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[ Problem Statement } { Standard Monte Carlo Method } { Application to a Reservoir Model }

We are interested in estimating the expectation E[Q] of predicted oil

Uncertainty quantification in reservoir simulation
y 9 production Q by simulating Q at the numerical model with size M.
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Model description

The Standard MC eStimator fOr - QM] iS (a) True Iog(_k) (b) 36 Sample data (c) One reglizat_ion
* A 3-D reservoir model with size ; v " o (a) True permeability field log(k);
60*220*85. 1 N, . e I injection well; P: production well
* The permeability field is strongly EIQ, |= QAA;C = E Q]E;) O o (b) 36 sample data conditioned to
heterogeneous. NMC ~ ™ generate log(k) realizations
* Quantification of the influence of the B (c) One realization of log(k) field
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permeability uncertainty on oil and gas
production is very computationally
expensive. - -

e(0)°) = E|(0k - EL01)

“* The rational management of oil and gas reservoir requires an -

The mean square error (MSE) of the estimator is We are interested in estimating oil

production E[Q)] at location P.
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Variance decays with levels
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understanding of its response to existing and planned schemes _ N VO 1+ (E[Q B Q])2 an<n O
n n [} — 8, i L

of exploitation and operation. MC M M | : |
¢ Such understanding requires analyzing and quantifying the . O - - - U Pk 5 A S

’ _ 2 _ “* First term is variance of the MC estimator, which is small as V[Q,/] oo o

influence of the subsurface uncertainty on predictions of oil and is small and decays inversely with the number of samples N, . g 2 e | F 2 Too

gas production. . . . . o | o |

% Second term is square of the error in expectation between Q,, | o-va-a, “l.e-v=a-a,,

¢ In uncertainty quantification, the commonly used stochastic
techniques like moment equation methods, generalized
polynomial chaos expansions and stochastic collocation

methods are not suitable for the strongly heterogeneous [ Multilevel Monte Carlo Method }
reservoir problem.
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and Q, which can be reduced by using a fine numerical grid.

* h, is cell length of the coarsest level; A is correlation length.
* The coarsest level is determined as h, < A.

* Variance decreasing with levels suggests fewer samples
are needed on computationally costly higher levels.

» The dimension independent Monte Carlo simulation becomes Implementation of MLMC

the choice. The idea of MLMC can be formulated as: o Computational efficiency of MLMC
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Monte Carlo simulation . Based on measurerments [0, 1=E£19,, | Oy =9y ] 1Y, ] ety e A O
of permeability k, random =l =0 z - N O N D N O &
. : : : : . 10’ g>»>x> [
Reaiizations " - realizations of logk are where 1=0,1,...,L is levels, and model grid size My<M.<...<M,=M. = wol
oflogk _ THe % g 05 { generated. 107! S N
g % B _8) -%5 300p
e il 50 | * For each realization of A 1 & R | | ol P
ik ;’*fﬁ 03 logk field, simulate the E[Y,]=Y, = EQé” and E[Y ] =Y, = E(Qz(l) _Qz(-? N S
i %0_2 reservoir model to get No ol Nl = * The number of levels and the number of - S S
‘ rr‘l"f‘ > & 01 simulations of ol samples in each level are determined based 08 08 02 02 &° 01 0050
." ‘ P . t' . . . y .
tﬁk : =\ | ps)roduc |c?n Q. " The MLMC estimator for E[Q,] is on users’ specified RMSE accuracy «. « To achieve the same RMSE. MLMC needs
A * summarize simulate L : . significantly less computational time;
Log of mass flow rate Q o A 5 Analysis of MLMC efficienc ’
ML
resul’ﬁ OIhQ §tﬁtlstlcallyfto E[QM] =~ QM = EYI y ) y * For the same computational time, MLMC can
C tati | ¢ I?)u?(nuln}éertea:z t uce)zcg 0 -0 Y e @ i T Rwe T ) achieve higher accuracy with smaller RMSE.
omputational cos ° YOI The MSE of the MLMC estimator is i .k |
“* The standard MC simulation is very computationally expensive A7\ 2 _ 5 A T P 2 P e | { Conclusions }
because € QM = QM - E[Q] S N 1 B L R S L
* alarge number of model executions is required to achieve - ' e i (. 2 MLMC method can evaluate uncertainty
: L 0 0 T B S . .
convergence, _ EN_IV[Y]+ (E[Q B Q])2 in strongly heterogeneous reservoir
= each model execution is time costly simulated on a fine - / / M * MLMC run more samples on computationally problems efficiently and effectively.
Spatia| gnd to ensure accuracy. [=0 frugal Cogrse grids and a few Samples on & MLMC thod | del ind dent
2 A computationally efficient method is desired to quantify the < First term reflects the advantage of MLMC estimator achieving the computationally expensive fine grids; ‘ MEtnod Is moael independen
same accuracy as standard MC but with less computational cost. * MLMC estimate approaches MC estimate as and flexible to be used together with any

uncertainty of the strongly heterogeneous reservoir problem. more levels considered. MC estimators.




