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Abstract. The rational management of oil and gas reservoirs requires un-3

derstanding of their response to existing and planned schemes of exploita-4

tion and operation. Such understanding requires analyzing and quantifying5

the influence of the subsurface uncertainty on predictions of oil and gas pro-6

duction. As the subsurface properties are typically heterogeneous causing a7

large number of model parameters, the dimension independent Monte Carlo8

(MC) method is usually used for uncertainty quantification (UQ). However,9

the standard MC simulation is computationally expensive because a large10

number of model executions are required and each model execution is costly11

simulated on a fine scale spatial grid to ensure accuracy. This study describes12

a multilevel Monte Carlo (MLMC) method for UQ in reservoir simulation.13

MLMC is a variance reduction technique for the standard MC. It improves14

computational efficiency by conducting simulations on a geometric sequence15

of grids, a larger number of simulations on coarse grids and fewer simula-16

tions on fine grids. In this study, we applied the MLMC method to a highly17

heterogeneous reservoir model modified from the tenth SPE project. We es-18

timated both the expectation and the distribution function of oil production19

to quantify its uncertainty influenced by the subsurface uncertainty. The re-20

sults indicate that MLMC can achieve the same accuracy as standard MC21

with a significantly reduced computational cost, e.g., about 82-97% and 65-22

97% computational savings in estimating expectations and approximating23

distribution functions, respectively. The MLMC method is model indepen-24

dent and can be applied in environmental modeling and many other fields.25
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1. Introduction
{intro}

Reservoir models are routinely employed in prediction of reservoir performance, and26

in making economic and management decisions. These models describe fluid flow (e.g.,27

oil, gas, and water) through the porous medium, so the porous media properties (e.g.,28

permeability, porosity and capillary) have a significant impact on the model outputs such29

as mass flow rate and pressure. Almost all the porous media properties used in reser-30

voir simulation are subject to uncertainty. This uncertainty may be quite large, as direct31

measurements of these properties are available at only a limited number of boreholes and32

indirect measurements inferred from logs, well tests or reservoir data involve averaged33

responses over a large scale. Analyzing the uncertainties of these properties and quantifi-34

cation of their influence on predictions of oil and gas production has become increasingly35

important for petroleum companies to make better field development decisions.36

A wildly used approach for addressing uncertainty in reservoir simulation is to treat37

the under-sampled model parameters (representing one or more porous medium proper-38

ties) as random fields that satisfy certain statistical correlations. This naturally results in39

simulating the reservoir using stochastic partial differential equations. Several stochastic40

techniques like perturbation/moment equation methods [Zhang , 2002], generalized poly-41

nomial chaos expansions [Ghanem, 1998; Laloy et al., 2013], and stochastic collocation42

method [Li and Zhang , 2007; Lin and Tartakovsky , 2009; Zhang et al., 2013] have been43

applied to flow problems in porous media. However, solving the moment equations is very44

time consuming [Franssen et al., 2009] and it appears that the computation time neces-45

sary to solve the equations will be of the same order of magnitude as the time necessary46

to run a sufficient number of Monte Carlo simulations. Moreover, the Guadagnini and47

Neuman solutions [Guadagnini and Neuman, 1999a, b] developed for the moment equa-48
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tion may be poor approximations for strongly heterogeneous model because the equations49

were developed by the perturbation method. The polynomial chaos and stochastic collo-50

cation methods are not suitable for strongly heterogeneous problem either. For the highly51

heterogeneous reservoir, to properly resolve high frequency space fluctuations in model pa-52

rameters, a fine (high-resolution) numerical grid is usually employed to parameterize the53

random parameter field. This results in an extremely large number of model parameters54

especially for a large reservoir domain. Since the computational cost of both polynomial55

chaos and stochastic collocation methods grows exponentially with the number of model56

parameters, and truncating to any feasible numbers leads to large systematic errors, the57

two methods cannot be efficiently and accurately used for the highly heterogeneous prob-58

lems, like the reservoir model considered in this study.59

Hence, standard Monte Carlo (MC) simulation is still chosen in applications. The MC60

method is very attractive for high-dimensional problems due to its dimension indepen-61

dent convergence rate. In MC simulation, the effect of the uncertain model parameters on62

predicted oil and gas production is commonly analyzed in the following way: first equally63

likely random realizations of model parameters are generated; then for each realization the64

reservoir model is executed to obtain one simulation result of the predictions; and last the65

predictive results over all realizations are analyzed statistically, for example, calculating66

the moments, typically the mean and variance, and estimating the distribution functions.67

To generate the random realizations, the parameter fields must be geostatistically charac-68

terized, either based on site characterization data, or by simulating the correlation of the69

field with a covariance or variogram function. The generated parameter fields should be70

conditioned to honor measurements data of these parameters. These MC calculations are,71

however, very computationally expensive not only because one realization is time costly72
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simulated in a fine numerical grid to reflect the high spatial variation, but also because a73

large number of such simulations is required to reduce the sampling variance due to the74

notoriously slow convergence rate of standard MC.75

In this study, we address the problem of expensive computational cost in uncertainty76

quantification for large-scale reservoir models with high dimensional parameter spaces.77

The approach we used is called multilevel Monte Carlo (MLMC) simulation. The basic78

idea of MLMC was first introduced by Heinrich [2001] to accelerate computation of high-79

dimensional, parameter-dependent integrals. Similar ideas were used by Brandt and Ilyin80

[2003] to accelerate statistical mechanical calculations. The MLMC method was then81

extended by Giles [2008] to infinite-dimensional integration related to stochastic differen-82

tial equations arising in mathematical finance. Since then, it has been applied in many83

areas of mathematics related to differential equations, particularly stochastic differential84

equations [Dereich and Heidenreich, 2011; Kloeden et al., 2011; Abdulle and Blumenthal ,85

2013] and several types of stochastic partial differential equations with random forcing86

[Giles and Reisinger , 2012] or random coefficients [Barth et al., 2011; Cliffe et al., 2011;87

Charrier et al., 2013; Teckentrup et al., 2013].88

The MLMC simulation is shown to be very computationally efficient in solving stochas-89

tic differential equations with random parameters, but this state-of-the-art method has90

never been applied in reservoir simulation to evaluate the uncertainty of the predictions.91

In addition, currently the MLMC method is mainly applied to estimate the expectation of92

the interested quantity, and few literature shows its application in estimation of distribu-93

tion function. To our best knowledge, only Giles et al. [2014] discussed the estimation of94

distribution functions and densities with MLMC in their very recent work. In this study,95

we apply the MLMC method to a reservoir model with a highly heterogeneous permeabil-96
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ity field. We are interested in investigating the influence of permeability uncertainty not97

only on the mean value of the oil production but also on its distribution.98

In the estimation of expectation, MLMC exploits the linearity of the expectation, by99

expressing the quantity of interest on the finest spatial grid (e.g., the grid defined at the100

measurement scale) in terms of the same quantity on a geometric sequence of coarser grids,101

each typically twice as fine in each direction as its predecessor. It is easy to understand102

that defining a numerical model in a finest spatial grid, the simulation error is small but103

the computational cost of the mode execution is very large. On a coarser grid, the cost is104

diminished, but also reduced is the simulation accuracy. However, MLMC, by conducting105

simulations on coarse grids, can achieve the same accuracy as standard MC simulated on106

the finest grid. The reason is that MLMC conducts the simulations on a sequence of coarse107

grids, so that the less accurate estimate on the preceding coarser grid can be sequentially108

corrected by estimates on the following finer grids. The dramatic reduction in cost of109

MLMC is due to the fact that many realizations are simulated on the computationally110

frugal coarse grids and a few on the computationally expensive fine grids. In this study,111

we explain how the computational cost is saved by MLMC and demonstrate the significant112

computational efficiency of MLMC in estimating expectation.113

In the estimation of cumulative distribution function (CDF), we first redefine the CDF114

as an expectation of an indicator function, and then use MLMC to estimate the expec-115

tation. The estimation of CDF exhibits two features: (1) we estimate the expectation of116

an indicator function instead of just a real number; and (2) the indictor function has a117

singularity. To deal with the first feature, we first use MLMC to estimate the CDF at118

discrete points, and then extend to a function on a compact interval by interpolation. For119

the second feature, to overcome the influence of the singularity and for MLMC to work120

D R A F T August 19, 2014, 10:55pm D R A F T



D. LU, ET AL.: MULTILEVEL MONTE CARLO METHOD IN OIL RESERVOIR SIMULATION X - 7

well, we introduce a smoothing step, i.e., using a smoothing function to approximate the121

indicator function first and then using MLMC to estimate the expectation of the smooth-122

ing function. In this study, we develop an algorithm of CDF estimation with MLMC. We123

demonstrate that the algorithm can efficiently and reliably estimate the CDF by achieving124

the desired estimation accuracy with significantly less computational time than standard125

MC.126

The rest of the paper is organized as follows. In Section 2, the stochastic problem is127

defined. In Section 3, we discuss the estimation of expectation through MC simulation,128

where we focus on the computational comparison between the standard MC and MLMC.129

In Section 4, both standard MC and MLMC are used to estimate the CDF where a130

reliable and efficient algorithm of MLMC estimation is introduced. In Section 5, the131

MLMC approach is applied to a reservoir model for estimation of the expectation and132

CDF of mass flow rate at a production well, and the results are discussed in Section 6.133

Finally, in Section 7 we give our conclusions.134

The main novelty of our work lies in application of the state-of-the-art MLMC method135

to a challenging computationally demanding and highly parameterized real-world reservoir136

problem. This paper therefore plays an important role in bridging the gap between earlier137

theoretical work on relatively simple simulation models [Cliffe et al., 2011] and more138

complex real-world inference problems. More importantly, we develop an efficient and139

reliable algorithm to estimate the distribution function using MLMC, which is rather new140

and have not been applied before.141

2. Problem Formulation
{s:method}
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Consider a immiscible and incompressible two-phase flow reservoir equation on a d-142

dimensional bounded domain Ω ⊂ Rd(d ≤ 3) with boundary Γ143

∂(φρasa)

∂t
+∇ · (ρava)− qa = 0, where va = −kkra

µa
(∇pa − ρaG),

subject to initial and boundary conditions

sa(x, 0) = s0
a;

pa = p∗a on ΓD; sa = s∗a on ΓD; n · va = v∗a on ΓN .

(1) {problem}144

where a denotes the two phases (e.g., water and oil), ρa, sa,va, qa, kra, µa and pa are the145

density, saturation, Darcy velocity, source/sink term, relative permeability, viscosity and146

pressure of the a-phase, respectively, and G is the gravity vector. Here, porosity φ and147

permeability tensor k are uncertain porous medium properties of a heterogeneous subsur-148

face environment Ω. Flow, e.g., changes in pressure and mass flow rate Q = ρavaA are149

affected by these uncertain properties, where A is across-sectional area. Initial saturation150

distribution is s0
a and boundary condition is jointly prescribed by the Dirichlet (ΓD) and151

Neumann (ΓN) segments of the boundary Γ = ΓD ∪ ΓN with the unit normal vector n.152

In a typical application, the spatially varying parameters, e.g., permeability k(x), are153

measured at limited ns locations xi, i = 1, 2, ..., ns, throughout the domain Ω, where Ω is154

discretized into M̄ cells and represented by xM̄ at measurement scale. Uncertainty about155

parameter values at points xj ∈ xM̄ where measurements are not available (i.e., xj 6= xi)156

can be quantified by treating these parameters as random fields, e.g., permeability field157

k(xM̄), whose ensemble statistics are inferred from available data. In this sense, the158

corresponding problem defined in equation (1) becomes stochastic. Its solutions are given159

in terms of probability density functions (PDFs) or cumulative distribution functions160

(CDFs) of the system states such as pressure and mass flow rate at some locations and161

specific times.162
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In this study, we are interested in investigating the influence of uncertain permeability163

field k(xM̄) on mass flow rate Q at a point (x, t), specifically, in estimating the expectation164

E[Q] and the distribution function F using Monte Carlo simulation. Here, k(xM̄) and Q165

are random variables defined at the measurement scale. Practically, the numerical grid at166

the measurement scale is too fine to make the MC simulation affordable. Therefore, the167

MC simulation is commonly performed on a relatively coarse numerical scale generating168

samples of QM , where M represents grid size at the numerical scale. Then by estimating169

the expectation and distribution function of QM , we approximate E[Q] and F . We assume170

that as M → M̄ , E[QM ]→ E[Q] and F → FM . Define the convergence rate as α, then171

|E[QM −Q]| = c1M
−α, (2) {alpha}172

for a constant c1. The convergence of FM can be defined in the similar way.173

3. Estimation of Expectation
{s:expectation}

In this section, we discuss the estimation of E[Q] using MC simulations. We first174

review the standard MC estimator of E[Q] briefly and then move to introduce the MLMC175

estimator of E[Q] in detail. We focus on comparing the computational cost between these176

two estimators.177

3.1. Standard Monte Carlo simulation for estimating expectation
{s:mc}

Based on the definition of Anderson[Anderson, 1999], Monte Carlo is the art of approx-178

imating an expectation by the sample mean of a function of simulated random variables.179

Mathematically, the standard MC estimator for E[QM ] is180

Q̂MC
M =

1

NMC

NMC∑
i=1

Q
(i)
M , (3) {mc}181
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where Q
(i)
M is the ith sample of QM and NMC is the total number of independent samples.182

Note that Q̂MC
M is an unbiased estimator for E[QM ], i.e., E[Q̂MC

M ] = E[QM ].183

Using equation (3) to estimate E[Q] includes two sources of error: (1) the approximation184

of E[Q] by E[QM ], where the error is related to the spatial discretization in our problem185

(i.e., the difference between the measurement scale M̄ and the numerical scale M), and186

(2) the estimation of the expected value E[QM ] by a finite sample average Q̂MC
M , where187

the difference is caused by the MC sampling error. Here we use mean square error (MSE)188

to measure the accuracy of the standard MC estimator and analyze the contribution of189

both errors.190

The MSE is defined as:191

e(Q̂MC
M )2 = E

[(
Q̂MC
M − E[Q]

)2
]

= E
[(
Q̂MC
M − E[Q̂MC

M ]
)2
]

+
(
E[Q̂MC

M ]− E[Q]
)2

= V[Q̂MC
M ] +

(
E[Q̂MC

M ]− E[Q]
)2

.

(4){mse0} 192

Since V[Q̂MC
M ] = N−1

MCV[QM ] and E[Q̂MC
M ] = E[QM ] , we get193

e(Q̂MC
M )2 = N−1

MCV[QM ] + (E[QM −Q])2 . (5){mse} 194

The first term in the MSE of equation (5) is the variance of the MC estimator, which195

is small as V[QM ] is small and decays inversely with the number of samples NMC . The196

second term is the square of the error in expectation between QM and Q, which can be197

reduced by using a fine grid with large grid size M . When the grid size M is the same as198

M̄ , the second term is zero.199

Hence, a sufficient condition to achieve a root mean square error (RMSE) of ε with200

the MC estimator is that both of the terms in equation (5) are less than ε2/2. This can201

be achieved by choosing NMC ≥ 2V [QM ]ε−2 and M ≥ (ε/(
√

2c1))−1/α where α and c1202
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are defined in equation (2). When M = M̄ , NMC can be chosen as NMC ≥ V[QM ]ε−2.203

Therefore, for the estimator Q̂MC
M being a sufficiently accurate approximation of E[Q] with204

small ε, a large enough number of samples needs to be simulated on a sufficient fine grid.205

This results in huge computational cost.206

Assume that the cost to compute one sample of QM is CM = c2M
γ for a constant c2207

and some γ > 0, the total cost of the standard MC estimator with NMC samples is208

C(Q̂MC
M ) = c2NMCM

γ. (6) {cmc0}209

The γ is the rate of cost increase with M and its value depends on the efficiency of the210

numerical model solver; an efficient solver generally causes a small γ. The γ value can be211

calculated by fitting the curve of CM with changes of M , where CM can be measured by212

the computational time. For a certain numerical solver, the total computational cost of213

the standard MC estimator increases with NMC and M . To reduce the cost, the NMC and214

M should be small, but small NMC and M cause large MSE. So an efficient and effective215

estimator is desired to reduce the computational cost without satisfying the accuracy.216

3.2. Multilevel Monte Carlo simulation for estimating expectation
{s:mlmc_exp}

This section describes the MLMC simulation for estimating E[Q]. First the idea of217

MLMC simulation is introduced, followed by analyzing its computational cost savings218

compared to standard MC, at last the algorithm of MLMC for expectation estimation is219

presented.220

3.2.1. The idea of MLMC221 {s:mlmc1}

The basic idea of MLMC simulation is simple. It exploits the linearity of expectation.222

Instead of estimating E[Q] by E[QM ] on a single fine grid with size M , MLMC estimates223

E[Q] using several E[QM`
] based on an increasing sequence of relatively coarse grids with224
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size M`, i.e., M0 < M1 < ... < ML = M . Here ` = 0, 1, ..., L is called levels and the225

highest level L has the grid size M . The relation of the grids between two consecutive226

levels is M`−1 = s−1M` for ` ≥ 1, where s−1 is the factor by which the grid is coarsened227

at a lower level and s is an integer greater than 1. The value of s affects the efficiency of228

MLMC method and usually s = 2d is an optimal choice for our stochastic problem with229

random coefficients according to Giles [2008], here d is the number of spatial dimensions230

of the simulation domain.231

Mathematically, the idea of MLMC can be formulated as:232

E[QM ] = E[QM0 ] +
L∑
`=1

E[QM`
−QM`−1

] =
L∑
`=0

E[Y`], (7){mlmc} 233

where Y0 = QM0 and Y` = QM`
− QM`−1

for ` ≥ 1. Hereinafter, for notational simplicity234

we represent QM`
with Q` for ` ≥ 0. Equation (7) indicates that the expectation on the235

finest level grid M is equal to the expectation on the coarsest level grid M0 plus a sum236

of difference in expectation between simulations on consecutive levels. In this way, the237

less accurate estimate on the coarsest grid is sequentially corrected by the estimates on238

the following finer grids, thereby achieving the finest grid accuracy. In MLMC, each of239

the expectations on the right-hand side of equation (7) is independently estimated by240

standard MC (equation (3)) using different number of samples. For example, let Ŷ0 be an241

unbiased standard MC estimator for E[Y0] using N0 samples, and let Ŷ` for ` ≥ 1 be the242

MC estimator for E[Y`] using N` samples, then we have243

Ŷ0 =
1

N0

N0∑
i=1

Q
(i)
0 and Ŷ` =

1

N`

N∑̀
i=1

(
Q

(i)
` −Q

(i)
`−1

)
. (8){mc0} 244

The MLMC estimator for E[QM ] is simply245

Q̂ML
M =

L∑
`=0

Ŷ`, (9){qy} 246
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where Ŷ` is calculated based on above equation (8). It is important to note that the247

quantities Q
(i)
` and Q

(i)
`−1 in equation (8) are the samples from the same set of realizations248

of X but simulated on different levels of grid, i.e., on grids M` and M`−1, respectively.249

3.2.2. The computational cost of MLMC250 {s:cost}

Since all the expectations on the right-hand side of equation (7) is independently251

estimated by the standard MC, the variance of the MLMC estimator is V[Q̂ML
M ] =252 ∑L

`=0N
−1
` V[Y`]. We expand the MSE of the MLMC estimator as the way in equations253

(4) and (5), we get254

e(Q̂ML
M )2 =

L∑
`=0

N−1
` V[Y`] + (E[QM −Q])2 . (10) {mlmc_mse}255

Equation (10) indicates that the MSE of the MLMC estimator, like the standard MC256

estimator, consists of two terms, the variance of the estimator due to the sampling error257

and the approximation error due to domain spatial discretization. In comparison between258

equations (5) and (10), the second term is exactly the same and its accuracy depends on259

the value of M . Like the standard MC case, when the grid size M is the same as M̄ , the260

second term is zero. In fact, it is the first term that reflects the advantages of the MLMC261

estimator in achieving the same accuracy as the standard MC but with less computational262

cost.263

For example, we limit the first term of MSE in both equations (5) and (10) as ε1. To264

achieve this accuracy, the number of samples NMC in equation (5) simulated on the grid265

M should be larger than V[QM ]/ε1. Correspondingly, the total cost of standard MC266

defined in equation (6) is at least267

C(Q̂MC
M ) = c2V [QM ]/ε1M

γ. (11) {cmc}268
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For MLMC, assume the cost to compute one sample of Y` on grid M` is CM`
= c2M

γ
` , then269

the total cost of MLMC is270

C(Q̂ML
M ) = c2N0M

γ
0 + c2

L∑
`=1

N`M
γ
` . (12) {cmlmc0}271

To limit the first term of equation (10) to ε1, a sufficient condition is that the value of272

N−1
` V[Y`] at each level ` is less than ε1/(L+ 1), i.e., the number of samples N` is greater273

than V[Y`](L + 1)/ε1. Assume that V[Q`] is approximately constant at different levels,274

i.e., V[Y0] = V[Q0] ≈ V[QM ] (this assumption is verified in our numerical examples in275

Section 5), above equation (12) becomes276

C(Q̂ML
M ) = c2V[QM ](L+ 1)/ε1M0

γ + c2

L∑
`=1

V[Y`](L+ 1)/ε1M`
γ. (13){cmlmc} 277

The cost of MLMC defined in equation (13) is cheaper than that of standard MC278

defined in equation (11) reflected in the following two aspects. (1) At level ` = 0, all279

the samples are simulated on the coarsest grid M0, and the computational cost savings280

of the coarsest grid M0 over the grid M is about (L + 1)(M0/M)γ. Depending on the281

value of γ and how we coarsen the grids, the cost savings can be significantly huge. For282

example, if we coarsen the grid M with factor s = 2d, i.e., M0 = (1/2)LM for 1D problem283

and M0 = (1/2)2LM for 2D problem, then for L = 3 and γ = 1, the cost of MLMC284

at ` = 0 is about 1/2 of standard MC in 1D and 1/16 in 2D. With larger value of γ,285

the cost savings can be improved further. (2) At levels ` ≥ 1, the number of samples286

N` for each level ` is significantly smaller than NMC due to the smaller value of V[Y`]287

compared to V[QM ]. It can be shown that if QM converges to Q in mean square, then288

V[Y`]→ 0 as `→∞. We assume the convergence rate of V[Y`] with ` can be measured by289

a positive value β, i.e., V[Y`] = c3M
−β
` . For a large value of β, the computational saving290

of MLMC can be substantial. The β depends on how sensitive the interested quantity Q291
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to the parameter field XM`
defined in different levels; a small sensitivity of Q generally292

causes a large value of β and correspondingly a fast variance decay. For example, in the293

groundwater simulation of Cliffe et al. [2011], they investigated the influence of uncertain294

conductivity field on a cumulative outflow from a region and a flux rate at the center of295

the region using MLMC. Their results indicated that the estimation of expectation of the296

cumulative outflow gives a larger cost saving than that of the flux rate at the center of297

the region. Practically, β can be calculated by fitting the curve of V[Y`] with changes of298

M`.299

To sum up, if the variance V[Y`] decays faster with ` than the cost CM`
increases, i.e., if300

β > γ, the first term of equation (13) at level ` = 0 will be dominant. In this case, the cost301

savings of MLMC compared to standard MC will be asymptotically (M0/M)γ, reflecting302

the ratio of the costs of simulations on the coarsest grid compared to those on the finest303

grid used. On the other hand, if the variance V[Y`] decays slower than CM`
increases, i.e.,304

if β < γ, the second term of equation (13) at the highest level L will be dominant, and the305

cost savings of MLMC compared to standard MC will be asymptotically V[YL]/V[QM ].306

Therefore, in both cases the MLMC estimator significantly improves the computational307

efficiency. Giles [2008] and Cliffe et al. [2011] presented a theorem about how much308

efficiency can be improved by the MLMC estimator for different relations between β and309

γ.310

3.2.3. The procedure of MLMC for estimating expectation311 {s:procedure1}

Before we step into the procedure of the MLMC simulation, we first discuss three312

fundamental issues related to the MLMC algorithm: (1) how to choose the coarsest level313

of grid M0 to obtain the largest cost savings, (2) how many levels should be used to314
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achieve a desired accuracy, and (3) what is the optimal number of samples for each level315

to minimize the overall variance for a fixed cost.316

In MLMC theory, there is no requirement of the choice of M0. In practical application,317

generally the coarsest grid M0 can be chosen as small as the simulation allows. The318

coarser the grid is, the more levels can be included in the MLMC estimator, and thus the319

larger the potential cost savings are with respect to the standard MC. In our problem,320

this choice depends on the regularity of the covariance function of the permeability field321

and on the correlation length. The permeability field considered in this study varies on a322

very fine scale and is highly oscillatory due to the sparse measurement data, so when the323

grid is coarse enough that the length of a grid cell is larger than the correlation length,324

this coarse grid does not yield a good representation of the problem and including it in325

the MLMC estimator can lead to a larger cost than necessary. For example, when the326

coarsest grid M0 is coarse enough, it is possible that the variance V[Y`] at a certain level327

` is larger than V[QM ]. In this situation, the contributions to the computational cost of328

the MLMC estimator from the level ` and lower levels will be greater than those using329

the standard MC, rendering the inclusion of the lower levels meaningless. As discussed in330

Section 5.2, it turns out that for our problem the optimal choice for the coarsest grid is331

such that its cell length is slightly smaller than the correlation length of the permeability332

field.333

The answers to the last two questions are related to the desired accuracy of the MLMC334

estimator. To achieve a MSE of ε2, both terms in equation (10) have to be less than ε2/2.335

According to Giles [2008], to make the second term in equation (10) smaller than ε2/2,336

the level L is suggested increasing till337

max
{
s−1|ŶL−1|, |ŶL|

}
< ε/
√

2(s− 1), (14){term2} 338
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where s is the factor discussed at the beginning of Section 3.2.1, and ε is a user-specified339

RMSE accuracy.340

According to Giles [2008] and Cliffe et al. [2011], treating the N` as continuous variables,341

the variance of the MLMC estimator (i.e., the first term in equation (10)) is minimized342

for a fixed computational cost by choosing343

N` = c4

√
V[Y`]/CM`

, (15) {nl}344

where c4 is a constant and CM`
= c2M

γ
` as defined before. To make

∑L
`=0N

−1
` V[Y`] ≤ ε2/2,345

the optimal N` is chosen as346

N` ≥ 2ε−2
√

V[Y`]/M
γ
`

(
L∑
`=0

√
V[Y`]M

γ
`

)
, (16) {term1}347

when ML < M̄ according to equation (15). When ML = M̄ , the second term in equation348

(10) is zero and the first term less than ε2 can achieve the RMSE accuracy ε. So in this349

case,350

N` ≥ ε−2
√

V[Y`]/M
γ
`

(
L∑
`=0

√
V[Y`]M

γ
`

)
. (17) {term12}351

Putting together the elements discussed above, the MLMC algorithm to estimate expec-352

tations can be implemented in practice as follows:353

Algorithm I:354

1. Start with L = 0;355

2. Estimate V[YL] by the sample variance using an initial set of NL = 1000 samples;356

3. Determine the optimal N` for each level ` = 0, 1, ..., L based on equation (16) or357

(17);358

4. Evaluate extra samples Y` at each level as needed for new N`;359

5. If L ≥ 1, test for convergence using equation (14);360
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6. If L < 1 or it is not converged, set L = L+ 1 and go back to step 2.361

7. Stop when converged or the grid size ML hits the measurement scale size M̄ .362

Note that in above algorithm, for each itexration with L increasing the N` increases363

for all levels based on equation (16). So in step 4, the appropriate number of increased364

additional samples needs to be evaluated and the estimate of V[Y`] needs to be updated.365

The updated V[Y`] is then used in step 3 to calculate N` if step 3 is revisited. In addition,366

the accuracy of the estimate of V[Y`] at each level depends on the size of the initial sample367

set. The large the sample size, the more accurate the estimate and in the meantime the368

larger the computational cost. It is possible that for a large value of ε, the initial NL at a369

higher level L may be larger than necessary causing a waste of computational time. So it370

is suggested adjusting the initial sample set NL in above step 2 based on the user-specify371

accuracy of ε.372

4. Estimation of Distribution Function
{s:cdf}

In this section, for the continuous random variable Q, we discuss the estimation of its373

cumulative distribution function (CDF) F on a compact interval [U0, U1], with U0 < U1374

being fixed throughout this section.375

In definition, the CDF of a continuous random variable Q can be expressed as an integral376

of its probability density function p(Q) as follows:377

F (q) =

∫ q

−∞
p(Q)dQ. (18){cdf0} 378

This integral can be formulated as an expectation of an indicator function f(q) in the379

following way,380

F (q) = E[f(q)] =

∫ +∞

−∞
f(q)p(Q)dQ, where f(q) =


1, for [−∞, q]

0, for (q,+∞]
(19){cdf1} 381

D R A F T August 19, 2014, 10:55pm D R A F T



D. LU, ET AL.: MULTILEVEL MONTE CARLO METHOD IN OIL RESERVOIR SIMULATION X - 19

Thus, we can use standard MC and MLMC simulation as discussed above to estimate the382

CDF, F (q).383

4.1. Standard Monte Carlo simulation for estimating CDF
{s:mc_cdf}

To estimate F (q) on a compact interval [U0, U1], the algorithm of standard MC works as384

follows: first generate NMC independent samples QM on a certain numerical grid M ; then385

use sample mean of the indicator function f(q) (i.e., the empirical distribution function386

of QM) for F (q) estimation at finite t points with U0 = u1 < u2 < · · · < ut = U1, that is,387

FMC
M,t (q) =

1

NMC

NMC∑
i=1

1{Q(i)
M ≤ q} =

Number of samples ≤ q

Total number of samples NMC

, (20) {mc_cdf}388

where q = {u1, u2, · · · , ut}; and last use interpolation to get the entire CDF estimation.389

The standard MC estimator FMC
M,t (q) has two main sources of errors, the interpolation390

error of using Ft to approximate F and the MC error in estimation of Ft with the MC391

estimator FMC
M,t , where the MC error, like equation (5), can be further expanded into two392

parts, the sampling error and spatial discretization error. To sum up, the mean square393

error of FMC
M,t can be expressed as,394

E‖F − FMC
M,t ‖2

∞ ≤ E‖F − Ft‖2
∞︸ ︷︷ ︸

eMC
1

+ E‖Ft − FMC
M,t ‖2

∞

≤ eMC
1 + ‖logtN−1

MCV[fM,t]‖∞︸ ︷︷ ︸
eMC
2

+ ‖E[fM,t − ft]‖2
∞︸ ︷︷ ︸

eMC
3

,
(21)395

where ‖ · ‖∞ denotes the maximum norm on Rt. When the numerical grid M is chosen396

as the same as measurement scale M̄ , the discretization error eMC
3 = 0. In this case, a397

sufficient condition to achieve a RMSE accuracy of ε is that both interpolation error eMC
1398

and sampling error eMC
2 are less than ε2/2.399

When cubic spline interpolation is used at t equidistant points between [U0, U1], the400

interpolation error ‖F −Ft‖∞ is bounded by
‖F (4)(x)‖∞

4!
4x4, where 4x = (U1−U0)/(t−401
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1). So to achieve the interpolation error eMC
1 = ‖F − Ft‖2

∞ ≤ ε2/2, t can be chosen as402

t ≥ (U1 − U0)/(
24ε√

2‖F (4)(x)‖∞
)1/4 + 1. To achieve the sampling error eMC

2 ≤ ε2/2, NMC403

can be chosen as NMC ≥ 2ε−2logt‖V[fM,t]‖∞.404

4.2. Multilevel Monte Carlo simulation for estimating CDF
{s:mlmc_cdf}

When using MLMC to estimate the CDF, i.e., E[f(q)], a smoothing step is necessary on405

every level for computational efficiency. As discussed above, the dramatic computational406

cost savings of MLMC are due to the fact that the variance at each level ` for ` ≥ 1 (i.e.,407

the variance of difference of estimated quantity between ` and `−1) is smaller than that in408

standard MC (i.e., the variance of estimated quantity itself). For the indicator function409

f(q) the variance at location q is large because of the discontinuity and application of410

MLMC to f(q) directly would barely improve computational efficiency. So, we first use a411

smoothing function to approximate f(q) to reduce the variance, and then apply MLMC412

to estimate the expectation of the smoothing function to obtain the CDF estimation.413

We assume the density function p(Q) is r-times continuously differentiable on [U0, U1].414

According to Giles et al. [2014], the smoothing function is a rescaled translation of function415

g(q) which can be defined as follows:416

(1) g(q) = 1 for q < −1 and g(q) = 0 for q > 1;417

(2) For q ∈ [−1, 1], g(q) is a r+1 degree polynomial whose coefficients can be determined418

by solving the equation
∫ 1

−1
qjg(q)dq = (−1)j/(j + 1), for j = 0, . . . , r − 1;419

(3) If r is even, the function g(q) is the same for r and r + 1.420

Rescaling the function g(q) with a smoothing factor δ, g((Q − q)/δ) is the smoothing421

function used to approximate the indicator function f(q) defined in equation (19). The422

smoothing factor δ plays an important role in MLMC estimation. The larger the δ is,423

the smoother the function, consequently the smaller the variance. So using a smoothing424
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function with a large δ, MLMC can be very computationally efficient, but in the same time425

the estimated CDF may deviate from the true CDF substantially with a large smoothing426

error. The reasonable choice of δ can be determined by limiting the smoothing error to a427

required accuracy as discussed below.428

We denote the MLMC estimator using smoothing as F̃ML
M,t (q). It has three main sources429

of errors, the interpolation error of using Ft to approximate F , the smoothing error of430

using F̃t to approximate Ft and the MLMC error in estimation of F̃t with the MLMC431

estimator F̃ML
M,t , where the MLMC error, like equation (10), can be further expanded into432

two parts, the sampling error and spatial discretization error. To sum up, the mean square433

error of F̃ML
M,t can be expressed as434

E‖F − F̃ML
M,t ‖2

∞ ≤ E‖F − Ft‖2
∞︸ ︷︷ ︸

eML
1

+ E‖Ft − F̃t‖2
∞︸ ︷︷ ︸

eML
2

+ E‖F̃t − F̃ML
M,t ‖2

∞

≤ eML
1 + eML

2 + ‖logt
L∑
`=0

N−1
` V[Y g

`,t]‖∞︸ ︷︷ ︸
eML
3

+ ‖E[gδM,t − gδt ]‖2
∞︸ ︷︷ ︸

eML
4

,
(22) {mse_mlmc_cdf}435

where Y g
`,t = g((QM`

−q)/δ)−g((QM`−1
−q)/δ), gδM,t = g((QM−q)/δ) and gδt = g((Q−q)/δ),436

and q = {u1, u2, · · · , ut} at the t points between [U0, U1] as defined before.437

A sufficient condition to achieve a RMSE accuracy of ε is that all the four errors are

less than ε2/4. When cubic spline interpolation is used like above standard MC case, t

can be chosen as

t ≥ (U1 − U0)/(
12ε

‖F (4)(x)‖∞
)1/4 + 1 (23) {t_mlmc}

by limiting the interpolation error eML
1 smaller than ε2/4.438

The smoothing error eML
2 depends on two parameters, r and δ, of the smoothing func-

tion. For a certain r, the δ value can be determined by setting eML
2 ≤ ε2/4, i.e.,

‖E[f(q)]− E[g((Q− q)/δ)]‖∞ ≤ ε/2. (24) {delta}
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Practically, for each q, we solve the equation
∫ +∞
−∞ p(Q) (f(q)− g((Q− q)/δ)) dQ = ε/2 to439

get a δ value, and finally we take the smallest δ as the value which satisfies the smoothing440

error accuracy requirement and use it to determine the smoothing function for MLMC441

estimation.442

As the t points and smoothing function are determined, we then use MLMC to estimate443

the expectation of the smoothing function at the t points and then extend the estimation444

to the entire interval of [U0, U1] to get the estimated CDF. The estimation of F̃t using445

MLMC can be implemented according to Algorithm I, with the optimal N` chosen as N` ≥446

4ε−2logt
∥∥∥√V[Y g

`,t]/M
γ
`

(∑L
`=0

√
V[Y g

`,t]M
γ
`

)∥∥∥
∞

when ML < M̄ to achieve the sampling447

error accuracy of ε2/4. When ML = M̄ , eML
4 is zero. In this case, the first three errors in448

equation (22) less than ε2/3 can achieve the RMSE accuracy ε. For this accuracy setting,449

the t, δ, andN` values can be determined accordingly.450

Putting together the elements discussed above, the MLMC algorithm to estimate the451

CDF with smoothing function can be implemented in practice as follows:452

Algorithm II:453

1. Determine the estimated interval [U0, U1] based on the approximated CDF with454

an initial set of 1000 samples;455

2. Determine t based on equation (23) where the fourth derivative of F can be456

estimated with the initial samples;457

3. Calculate δ based on equation (24) with a fixed r;458

4. Implement Algorithm I to estimate F̃t at the t points;459

5. Extend the estimation to the entire interval [U0, U1] by interpolation to get the460

estimated CDF.461
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Note that in above algorithm, for a high accuracy requirement, the initial samples used462

in Steps 1 and 2 are better simulated at the highest level. When samples from some coarse463

level are used, the interval in Step 1 may be underestimated and the t value is Step 2464

may be overestimated caused by a large estimated derivative of F . An relative accurate465

estimation of high-order derivatives of F can be calculated according to Schuster [1969].466

The key point in Algorithm II is to calculate δ because δ critically determines the467

MLMC computational efficiency. Giles et al. [2014] calculated δ simply by δ = ε1/(r+1)
468

on the basis of asymptotic analysis. This calculation produces a very small δ value and469

thus results in a marginal time saving of MLMC over the standard MC. We calculate δ470

by setting the smoothing error equal to the required accuracy and solved the equation471

exactly. In this way, the calculated δ is guaranteed to have a largest value and thus results472

in a significant computational efficiency improvement of MLMC estimation.473

5. Application to Oil Reservoir Simulation
{s:example}

To illustrate effectiveness and efficiency of the MLMC method, it is applied to a synthetic474

study of oil reservoir simulation. The synthetic case is designed based on the fine grid475

model from the tenth SPE comparative solution project [Christie and Blunt , 2001]. The476

tenth SPE fine grid problem is chosen for the following reasons: (1) the model has a477

sufficient fine grid making the use of the standard MC simulation on the fine grid solution478

very time costly, though not impossible; (2) full details of the problem and data files are479

available for free downloading from the project website; and (3) it is a typical oil reservoir480

problem and many researches have been worked on this problem [Subbey et al., 2004; Di481

Donato et al., 2003].482

5.1. Model description
{s:model}
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The fine grid geological model from the tenth SPE project is represented in a three-483

dimensional domain with 365.76× 670.56× 51.816 cubic meters (m3) and discretized into484

60 × 220 × 85 cells. There are four production wells at the four corners of the model,485

each producing at 4000 psi bottom hole pressure, and a central injection well with an486

injection rate of 5000 barrels/day. All wells are vertical and completed throughout the487

formation. The simulation of this sufficiently fine model is very time costly. With the488

efficient reactive flow and transport simulator, PFLOTRAN [Mills et al., 2007], running in489

ten processors, it takes about five hours to get the simulation results of the oil production490

after 100 days. This amount of time is almost unaffordable for the MC simulation with491

thousands of simulation runs.492

To demonstrate the MLMC method in a reasonable time and without lose of generality,493

our synthetic model has the following modifications: (1) the synthetic model is two di-494

mensional but with the same spatial discretization as one layer of the fine grid tenth SPE495

model, i.e., total 60× 220 cells in a 365.76× 670.56 m2 domain; (2) the permeability (k)496

field of the synthetic model is taken from the first layer of the fine grid tenth SPE model497

as shown in Figure 1 (a) and the porosity is treated as a constant with value of 0.1; (3)498

to make the 2-D synthetic model physically reasonable, the injection rate of the central499

injection well is revised as 62.90 barrels/day; and (4) the simulation time is reduced to500

2 days since after about 2 days the oil production tends to be steady. With these sim-501

plifications, one simulation takes about 150 seconds with PFLOTRAN running on one502

processor, so a thousand simulation runs can be completely less than two days. This503

amount of computational time is affordable for testing and demonstrating our MLMC504

method for uncertainty quantification. The application of MLMC simulation on the 2-D505

problem can be extended to a 3-D problem easily and straightforwardly.506
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5.2. Application of the MLMC method
{s:application}

We are interested in investigating the influence of the permeability uncertainty on the507

mass flow rate Q of production well P whose location is shown in Figure 1 (a). Specifically,508

we want to estimate the expectation and the CDF of Q using the standard MC and the509

MLMC methods.510

We assume that the random permeability field log(k) is a Gaussian process whose mean511

and covariance structure can be inferred from the 36 synthetic data regularly situated in512

Figure 1 (b). Here we use the entire synthetic data set to infer the covariance structure513

in the aim of capturing the spatial correlation of the log(k) field as accurate as possible.514

The accurate spatial correlation is important in this study because we want to verify515

our statement about the relation between the correlation length and the choice of the516

coarsest level in MLMC. Based on the sample variograms shown in Figure 2, we consider517

two variogram models, exponential (Exp) and spherical (Sph). Both models have two518

parameters, sill and correlation length. They are estimated by fitting the variogram519

models to the sample variograms through the least square estimation. As shown in Figure520

2, the spherical model has better fits in both x- and y-directions than the exponential521

model. Then based on the fitted spherical model and conditioned on the 36 synthetic522

data, random realizations of permeability log(k) field are generated using the sequential523

Gaussian simulation program (SGSIM) in GSLIB [Deutsch and Journel , 1998], where one524

realization is shown in Figure 1 (c). The generated realizations differ from the synthetic525

log(k) field in Figure 1 (a) but at the 36 locations with data available they are exactly526

the same.527

When using standard MC to estimate E[Q] and F , the simulations are conducted at528

the measurement scale with grid size M = 60 × 220 cells. When using MLMC, we set529
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the highest level at the measurement scale and the lower levels have half number of grid530

cells of its preceding higher level in both x- and y-directions, i.e., M`−1 = (1/2)2M` for531

` ≥ 1. The coarsest level M0 is chosen as its cell length h0 smaller than the correlation532

length λ. Based on the fitted spherical model in Figure 2, the correlation length in x-533

and y-directions are λx = 217m and λy = 114m, respectively. So the coarsest level grid534

has 2 cells in x-direction with cell length h0x = 182.88m < λx and 7 cells in y-direction535

with cell length h0y = 95.79m < λy. In this setting, total six levels (level ` = 0, 1, ...5) are536

defined in Figure 3. For simulations on the levels ` < 5 the generated permeability field is537

upscaled using the simple average method. More advanced upscaling methods as reviewed538

in Wen and Gómez-Hernández [1996] can be used and they are expected to improved the539

MLMC efficiency further, but this topic is out of the scope of this study and is deemed540

to pursue in future.541

The coarsest level is chosen as h0 < λ because as the grid coarsened further when the542

cell length h0 is greater than the correlation length λ, the variance V[Y`] at certain ` will543

be greater than V[QM ], making the inclusion of lower levels meaningless with respect to544

computational efficiency. For example, we consider two cases, Case I with h0 < λ and545

Case II with h0 > λ. In Case I the coarsest level has grid 2× 7 and it has total six levels546

as shown in Figure 3. In Case II the coarsest level has grid 1×4 which is one level coarser547

than Case I. So Case II has total seven levels with the six higher levels the same as Case548

I. The behavior of the variance V[Q`] and V[Y`] for all the six levels in Case I and the549

seven levels in Case II are plotted in Figure 4 (a) and (b), respectively.550

Figure 4 (a) indicates that V[Q`] is approximately constant on all levels, numeri-551

cally verifying the assumption V[Q0] ≈ V[QM ] we made above equation (13). The552

variance V[Y`] decreases as the level ` increases and the decay rate β is about 0.3,553
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which is estimated as minus half of the slope of line log2V [Y`] according to relation554

V[Y`] = c3M
−β
` = c3(22`M0)−β. In comparison of V[Q`] and V[Y`], Figure 4 (a) indi-555

cates that the two values get closer as the level decreases, i.e., as the grid cell length556

increases. It seems that when the cell length increases further, the two lines will eventu-557

ally cross and V[Y`] will be larger than V[Q`]. This situation is observed in Figure 4 (b)558

of Case II with the grid coarsening one more level and the cell length h0 > λ. In Figure559

4 (b), at level ` = 1, V[Y`] > V[Q`] ≈ V[QM ], suggesting that further coarsening from560

this level is helpless in improving computational efficiency. Also, when h0 > λ, at level561

` = 0 the variance V[Q`] ceases to be constant and V[Q0] is actually greater than V[Q`]562

for ` > 0.563

Note that not all the six levels defined in Figure 3 are needed for MLMC to achieve a564

desired accuracy. For a low RMSE accuracy requirement with large ε value, the needed565

highest level L for convergence in Algorithm I may be smaller than the defined highest566

level 5. More discussion about the relation between ε and L is presented in Section 6.1.567

The γ value in calculation of N` is estimated based on relation CM`
= c2M

γ
` = c2(22`M0)γ568

where the cost CM`
is measured using the computational time simulated at level M`. As569

shown in Figure 5, the estimated γ is about 0.9, half of the slope of the time increasing570

line. In this study the estimated γ > β, i.e., the computational cost CM`
increases faster571

than the variance V[Y`] decays, suggesting that the cost in the higher levels is dominant.572

6. Results and Discussions
{s:results}

In this section, we compare the results of MLMC with those of standard MC in esti-573

mating the expectation of Q and the CDF of log(Q). log(Q) is used in estimation of CDF574

because the range of Q samples is very wide and a large portion of samples are close to575

zero. All the simulations are conducted with the computer code PFLOTRAN running on576
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one processor. Computational efficiency of MLMC is evaluated from two perspectives: (1)577

the computational time required to obtain an estimate of E[Q] and F within a prescribed578

accuracy, and (2) the accuracy of the estimated E[Q] and F for a given amount of time.579

These two criteria are complementary in that the first criterion is for the situation when a580

specific accuracy is required and a large amount of computational time is affordable while581

the second criterion when limited amount of time is affordable and the accuracy is not a582

serious concern.583

6.1. Estimation of the expectation
{s:ex1}

We first illustrate the algorithm using MLMC to estimate E[Q]. Figure 6 depicts the584

number of levels and the number of samples N` at each level required for the MLMC585

expectation estimator to achieve RMSE accuracy ε = 0.3, 0.2, 0.1, and 0.05. The figure586

indicates that for higher accuracy requirement with smaller ε values, more levels are587

needed and each level needs a larger number of samples for convergence. For example,588

when ε = 0.3, only three levels are sufficient and the number of samples at the highest589

level L = 2 is just 220; when ε = 0.05, all the six levels are needed and the number590

of samples at the highest level L = 5 increases significantly to 1832. In addition, we591

note that for a certain ε the N` decreases as the level ` increases and the decrease rate592

is about a constant independent of the accuracy ε. Equation (16) indicates that the593

decrease rate of N` relies on the variance decay rate β and the cost increase rate γ as594

N` ∝
√
V[Y`]/M

γ
` ∝M

(−β−γ)/2
` . Larger β and γ values cause faster decay of N` resulting595

in larger computational efficiency. This conclusion is consistent with the discussion in596

Section 3.2.2.597

We now evaluate the computational efficiency of the MLMC estimator from the two598

perspectives. Figure 7 plots the RMSE and the computational time for the standard MC599
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and the MLMC estimators. We compare (1) the computational time of the two estimators600

with the RMSE fixed at 0.2, 0.1, and 0.05, and (2) their RMSEs with the time fixed at 25,601

50, and 100 hours. The comparison results are summarized in Table 1. Table 1 indicates602

that to achieve the same RMSE, MLMC needs significantly less computational time, and603

the time savings on average are about 90%. For example, for RMSE=0.1, in comparison604

with the 177.49 hours of standard MC, the time for MLMC is just 15.64 hours with cost605

savings more than 90%. On the other hand, for the same computational time, MLMC606

can achieve higher accuracy with smaller RMSEs than standard MC, and the accuracy607

improvement on average is more than 60%. For example, within 100 hours, the RMSE of608

the standard MC estimator is about 0.158, but for MLMC the RMSE reduces to 0.061.609

The two comparison suggests that MLMC is more efficient in estimating the expectation610

than standard MC.611

We explore reasons of high computational efficiency in the MLMC estimator from two612

aspects, the computational cost in each level and the increase of estimation accuracy with613

inclusion of more levels. Take the results for ε = 0.05 as an example, Figure 8 (a) plots the614

time for one sample run and the required number of samples at all the six levels. The figure615

shows that as the level increases and the grid resolution gets finer, the required time for616

one sample run increases (the red solid line), but in the meantime the required number617

of samples decreases (the dashed blue line). This suggests that MLMC puts the right618

effort where it is needed, i.e., most of model executions conducted on the computationally619

frugal coarse grids (lower levels) and just a few on the computationally expensive fine grids620

(higher levels). In this way, the total computational time is significantly saved compared621

to standard MC which spends all its effort on the computationally most expensive finest622

grid. Though with less computational time, MLMC can achieve the similar estimation623

D R A F T August 19, 2014, 10:55pm D R A F T



X - 30 D. LU, ET AL.: MULTILEVEL MONTE CARLO METHOD IN OIL RESERVOIR SIMULATION

as standard MC because it considers the estimates on a sequence of grids so that the624

less accurate estimates on the preceding coarser grids can be sequentially corrected by625

estimates on the following finer grids. Figure 8 (b) illustrates how the MLMC estimate626

gets closer to the standard MC estimate as more levels included.627

6.2. Estimation of the CDF
{s:ex2}

We first illustrate Algorithm II using MLMC to estimate the CDF of log(Q). To assess628

the accuracy of our Algorithm II, the actually calculated RMSE of the MLMC estimator629

is compared with the desired accuracy ε. Here we take the standard MC results with630

50000 samples simulated on measurement scale as a reference, and evaluate the MLMC631

estimator at five desired accuracy, ε = 0.05, 0.04, 0.03, 0.02, and 0.01. Figure 9 shows the632

estimated CDF of log(Q) based on 1000 samples simulated on the six levels. The figure633

indicates that the estimated CDF from the coarsest level samples Q0 deviates from the634

reference the most, suggesting that the determination of estimation interval and t values635

using the samples of the coarsest level may not be accurate. The estimated CDF based636

on the 1000 samples Q5 of the highest level is very close to the reference, indicating that637

the suggested samples in Steps 1 and 2 of Algorithm II are reasonable in this study. We638

then, based on the 1000 samples of Q5, choose the estimation interval as [−3, 5] since the639

CDF values beyond this interval are almost zero, and determine the t values for different640

ε requirement.641

The calculation of δ requires r in the smoothing function to be determined first. Since642

r is typically unknown in practice and currently there is no theory about the optimal643

choice of r, here we choose a range of r, r = 3, 5, 7, 9, and 11, to illustrate its impact on644

δ. Figure 10 (a) plots δ values for the range of r at the five ε accuracy requirement. The645

figure shows that for a large r value, i.e., constructing the smoothing function with a high646
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degree polynomial, the δ value is large, and this is true for all ε. Though different δ values647

are resulted, the calculated smoothing errors for the range of r are close to each other and648

all meet the accuracy requirement, as shown in Figure 10 (b). The calculated smoothing649

errors are not exactly equal to the error bound due to the numerical error in calculation650

of δ based on equation (24).651

A large δ produced by a large r results in a relatively small variance of Y g
`,t. Figure652

11 (a) shows V[Y g
` ] =

∥∥V[Y g
`,t]
∥∥
∞ for r = 3 (the solid red line), and the relative variance653

reductions of r = 5, 7, 9, 11 compared to r = 3 (the dashed blue lines). The figure indicates654

that V[Y g
`,t] decays with levels and for larger r values, the decay is faster and the variance655

at each level is smaller. The smaller variance and faster decay suggest that a smaller656

number of samples are needed at each level and with the level increases, the required657

number of samples decreases faster. Thus, when using the smoothing function of r = 11,658

MLMC needs less time to achieve the same ε accuracy compared to the case when r = 3,659

as shown in Figure 11 (b). Since the parameters used in Algorithm II are determined by660

limiting the errors smaller than their corresponding required accuracy bounds, the actual661

RMSE of the MLMC estimator is smaller than the ε demand. Figure 11 (c) plots the ratio662

of calculated RMSE and the desired accuracy ε for the range of r. The figure indicates663

that the ratio is below one regardless of r.664

To sum up, the above analysis suggests the following: (1) Algorithm II can be reasonably665

and efficiently used for CDF estimation. Especially, the way we proposed to calculate666

δ significantly improves the computational efficiency. For example, Giles et al. [2014]667

calculated δ as δ = ε1/(r+1), which gives δ = 0.68 for ε = 0.01 and r = 11. This value is668

much smaller than our δ of 3.89 for the same situation as shown in Figure 10 (a). As a669

result, for their small δ value, it requires 553 hours to achieve ε = 0.01, whereas our larger670
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δ only requires 163 hours for the same accuracy demand (Figure 11 (b)), resulting in671

more than three times computational efficiency improvement. (2) For the same ε, MLMC672

requires less time for a large r.673

However, no matter what r value is, the MLMC estimator with smoothing is more674

efficient than the standard MC. Take r = 3 for example, Figure 12 shows that the time675

used by standard MC is significantly more than that used by MLMC to achieve a certain676

accuracy ε. For r = 11, the computational efficiency improvement of MLMC is more677

outstanding. As shown in Table 2, with the RMSE fixed at 0.03, 0.02, and 0.01, the time678

saving of MLMC with r = 3 over standard MC is on average about 86.1% and for r = 11679

the averaged time saving is about 88.3%. This is also observed when we compared the680

RMSE with time fixed. For example, with time of 25, 100, and 150 hours, Table 2 shows681

that MLMC with r = 3 can improve the accuracy on average about 43.7% and for r = 11682

the averaged accuracy improvement is about 48%.683

Thus, due to the computational efficiency, for a limited time the MLMC estimator can684

capture the main features of the true CDF, whereas the standard MC estimator may685

deviate from the true CDF a lot. For example, as shown in Figure 13 (a), with only 0.2686

hours, the estimated CDF of MLMC with r = 3 is close to the reference with a small687

RMSE of 0.05, but with the same time the estimated CDF by standard MC differs from688

the reference dramatically with RMSE about 0.45. The reason is that, this small amount689

of time can only simulate five samples in standard MC case, but it can generate 968,690

501, and 176 samples for the first three levels, respectively in MLMC and this number691

of samples is enough to capture the main features of the underlying CDF. As shown in692

Figure 9, 1000 samples of Q1 from level two can mimic the shape of the reference CDF very693

well. On the other hand, with a large amount of time affordable, both standard MC and694
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MLMC can make a equally good estimation, but MLMC estimator needs a significantly695

fewer time. As shown in Figure 13 (b), the estimated CDFs of standard MC and MLMC696

are equally well, both are close enough to the reference. But to attain the same accuracy,697

MLMC estimator needs only 195.45 hours while standard MC needs 560.83 hours.698

7. Summaries and Conclusions
{s:conclusion}

This paper presents a multilevel Monte Carlo method to improve computational effi-699

ciency of uncertainty quantification. MLMC is a variance reduction technique for the700

standard MC. It improves computational efficiency by conducting simulations on a geo-701

metric sequence of grids, a larger number of simulations on coarse grids and fewer simu-702

lations on fine grids. Thus, this study tackles a challenging problem of the prohibitively703

large computational cost in uncertainty quantification for large-scale applications with704

high dimensional parameter spaces.705

The MLMC method was first applied in a reservoir model to estimate the expectation706

of mass flow rate in a production well. In the estimation of expectation, the MLMC707

estimator can achieve the same accuracy as the standard MC, but requires dramatically708

less computational time with time savings on average about 90%. For the same compu-709

tational time, MLMC can obtain higher accuracy than the standard MC with accuracy710

improvement on average more than 60%.711

We then proposed an algorithm using MLMC to estimate the distribution function.712

The numerical results in the reservoir simulation show that our algorithm is efficient713

and reliable in achieving the desired accuracy. With this algorithm, to achieve the same714

accuracy as the standard MC, MLMC can obtain time savings about 88%. For the same715

time requirement, MLMC can improve accuracy of CDF estimation about 48%. And716
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within a very few computational time, MLMC estimator can capture the main features717

of the distribution.718

The MLMC method is model independent and can be applied in environmental mod-719

eling and many other fields. The underlying multilevel concept is flexible to be used to-720

gether with other sampling techniques such as stratified sampling and quasi Monte Carlo721

methods to further improve computational efficiency. To construct the multiple levels,722

it can use a geometric sequence of grids spatially or a geometric sequence of different723

timesteps temporally. Moreover, there was not special restriction in discretizing the grids724

and timesteps. Provided a suitable hierarchy of levels can be constructed, the MLMC725

estimator is expected to perform equally well on nonuniform and anisotropic problems as726

the uniform and isotropic ones.727

The key for MLMC to improve computational efficiency is that the variance V[Y`] has728

a meaningful decay compared to V[QM ]. For a highly heterogeneous problem with very729

small correlation length, the use of MLMC may barely obtain computational savings. For730

these problems, using a smoother approximation of the random field may be a solution,731

e.g., using the Karhunen-Loève (KL) expansion to generate random field realizations and732

truncating the KL-expansion to a few terms.733
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Table 1. Comparison of computational efficiency between standard MC and MLMC in

estimating expectation. {table1}

Compare computational time for a fixed RMSE

RMSE 0.2 0.1 0.05

Time (h) (MC) 44.38 177.49 709.92

Time (h) (MLMC) 1.35 15.64 124.34

Time saving of MLMC (%) 96.96% 91.19% 82.49%

Compare RMSE for a fixed time

Time (h) 25 50 100

RMSE (MC) 0.279 0.196 0.158

RMSE (MLMC) 0.096 0.084 0.061

Accuracy improvement of MLMC (%) 65.67% 57.00% 61.32%

Time saving of MLMC is calculated as (TimeMC − TimeMLMC)/T imeMC × 100%.

Accuracy improvement of MLMC is calculated as (RMSEMC−RMSEMLMC)/RMSEMC×100%.
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Table 2. Comparison of computational efficiency between standard MC and MLMC in

estimating CDF.{table2}

Compare computational time for a fixed RMSE

RMSE 0.03 0.02 0.01

Time (h) (MC) 49.66 129.29 560.83

Time (h) (MLMC (r=3)) 1.62 4.61 195.45

Time (h) (MLMC (r=11)) 1.45 3.97 163.23

Time saving of MLMC (r=3) (%) 96.75% 96.43% 65.15%

Time saving of MLMC (r=11) (%) 97.07% 96.93% 70.89%

Compare RMSE for a fixed time

Time (h) 25 100 150

RMSE (MC) 0.0449 0.0237 0.0195

RMSE (MLMC (r=3)) 0.0189 0.0150 0.0124

RMSE (MLMC (r=11)) 0.0187 0.0140 0.0108

Accuracy improvement of MLMC (r=3) (%) 57.83% 36.64% 36.57%

Accuracy improvement of MLMC (r=11) (%) 58.40% 41.00% 44.52%

Time saving of MLMC is calculated as (TimeMC − TimeMLMC)/T imeMC × 100%.

Accuracy improvement of MLMC is calculated as (RMSEMC−RMSEMLMC)/RMSEMC×100%.

MLMC (r=3) means when using MLMC to estimate CDF, the smoothing function is constructed

with r equal to 3.
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Figure 1. (a) True log permeability field log(k); I represents the injection well and P is the

production well. (b) Locations of 36 sample data drawn from (a); conditioning on these samples,

the realizations of random log(k) field are generated. (c) An example of one realization of random

log(k) field. {TrueK}
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Figure 2. Sampled and fitted variograms with exponential (Exp) and spherical (Sph) models

in x- and y-directions based on all synthetic permeability log(k) data.{Gamfit}
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Figure 3. Grid size of different level grids used in MLMC. The highest level grid (level 5) has

the same size at the measurement scale. {Levels}
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Figure 4. Plots of V[Q`] and V[Y`] = V[Q` − Q`−1] for each level ` when (a) h0 < λ and (b)

h0 > λ where h0 is the cell length of the coarsest level grid and λ is the correlation length of the

permeability field.{Var_decay}

D R A F T August 19, 2014, 10:55pm D R A F T



D. LU, ET AL.: MULTILEVEL MONTE CARLO METHOD IN OIL RESERVOIR SIMULATION X - 45

0 1 2 3 4 5
−4

−2

0

2

4

6

8

10

Level l

lo
g

2
ti
m

e
 (

s
e
c
o
n
d
)

Fitted γ is about 0.9

Figure 5. Relation between the time used to compute one sample on level ` and the level `.

The slope is roughly 1.8, indicating the increase rate of cost γ ≈ 0.9. {Gamma}
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Figure 7. Achieved RMSE and used computational time by standard MC and MLMC in esti-

mation of E[Q]. Table 1 lists the comparison of computational time between the two estimators

for fixed RMSE, and the comparison of RMSE for fixed time. {Expectation}
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Figure 8. (a) Time for one sample run (red solid line corresponds to left y-axis) and the required

number of samples (blue dashed line corresponds to right y-axis) at the six levels of MLMC; (b)

MLMC estimates of E[Q] with considering different number of levels, and the standard MC

estimate of E[Q].{Time}
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Figure 9. Estimated CDF Flog(Q) based on 1000 samples simulated on the six levels. The

reference CDF estimate is based on 50000 samples simulated on the highest level grid. {CDF0}
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Figure 10. (a) Calculated δ for a range of r at five desired accuracy ε. (b) The smoothing

errors of smoothing functions constructed with different r; the dashed black line is the accuracy

requirement of smoothing error, i.e., error upper bound.{Delta}
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(a) Variance reduction of r=5
Variance reduction of r=7
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(b) Time saving of r=5
Time saving of r=7
Time saving of r=9
Time saving of r=11
Time for r=3
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Figure 11. (a) Variance V[Y g
` ] =

∥∥V[Y g
`,t]
∥∥
∞ decay with levels for r = 3 (red solid line

corresponds to left y-axis) and the relative variance reduction (%) of r = 5, 7, 9, 11 compared to

r = 3 (blue dashed lines correspond to right y-axis). (b) Compuational time used for MLMC

with r = 3 to achieve desired accuracy ε and the relative time savings (%) of r = 5, 7, 9, 11

compared to r = 3. (c) The ratio of calculated RMSE and desired accuracy ε for a range of r. {Var_CDF}
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Figure 12. Achieved RMSE and used computational time of standard MC and MLMC for

CDF estimation. Table 2 lists the comparison of computational time between the two estimators

for fixed RMSE, and the comparison of RMSE for fixed time.{CDF_RMSE}
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Figure 13. Comparison of estimated CDFs between the standard MC and MLMC when (a)

computational time is 0.2 hours and (b) the accuracy requirement δ is 0.01. In (a), for the same

time, the RMSE of standard MC is 0.45 but for MLMC is only 0.05; in (b), for the same desired

accuracy, the time of standard MC is 560.83 hours but for MLMC is only 195.45 hours. {CDF}
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