
A Runtime
Environment for
Supporting
Research in
Resilient HPC
System Software &
Tools

Geoffroy Vallee,
Thomas Naughton,
Swen Böhm,
Christian Engelmann

2 Candar’13

Motivation & Challenges

• High performance computing trends
–  Bigger machines (e.g., TITAN, upcoming exascale systems)
–  More complex architectures (e.g., heterogeneous compute nodes)
–  More failures

• Runtime environment (RTE) is a crucial software component
–  Interface between the operating system and scientific simulation
–  Manage the lifecycle of the scientific simulation

Is it possible to provide building blocks for the
study and development of new RTEs?

3 Candar’13

Scalable RunTime Component
Infrastructure – STCI

• Goals
–  Scalable start-up and management of scientific simulations
–  Resilience/fault tolerance
–  Ease the study and development of new system tools and/or

applications for HPC

• Key characteristics
–  Modular architecture
–  Provide reusable components

•  Illustration with 2 use cases
–  Alternate MPI runtime
–  New fault injection tool

4 Candar’13

STCI Architecture
• Agents

–  Instantiate both the STCI infrastructure and
applications/tools

–  Different “types” of agents
•  Frontend: user frontend running on user’s terminal
•  Controller: logical agent representing the job from

a control point of view
•  Root agent: privileged agent for resource

allocation; one per node; non-specific to a job
•  Session agent: local management of users’ job;

one per user and per node
•  Tool agent: instantiation of an application or a tool

•  Topologies
–  Represent connections between agents
–  Examples: trees, meshes, binomial graphs

Controller Agent

Root Agent

Session Agent

Tool Agent

5 Candar’13

STCI Architecture (2)
•  Launcher

–  Deploy a job by creating the necessary agents across the HPC
platform

–  Two challenges
•  Scalable deployment method: by default, a tree-based topology
•  Method to create the required agents

– Example: fork, ssh, ALPS
– On Cray:

»  Torque gives the list of target compute nodes
»  ALPS is used to create the RAs
»  then RAs create other agents

• Event system
–  Support for asynchronous execution model
–  Various progress models available: implicit or explicit progress

6 Candar’13

STCI Architecture (3)

•  Two communication substrates
–  One dedicated to bootstrapping
–  One for the implementations of parallel/distributed services

• Bootstrapping communication substrate
–  Requirements

•  Self-bootstrapping
•  Reliable and ordered communications
•  Support sparse connectivity
•  Support fine-grain monitoring of all communication links (agents may be

volatile)
•  Support asynchronous communications

–  Currently based on a tree topology

7 Candar’13

STCI Architecture (4)

• Active Message (AM) communication substrate
–  Requirements

•  Reliable communications
•  Blocking/non-blocking send
•  Avoid data copies
•  Sparse connectivity
•  Asynchronous communications

–  3 different AM APIs with different levels of abstraction
1.  Point-to-point, non-routed fragment-based communications
2.  Point-to-point, routed message-based communications
3.  Stream based (based on a topology), routed message-based

communications

8 Candar’13

STCI Architecture (5)
•  Fault tolerance

–  Failure detection
•  Inter-node: e.g., mesh topology between compute nodes
•  Intra-node: e.g., signal based detector

–  Fault tolerant topology
•  Topology that tolerates the failure of one or more agent
•  Ex: binomial graph (BMG) based topology providing redundant

communication links
–  Failure notification

•  Propagate any local notification from detectors
•  Abstract how the propagation is implemented (ex: broadcast notification,

tree-based fan-in/fan-out)
–  Error manager

•  Implement the consensus policy for failure recovery (ex: terminate on failure)
•  Local and global recovery managers

9 Candar’13

Use Case – Alternate Runtime for MPI

• Based on Open-MPI
–  Replace the default runtime (ORTE)
–  Benefit the RTE abstraction in Open-MPI

•  Out-of-band communications
•  Naming service

–  RTE mainly used for the deployment of MPI ranks
•  STCI communication substrates used during bootstrapping
•  Open-MPI high-performance communication substrates once bootstrapping

completed

• Used for the implementation of the fault tolerant MPI
prototype
–  Ongoing MPI-3.x standardization
–  Focusing on user-level failure mitigation (ULFM)

OPAL

STCI ORTE

OMPI

RTE

10 Candar’13

Use Case – Fault Injection Tool

• Goal
–  Study the impact of faults
–  Validate mitigation mechanisms

• Development of a new tool
–  Specialized frontend and distributed control
–  Experiment setup/management
–  Monitoring and event logging
–  Fault injection mechanisms, e.g., process kill for process fail-stop

11 Candar’13

Use Case – Fault Injection Tool (2)

• Users provide a description of the experiment via the
frontend

• Session agents implement the target manager, which will
apply a fault injection mechanism on the target application

Controller

Target-Mgr Target-Mgr Target-Mgr

Target App Target App Target App

FrontEnd Failure Events &
System Logs

12 Candar’13

Conclusion

• STCI provides a modular architecture that
–  Tolerates failures at the infrastructure level

•  give users the opportunity to be notified
•  Let users decide the appropriate actions

–  Minimizes the bootstrapping phase during which the entire
infrastructure is at risk

–  Eases the design and implementation of HPC tools
–  Provides all the building blocks for supporting research in

resilience

• Used at ORNL to enable research related to resilience
–  MPI Fault tolerance Working group – ULFM
–  Resilience tool for HPC via fault injection

13 Candar’13

Acknowledgment

•  Individuals that contributed to the STCI project, including
Richard Graham, Wesley Bland, Joshua Hursey, Christos
Kartsaklis, Rainer Keller, Gregory Koenig, Pavel Shamis and
Chao Wang.

•  This research is sponsored by the Office of Advanced
Scientific Computing Research; U.S. Department of Energy
and performed at the Oak Ridge National Laboratory, which
is managed by UT-Battelle, LLC under Contract No. DE-
AC05-00OR22725 and used resources of the Center for
Computational Sciences at Oak Ridge National Laboratory.

