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Motivation & Challenges 

• High performance computing trends 
–  Bigger machines (e.g., TITAN, upcoming exascale systems) 
–  More complex architectures (e.g., heterogeneous compute nodes) 
–  More failures 

• Runtime environment (RTE) is a crucial software component 
–  Interface between the operating system and scientific simulation 
–  Manage the lifecycle of the scientific simulation 

Is it possible to provide building blocks for the 
study and development of new RTEs? 
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Scalable RunTime Component 
Infrastructure – STCI 

• Goals 
–  Scalable start-up and management of scientific simulations 
–  Resilience/fault tolerance 
–  Ease the study and development of new system tools and/or 

applications for HPC 

• Key characteristics 
–  Modular architecture 
–  Provide reusable components 

•  Illustration with 2 use cases 
–  Alternate MPI runtime 
–  New fault injection tool 
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STCI Architecture 
• Agents 

–  Instantiate both the STCI infrastructure and 
applications/tools 

–  Different “types” of agents 
•  Frontend: user frontend running on user’s terminal 
•  Controller: logical agent representing the job from 

a control point of view 
•  Root agent: privileged agent for resource 

allocation; one per node; non-specific to a job 
•  Session agent: local management of users’ job; 

one per user and per node 
•  Tool agent: instantiation of an application or a tool 

•  Topologies 
–  Represent connections between agents 
–  Examples: trees, meshes, binomial graphs 

Controller Agent 

Root Agent 

Session Agent 

Tool Agent 
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STCI Architecture (2) 
•  Launcher 

–  Deploy a job by creating the necessary agents across the HPC 
platform 

–  Two challenges 
•  Scalable deployment method: by default, a tree-based topology 
•  Method to create the required agents 

– Example: fork, ssh, ALPS 
– On Cray: 

»  Torque gives the list of target compute nodes 
»  ALPS is used to create the RAs 
»  then RAs create other agents 

• Event system 
–  Support for asynchronous execution model 
–  Various progress models available: implicit or explicit progress 
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STCI Architecture (3) 

•  Two communication substrates 
–  One dedicated to bootstrapping 
–  One for the implementations of parallel/distributed services 

• Bootstrapping communication substrate 
–  Requirements 

•  Self-bootstrapping 
•  Reliable and ordered communications 
•  Support sparse connectivity 
•  Support fine-grain monitoring of all communication links (agents may be 

volatile) 
•  Support asynchronous communications 

–  Currently based on a tree topology 
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STCI Architecture (4) 

• Active Message (AM) communication substrate 
–  Requirements 

•  Reliable communications 
•  Blocking/non-blocking send 
•  Avoid data copies 
•  Sparse connectivity 
•  Asynchronous communications 

–  3 different AM APIs with different levels of abstraction 
1.  Point-to-point, non-routed fragment-based communications 
2.  Point-to-point, routed message-based communications 
3.  Stream based (based on a topology), routed message-based 

communications 
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STCI Architecture (5) 
•  Fault tolerance 

–  Failure detection 
•  Inter-node: e.g., mesh topology between compute nodes 
•  Intra-node: e.g., signal based detector 

–  Fault tolerant topology 
•  Topology that tolerates the failure of one or more agent 
•  Ex: binomial graph (BMG) based topology providing redundant 

communication links 
–  Failure notification 

•  Propagate any local notification from detectors 
•  Abstract how the propagation is implemented (ex: broadcast notification, 

tree-based fan-in/fan-out) 
–  Error manager 

•  Implement the consensus policy for failure recovery (ex: terminate on failure) 
•  Local and global recovery managers 
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Use Case – Alternate Runtime for MPI 

• Based on Open-MPI 
–  Replace the default runtime (ORTE) 
–  Benefit the RTE abstraction in Open-MPI 

•  Out-of-band communications 
•  Naming service 

–  RTE mainly used for the deployment of MPI ranks 
•  STCI communication substrates used during bootstrapping 
•  Open-MPI high-performance communication substrates once bootstrapping 

completed 

• Used for the implementation of the fault tolerant MPI 
prototype 
–  Ongoing MPI-3.x standardization 
–  Focusing on user-level failure mitigation (ULFM) 

OPAL 

STCI ORTE 

OMPI 

RTE 



10 Candar’13 

Use Case – Fault Injection Tool 

• Goal 
–  Study the impact of faults 
–  Validate mitigation mechanisms 

• Development of a new tool 
–  Specialized frontend and distributed control 
–  Experiment setup/management 
–  Monitoring and event logging 
–  Fault injection mechanisms, e.g., process kill for process fail-stop 
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Use Case – Fault Injection Tool (2) 

• Users provide a description of the experiment via the 
frontend 

• Session agents implement the target manager, which will 
apply a fault injection mechanism on the target application 

Controller 

Target-Mgr Target-Mgr Target-Mgr 

Target App Target App Target App 

FrontEnd Failure Events  & 
System Logs 
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Conclusion 

• STCI provides a modular architecture that 
–  Tolerates failures at the infrastructure level 

•  give users the opportunity to be notified 
•  Let users decide the appropriate actions 

–  Minimizes the bootstrapping phase during which the entire 
infrastructure is at risk 

–  Eases the design and implementation of HPC tools 
–  Provides all the building blocks for supporting research in 

resilience 

• Used at ORNL to enable research related to resilience 
–  MPI Fault tolerance Working group – ULFM 
–  Resilience tool for HPC via fault injection 
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