ranks in the forced failure.

As highlighted in Section 3, the trace data provides useful diagnostic information to
help explain where additional time is being spent for fault-tolerance and to help under-
stand error propagation through the parallel application. The experiments are performed
with specific care to ensure the DUMPI trace files are generated when the failures are
introduced into the ULFM enabled application.



4.2 Global Context for Fault Injection

The application was run under normal circumstances to generate a failure-free trace.
As a way to evaluate the benefits for fault-injection experiments (Section 3), we use
the trace results to identify instances where the communication log could be used to
gain insights into the behavior of the application when performing fault-injection ex-
periments. Here we discuss two instances where the trace data was useful for gathering
global context during two tests. Note, these tests used the simpleMD application with
1000 time steps and status reported every 10 steps.

The trace data in the failure test case can also provide diagnostic information for
instances where the target application hangs and global-context can be useful to deter-
mine what the overall job is doing e.g., which ranks are waiting. This can be an indicator
for portions of the application that are not receiving the notification about rank failures,
i.e., problems with detection. This trace data provided diagnostic information that was
useful when investigating hangs and other unexpected behavior.

During experiments with the ULFM enhanced application we ran a basic test that
caused a specific rank to fail to trigger the ULFM detection and force a rollback to
previous checkpoint. The steps for the test were as follows:

1. Set an environment variable to signal a failure at runtime.
2. Start 3 ranks with executable linked to trace library (’md-dumpi’). The application

runs for 1000 time steps.
3. At hard-coded time step 500, and victim-rank set to rank 1, we simulate a failure by

calling exit().
4. Ranks 0 and 2 detect this process failure via ULFM based on return codes from MPI

calls (MPI_ERR_PROC_FAILED or MPI_ERR_REVOKED). They call revoke and
then shrink to get a new communicator (smd_comm). They fall back to earlier phase
and re-initialize data and restart from a saved checkpoint.

5. The program finishes and you see the same result for the last time step as in the
non-failure case.

After running this test we discovered unexpected results in the trace files. The root
rank (rank 0) finished properly and the trace ended with a call to MPI_Finalize().
The forced-fail rank (rank 1) had a shorter trace that ended in calls to get rank, which
was expected for the error reporting function that prints the rank. However, the other
rank (rank 2) also had a shorter trace with more time steps than rank 1, but fewer
than rank 0 and the final lines were not MPI_Finalize() but instead resembled
that of rank 1. The final result output from the application matched the results from
previous runs so the application exited properly and the fault-tolerance mechanisms
worked. After closer review of output logs we also noticed that the application only
reported the execution time of one rank. This combined with the unexpected results
in the trace files made us review the ULFM enhancements to the application. We then
recognized a flaw in the fault-injection logic as outlined in the steps above. The ULFM
shrink routine reduces the size of the communicator. During the re-initialization the
ranks update their rankID for the restored communicator. The hard-coded selection of
rank 1 for the simulated failure was repeated on the “new” rank 1 (which was originally
rank 2). After adjusting our victim rank selection method, we achieved the expected



results and had both ranks complete properly. The revised steps are as follows (italics
indicate the updated parts:

1. Set an environment variable to signal a failure at runtime.
2. Start 3 ranks with executable linked to trace library (’md-dumpi’). The application

runs for 1000 time steps.
3. At hard-coded time step 500, and victim-rank is set to original MPI_COMM_WORLD

size minus 1 (mcw size - 1), we simulate a failure by calling exit().
4. Ranks 0 and 1 detect this process failure via ULFM based on return codes from MPI

calls (MPI_ERR_PROC_FAILED or MPI_ERR_REVOKED). They call revoke and
then shrink to get a new communicator (smd_comm). They fall back to earlier phase
and re-initialize data and restart from a saved checkpoint.

5. The program finishes and you see the same result for the last time step as in the
non-failure case.

This error in the fault-injection logic was simple but illustrates the sort of problems
that occur without having some global context. The trace files were a clear indication
that the application completed properly but the global job (all ranks) did not operate
as we expected/intended. The fault-tolerance methods were operating properly so we
achieved the correct results and if not for the additional review from the unexpected
trace output we likely would have missed this FI logic error until much later in the
testing process.

The previous tests were performed on a single machine. When we moved the same
tests over to the Linux cluster we encountered unexpected hangs when we forced a
failure. We could tell from the console logs that the rank terminated. We then forced all
the stalled ranks to terminate and write their trace files to disk using a signal handler
to force them to call exit(). When looking at the traces from all the ranks we could
see two useful pieces of information. First, all of the ranks were a few steps beyond the
failed rank (based on trace file time steps) and all live ranks were at the same time step in
a blocking collective. Second, we could see that none of the expected ULFM routines
for communicator revocation or shrinking had occurred. This helped to explain why
they were all stalled in the collective, because the failure had not been propagated to the
different ranks in the job. To remedy this issue we changed our synthetic failure function
to use MPI_Abort(MPI_COMM_SELF,-1) instead of exit(1). This allowed the
failure information to be propagated by the MPI runtime system and allowed the test
to run as expected. This is either a configuration problem for the ULFM prototype or
possibly a bug/limitation of the current prototype code.

5 Related Work

Recently, research on hardware performance characterization has extended preexisting
tools to aid in resilience studies for soft errors in HPC applications. In [10], a fault
injection tool was developed that leveraged the binary instrumentation tool PIN. Their
tool, BIFIT, was used to introduce errors into specific symbols/data-structures of three
real-world HPC applications to study the effect of simulated “soft errors”. They used
the instrumentation tool to inject bit-flips into application-specific regions of global,



heap and stack data objects. They also leveraged the memory profiling support of their
performance tools to identify candidate injection sites. In contrast to this work, we
use performance traces to gather context about the application to identify errors during
fault-injection experiments and to provide global context about the application. The
trace data could also provide candidate ranks for injecting process failures based on the
communication patterns.

The following research has also leveraged HPC performance tools to develop re-
silience and diagnostic tools. The Extreme-scale Simulator (xSim) is a performance
investigation toolkit for running MPI applications at extreme scale by running on exist-
ing machines in a heavily oversubscribed mode [3]. The Sandia SST/Macro [8] project
has similar goals but employs a different approach. Both of these performance tools
employ parallel discrete simulation to study the effects of different hardware character-
istics on application performance as the systems scale up in size. The xSim project is
currently working to extend the performance toolkit to provide support for resilience
investigations. Another related area is that of large-scale debugging and diagnosis for
parallel HPC applications [1, 7]. The challenges are similar in that you must be able to
gather data about the distributed application and provide details for diagnosis to identify
the cause of the error. The AutomaDeD [9] project combined sampling and classifica-
tion/clustering methods to help identify abnormalities that can provide signatures for
software faults (bugs) to aid in debugging while maintaining reasonable performance.

6 Conclusion

There are many well established tools and techniques for performance evaluation and
experimentation with HPC applications. This pre-existing infrastructure can provide
useful data for resilience experiments. We have briefly discussed some initial efforts to
extend an existing MPI tracing package to support the MPI FTWG’s proposed ULFM
specification. The data obtained from these traces can assist application developers and
FT implementers for diagnosing problems and help with postmortem analysis.

To investigate the usefulness of the trace tools we extended a simple molecular
dynamics application to use the ULFM enhancements to MPI. Our initial experiments
used the trace files from the tests to help gain insights into the context of the job during
resilience experiments. The traces helped to highlight two problems we encountered
during fault injection experiments: i) a fault-injection logic error that resulted in correct
results (application output), but more ranks than anticipated being killed; ii) an issue in
failure detection/propagation with the ULFM prototype that was effected by the method
used to simulate the rank failure. The trace files can also help to explain changes to
overall performance when MPI fault tolerance mechanisms are employed.

In future work, we plan to continue our initial efforts to use the MPI tracing library
for other work in resilience tools. The next steps will be to add support for generating
these traces to the Extreme-scale Simulator (xSim). The xSim performance analysis
toolkit was recently extended to support capabilities to assist in resilience studies, e.g.,
process and job fault-injection. Using the simulator will improve control for several
items (e.g., time skew, IO buffer flushing, failure scheduling). Another potential benefit
of traces is that they can provide a “replay” log for communication when combined



with simulation tools. This could allow for reviewing complex interleaving of events
when working on adding fault tolerance to existing codes.

References

1. D. H. Ahn, B. R. de Supinski, I. Laguna, G. L. Lee, B. Liblit, B. P. Miller, and M. Schulz.
Scalable temporal order analysis for large scale debugging. In Proceedings of the ACM/IEEE
Conference on High Performance Computing (SC). ACM, 2009.

2. W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and J. J. Dongarra. An evaluation
of user-level failure mitigation support in MPI. In Proceedings of the 19th European con-
ference on Recent Advances in the Message Passing Interface, EuroMPI’12, pages 193–203,
Berlin, Heidelberg, 2012. Springer-Verlag.

3. S. Böhm and C. Engelmann. xSim: The extreme-scale simulator. In Proceedings of the
International Conference on High Performance Computing and Simulation (HPCS), pages
280–286, Istanbul, Turkey, July 4-8, 2011. IEEE Computer Society, Los Alamitos, CA, USA.

4. J. Daly, B. Harrod, T. Hoang, L. Nowell, B. Adolf, S. Borkar, N. DeBardeleben, M. Elnozahy,
M. Heroux, D. Rogers, R. Ross, V. Sarkar, M. Schulz, M. Snir, P. Woodward, R. Aulwes,
M. Bancroft, G. Bronevetsky, B. Carlson, A. Geist, M. Hall, J. Hollingsworth, B. Lucas,
A. Lumsdaine, T. Macaluso, D. Quinlan, S. Sachs, J. Shalf, T. Smith, J. Stearley, B. Still, and
J. Wu. Inter-Agency Workshop on HPC Resilience at Extreme Scale, February 2012.

5. N. DeBardeleben, J. Laros, J. T. Daly, S. L. Scott, C. Engelmann, and B. Harrod. High-end
computing resilience: Analysis of issues facing the HEC community and path-forward for
research and development. Whitepaper, December 2009.

6. J. Dongarra, P. Beckman, and et al. The international exascale software roadmap. Interna-
tional Journal of High Performance Computer Applications, 25(1), 2011.

7. J. Hursey, C. January, M. O’Connor, P. H. Hargrove, D. Lecomber, J. M. Squyres, and
A. Lumsdaine. Checkpoint/restart-enabled parallel debugging. In Proceedings of the 17th
EuroMPI Conference, Stuttgart, Germany, September 2010.

8. C. L. Janssen, H. Adalsteinsson, S. Cranford, J. P. Kenny, A. Pinar, D. A. Evensky, and
J. Mayo. A simulator for large-scale parallel computer architectures. International Journal
of Parallel and Distributed System Technology, 1(2):57–73, April 2010.

9. I. Laguna, T. Gamblin, B. R. de Supinski, S. Bagchi, G. Bronevetsky, D. H. Anh, M. Schulz,
and B. Rountree. Large scale debugging of parallel tasks with automaded. In Proceedings of
2011 International Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’11, pages 50:1–50:10, New York, NY, USA, 2011. ACM.

10. D. Li, J. S. Vetter, and W. Yu. Classifying soft error vulnerabilities in extreme-scale scien-
tific applications using a binary instrumentation tool. In International Conference for High
Performance Computing, Networking, Storage and Analysis (SC). ACM, November 2012.

11. M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi, P. Balaji, J. Belak, P. Bose,
F. Cappello, B. Carlson, A. A. Chien, P. Coteus, N. A. DeBardeleben, P. Diniz, C. Engel-
mann, M. Erez, S. Fazzari, A. Geist, R. Gupta, F. Johnson, S. Krishnamoorthy, S. Leyffer,
D. Liberty, S. Mitra, T. Munson, R. Schreiber, J. Stearley, and E. V. Hensbergen. Workshop
report: Addressing failures in exascale computing, April 2013.


