A Global View Programming Abstraction for
Transitioning MPI Codes to PGAS Languages

Tiffany M. Mintz, Oscar Hernandez, and David E. Bernholdt

Oak Ridge National Laboratory
1 Bethel Valley Rd
Oak Ridge TN, USA
{mintztm, oscar, bernholdtde}@ornl.gov

Abstract. The multicore generation of scientific high performance com-
puting has provided a platform for the realization of Exascale computing,
and has also underscored the need for new paradigms in coding paral-
lel applications. The current standard for writing parallel applications
requires programmers to use languages designed for sequential execu-
tion. These languages have abstractions that only allow programmers to
operate on the process centric local view of data. To provide suitable
languages for parallel execution, many research efforts have designed
languages based on the Partitioned Global Address Space (PGAS) pro-
gramming model. Chapel is one of the more recent languages to be de-
veloped using this model. Chapel supports multithreaded execution with
high-level abstractions for parallelism. With Chapel in mind, we have
developed a set of directives that serve as intermediate expressions for
transitioning scientific applications from languages designed for sequen-
tial execution to PGAS languages like Chapel that are being developed
with parallelism in mind.

1 Introduction

The prevalence of multicore architectures for scientific computing has ushered in
a new era in high performance computing. The multicore era has been marked
by Peta-scale supercomputing machines with distributed shared memory ar-
chitectures that exploit the advantages of both the data and message passing
parallel paradigms[1]. The distributed shared memory architecture, known as
the Non-Uniform Memory Access (NUMA) architecture [2, 3], is composed of
a distributed yet globally accessible address space that allows all processors to
have direct access to all memory. The address space is distributed such that
each processor has a direct connection to a portion of memory, and is provided
a mapping which allows direct access to memory connected to other processors.
This global mapping enables a fast, direct reference of data stored in memory
partitions connected to other processors (remote data), and even faster access
to data in the processor’s own memory partition (local data). Since the NUMA
architecture is implemented on multicore devices [4-6], several processors are
placed on a chip to form a single compute node with a direct connection to the

S. Poole, O. Hernandez, and P. Shamis (Eds.): OpenSHMEM 2014, LNCS 8356, pp. 120-133, 2014.
© Springer International Publishing Switzerland 2014

Global View Programming Abstraction 121

same memory partition. Each node is effectively a Symmetric Multiprocessor
(SMP) with very fast, uniform access to memory from each processor.

While the multicore, NUMA architecture provides fast data movement and
the potential for easy programmability, the current standard for programming
scientific applications for parallel execution does not truly exploit these advan-
tages. A sufficient programming model would need to provide mechanisms for
managing data locality as well as take advantage of the global view of data
provided by the architecture. Over the years, there has been much attention
given to the need for programming models and languages that provide high level
constructs that map well to scientific applications and provide opportunities for
optimal use of the underlying architecture[7]. A programming model that has
been the basis for much of the research and development of new languages is
Partitioned Global Address Space (PGAS) [8-10]. There has been consistent
research and development of PGAS languages from HPF in the early 90s to
Chapel which debuted about a decade later with new features and functionality
continually being added.

Although PGAS languages have yet to be fully adopted by the general HPC
community, we are encouraged by the continued progress being made in the
development of Chapel [11, 12] and the lessons learned from previous languages
like HPF [13], X10[14] and ZPL[15]. So with a focus on aiding the adoption of
PGAS languages by computational scientists in the HPC community, we have
developed a directives based approach to expressing the global view of local
data distributions and data movement in SPMD codes. This set of directives
will serve as an intermediate step for incrementally transforming scientific codes
from sequential, local view languages to parallel, global view languages.

The directives provide representations for high-level expressions of data distri-
butions, parallel data movement, processor arrangements and processor groups.
These assertions provide high-level constructs for describing the global nature of
an application without programmers having to manage low-level details. The di-
rectives also correlate to high-level structures in Chapel, such as locales, parallel
loops and domain maps so that replacing the directives with Chapel code is easy
and straightforward. In addition to using the directives for describing the global
state, a handle to the global domain is also created with every data distribution
to allow parallel loops and interprocessor communication to be expressed from
the global view using directives. For assertions of interprocessor data movement,
the directives are translated to OpenSHMEM message passing operations, which
provide consistent performance gains over MPI.

In this paper we continue our discussion of PGAS languages in Section 2.
Section 3 gives more specific details about the directives and how they can be
used to create explicit expressions of an application’s global view. Section 4
provides a case study of the directives in stencil and matrix multiply codes.
Section 5 concludes this paper with a summary of our approach.

122 T.M. Mintz, O. Hernandez, and D.E. Bernholdt
2 Implementations of the PGAS Model

Parallel programming models designed for partitioned global address space
(PGAS) languages UPC [16], Global Arrays (GA) [17], Co-Array Fortran (CAF)
[18] Fortran 2008, and Titanium [19], target large distributed memory systems
at different levels of abstraction. The PGAS languages provide a means for ex-
pressing local and global views of data and do not expect the programmer to
provide all the details of data exchange, thus improving productivity. To achieve
high performance, these models may be adapted to operate on a “local”, or frag-
mented, view of data, which entails major code reorganization. These languages
are good for single-sided communication of small to medium size messages since
they are optimized for low message latencies. They map well to data decompo-
sition parallel schemes. However, their adoption has been limited as they have
limited support for hybrid programming models and incremental parallelism.

The DARPA-funded “HPCS” programming languages Fortress [20], Chapel
[21], and X10 [22] were designed to support highly productive programming for
ultra scale HPC systems and merge the concepts of global views of data, tasks
and locality. They provide a wealth of new ideas related to correctness, locality,
efficiency and productivity. These languages offer different levels of expressivity
and abstraction, giving them distinct flavors from the application developer’s
perspective. Yet they have much in common, including the assumption of a hi-
erarchically parallel architecture and a global address space. They allow users to
control the placement of work and data (tasks and data distributions), exploit
ideas from object-oriented programming, and provide efficient synchronization
via transactions. These new languages imply a high learning curve for the user
and may not be intuitive enough for widespread adoption. Many proposed fea-
tures have yet to be tested in real petascale-level applications. Nevertheless,
much can be learned from these efforts and in the longer term, one or more of
them may be adopted.

3 Enabling a Global Perspective

In order to help programmers transition their applications from source code
written with a sequential language and parallelism enabled through the use of
MPI, we have developed a set of directives that are representative of some of the
principal concepts that are expressible using PGAS languages. A few of the key
features of most PGAS languages is the expression of data from a global view,
expressing data distribution patterns, and processor affinity for data movement.
To achieve our goal of providing high-level programming abstractions that map
to PGAS language constructs, we developed directives that provide high-level
descriptions of data distributions, parallel computation and interprocessor data
movement, as well as high level expressions for arranging and grouping proces-
sors. With these directives, the programmer is able to identify the regions of
their application that map well to the high level constructs provided by PGAS
languages, and incrementally transition their source code to these languages.

Global View Programming Abstraction 123

The remainder of this section, gives a description of each directive and how they
may be used in scientific applications.

3.1 Data Distributions

One of the major differences between PGAS languages and sequential languages
is the view of data. Sequential languages provide abstractions for a processor
centric, local view of data; while PGAS languages primarily provide abstractions
for a global view of data. Since the current standard for programming parallel
applications uses sequential languages coupled with message passing library calls,
programmers currently have to write their programs so that their data sets are
pre-distributed, and all subsequent computation and communication is expressed
relative to the distributed local data. In this programming model, there is no
native abstraction for expressing the global view and using this expression to
program applications.

To enable the expression of a global view of data in scientific applications,
we use the data map directive to describe the distribution of data across pro-
cessors. This directive allows the definition of BLOCK, CYCLIC and BLOCK_CYCLIC
distributions, and provides a handle to a global domain that can be used to
access data and perform specific operations from the global view. The clauses
associated with data map are local_data, global domain, distribution and
expand. The notation used to describe local and global data is:

buf<sizel,...,sizeN>:[lowl_idz..high1_idx,...,lowN_idz.. highN_idz],

where buf is the name of a pointer or array, N is the number of dimensions in buf,
sizel,...,sizeN is a list of the size of allocated memory for each dimension (op-
tional for global_domain clause), and low1_idz..highl_idx,...,lowN_idz..highN_idx
is a list of the range of indices for each dimension. The distribution clause
allows the programmer to specify a distribution that corresponds to each dimen-
sion, or specify the distributions in list form to explicitly indicate the distribu-
tion of each dimension (i.e. distribution(NONE, BLOCK) would indicate that
the first dimension is not distributed and the second dimension has a BLOCK
distribution). The expand clause is most applicable for data mappings that re-
quire a ”scratch” space in the local data region. This region can be used to
store regularly accessed data that is resident on another processor but should
be mirrored on the current processor. Halo regions or ghost cells are common
implementations of a scratch space in a data region. Section 4 provides exam-
ples of how data_map is used to describe distributions that are frequently used
in scientific applications.

3.2 Processor Groups and Arrangements

Features such as processor groups and common processor arrangements pro-
vide a basis for which more complex expressions can be built. Our group and
arrange processors directives establish this foundation using succinct expres-
sions that describe how the processors are assembled and ordered.

124 T.M. Mintz, O. Hernandez, and D.E. Bernholdt

To create a processor group, a programmer would provide a group name and
use triplet notation to indicate which processors would be in the group. A simple
example of how the group directive could be used is provided in Fig. 1. The group
that is created serves as a unique identifier for subsequent directive assertions.
Once the group is created it can be mapped to an arrangement, data distribu-
tion, and some expression of computation or interprocessor data movement. If a
group is not created or instanced by a directive, we assume the group to be all
processors.

#pragma global group name(“even procs”) processors(0:nprocs:2)

even_procs
group

Fig. 1. Example using group directive to create the group ’even_proc’

Arranging processors has an equally simple expression which uses a combina-
tion of keywords and intuitively named clauses to describe the processors’ dispo-
sition. This directive supports several arrangements, including Master-Worker,
Grid, Tree, Ring, and List. Each of these arrangements have their own set of
associated clauses for creating the corresponding formations. Table 1 gives a list
of the arrangements and their clauses.

Each arrangement also has a unique set of relationships that can be assigned
based on the values passed to the directive. See Table 1. These relationships help
to describe data movement more concisely and with terminology that is familiar
to the user. Using this directive also relieves the programmer from having to
compute and manage, in some form, the process ids that correspond to these
relationships.

3.3 Data Movement

Once the programmer has defined how the processors will be grouped and how
they will be arranged within the group, expressing data movement using the

Global View Programming Abstraction 125

Table 1. Arrangements, associated clauses and the defined relationships within each
formation

Relationships in

Arrangement Clauses Arrangement
GRID size_x_axis North Neighbor
<1D|2D|3D> size_y_axis South Neighbor
size_z_axis East Neighbor
West Neighbor
MASTER-WORKER master_processor* Master
Worker
Master_Worker
TREE root* Parent
order* Sibling
Children
Root
Leaves
Depth (tree and positional)
RING direction* Previous
Next
LIST direction* Previous

Next
Head
Tail

*indicates optional clauses that have some default behavior defined when not in use

global domain is very straightforward. Configuring the data mapping relative to
the processor arrangement enables a simplified expression of communication and
computation from the global view. To express data movement across processors,
programmers need only assert the update directive. The clauses associated with
this directive are update_domain, update mirror, and on. The on clause is used
to specify the destination of the update.

When specifying a destination, the programmer can leverage the relationships
among processors in the arrangement declared for the group. For example, if
the processors are arranged in a list configuration, the programmer can simply
indicate HEAD, TAIL, NEXT, or PREVIOUS as the destination for the update. To
further support the PGAS programming model, this directive is translated to
an appropriate communication pattern using the OpenSHMEM message passing
library.

As previously stated, the expression of computation is also simplified when us-
ing the global view of data. Defining a global domain allows the expression of
a parallel loop in the form of a forall directive. This directive has the clauses
index_var, domain and expression. The domain clause is used to define the iter-
ation space of the parallel forall loop. A user can specify the global domain created
by the data distribution or express the domain as a range of indices. If an explicit
range is specified, each processor’s iteration space is determined by evenly dis-
tributing the indices in the range according to the number of the processors in
the group. The index_var clause accepts a list if variables used to iterate over the
domain. If the global domain handle is specified in the domain clause, then the
variables’ position in the list corresponds to that dimension in the global domain.
If index ranges are specified in the domain clause, then the variables’ position in
index_var corresponds to the range in the same position of the domain clause.

126 T.M. Mintz, O. Hernandez, and D.E. Bernholdt

The computation in the expression clause is then concurrently executed on each
processor in the group.

4 Preliminary Experiments

As an initial step to demonstrating the simplicity of programming with our global
view directives to incrementally transition applications to a PGAS programming
paradigm, we have chosen two algorithms that are commonly implemented in
scientific applications. The first algorithm is Jacobi’s iterative method for solving
a system of linear equations, and the second algorithm is a dense matrix-matrix
multiplication. We compare C+MPI versions of these algorithms to selective
portions of the algorithms programmed using the directives. These experiments
were executed on a Cray XK7 system with 83 compute nodes. Each node has a
16-core AMD Opteron 6274 processor running at 2.2 GHz with 32 gigabytes of
DDR3 memory, and Cray’s high performance Gemini network.

4.1 2D Jacobi Iterative Solver

The 2D Jacobi iterative solver implements a common data distribution pattern
where the problem space is mapped onto a two dimensional grid and partitioned
across processors typically in block fashion. Points in the grid are updated itera-
tively, but an update may require data in neighboring cells that reside in a par-
tition stored on another processor. This requires frequent remote data accesses
to processors that "own” the neighboring data. So parallel implementations not
only represent the program space as a 2D grid, but the processor formation is
also conceptualized as a 2D grid. While this is a very common distribution and
data access pattern, there are no native programming abstractions in sequential
languages that embody the concept. PGAS languages like Chapel have native
representations of this data distribution, but because of the global view of data,
have no need for explicit point-to-point communication when accessing remote
data.

Using our directives, we were able to explicitly express this distribution of
data while preserving the global view in the program for very simple, unob-
trusive assertions of communication. First we show, in Fig. 2, the difference in
how the 2D Grid arrangement is constructed in the two versions of the algo-
rithm. As you can see, we have been able to greatly reduce lines of code and
programming effort for constructing a 2D Grid. Next, Fig. 3 shows how the
datamap directive was used to express the block data distribution and create
a handle to the global domain. In this assertion, we specify mat as the local
partition of data with plines rows and pcols columns. The ”scratch” space
which will be used to store remote data is defined as an expansion of one row
and one column (in every direction) of the local partition mat, and this data is
to be mirrored in the distribution. The global domain is defined as a 2D matrix
with plines*proc_y rows and pcols*proc_x columns, and is accessible through
the handle Global Matrix. Global Matrix is then used to assert an update of

Global View Programming Abstraction

Directive Assertion of 2D Grid Processor Arrangement

#pragma global arrange_processors arrangement (GRID:2D) \
size_x_axis(proc_x) size_y_axis(proc_y)

C code to mimic 2D Processor Grid

x = myid % proc_x;
y = myid / proc_x;

if(y==0)
north = BORDER;
else

if(y== procy = 1)
south = BORDER;

east = myid + 1;

north = x + (y - 1) * proc_x;

else
south = x + (y + 1) * proc_x;
if(x == 0)
west = BORDER;
else
west = myid - 1;
if(x == proc. x — 1)
east = BORDER;
else

Fig. 2. Comparison of C and directive versions of 2D Grid setup

Local data

[

|

A\

mat mat mat
Global Matrix mat mat mat
mat mat mat

distribution (BLOCK) expand(mat:[1,1]:MIRRORED)

#pragma global data_map local_data(mat<XPLINES,XPCOLS>:[1l..plines, 1..pcols]) \
global_domain(Global_Matrix:[1l..(plines)*proc y, 1..(pceols)*proc x]) N

127

Fig. 3. Depiction of the block distribution created with the directives in the Jacobi

algorithm

128 T.M. Mintz, O. Hernandez, and D.E. Bernholdt

Directive Assertion for Updating Neighbor Data
|#prag:ma global update update mirror(Glcbal Matrix) on(ALL NEIGHBORS)

C+MPI Code to Exchange Data Across Neighboring Processors
if (west != BORDER){
for(i = 0; i < lines; i++)
*(awest + i) = MAT (i, 1)
MPI_Send(awest,lines ,MPI_DOUBLE,west, MSGTYPE,MPI COMM WORLD) ;

}

if (east != BORDER){
for(i = 0; i < lines; i++)
*(aeast + i) = MAT(i, cols - 2);

MPI_Send(aeast,lines MPI_DOUBLE,east, MSCTYPE, MPI_COMM WORLD) ;
}

if (north != BORDER)
MPI_Send(mat+cols,cols MPI_DOUBLE, north, MSGTYPE ,MPI_COMM WORLD) ;

if (south != BORDER)
MPI_sSend(mat+(lines-2)*cols,cols,MPI_DOUBLE,south, MSGTYPE,MPI_COMM_WORLD) ;

if (west != BORDER){
MPI_Recv(awest,lines MPI_DOUBLE,west, MSGTYPE,MPI_COMM WORLD) ;
for(i = 0; i < limes; i++)
MAT(i, 0) = *(awest + i);
}

if (east != BORDER){
MPI_Recv(aeast,lines ,MPI_DOUBLE,east, MSGTYPE ,MPI COMM WORLD) ;
for(i = 0; i < lines; i++)
MAT (i, cols - 1) = *(aeast + i);
)

if(north != BORDER)
MPI_Recv(mat,cols,MPI_DOUBLE,north, MSGTYFE (MPI_COMM WORLD) ;

if (south != BORDER)
MPI Recv(mat+(lines-1)*cols, cols,MPI DOUBLE, socuth, MSGTYPE,MPI COMM WORLD) ;

Fig. 4. Comparison of MPI code and directive assertion for communicating with neigh-
boring processors

the remote data using the keyword ALL_NEIGHBORS to indicate the destination.
Figure 4 shows a comparison of the C+MPI and directive version of this com-
munication. As in Fig. 2 we are again able to greatly reduce the lines of code
and programming effort for expressing this communication.

As for performance, the overhead for creating and managing a 2D grid and the
additional data structures needed for the neighbor communication in the C+MPI
code is approximately 3.7x greater than the overhead to create and manage the
2D grid and block distribution with the directives. This significant difference in
overhead performance is primarily due to the need for additional data structures
to send and receive non-contiguous data in the matrix columns when using MPI
point-to-point communication. Because OpenSHMEM provides strided message
passing operations for point-to-point communication, the directive translation
does not require additional structures for transferring data between east and
west neighbors. So, the overhead performance cost for constructing the topology
and distribution for a Jacobi algorithm using these global view directives is
O(1) since the number of computations and memory accesses needed to assign
neighbors and compute and maintain global offsets and indices in the underlying
translation of the directives is constant on each process even as the number of
processes increase.

Moreover, translating the communication between neighboring processes using
OpenSHMEM put operations provided additional performance improvements

Global View Programming Abstraction 129

over the original C+MPI code which implements MPI_Send and MPI_Recv op-
erations. The OpenSHMEM translation of the directives provided a 2x average
speedup over the MPI implementation of the neighbor communication. The per-
formance results for the overhead and communication are plotted in Fig. 5 and
Fig. 6, respectively.

Jacobi Solver Overhead

b
3
g R
E L
3 St
Q 2064 “B-Directiv s
3
]
¥
£
< JJERNE
50608 b i -/.\- -/.\- - o & a

Number of Processors

Fig. 5. Graph of overhead in C+MPI and directive version of the Jacobi solver

Jacobi Solver Neighbor Communication

./\

\
IR \ /\ B
N ™
N \‘__,\:\\\

Average Execution Time (sec)

Number of Processors

Fig. 6. Graph of neighbor communication time in C+MPI and directive version trans-
lated to OpenSHMEM of the Jacobi solver

4.2 Matrix-Matrix Multiply

The matrix-matrix multiply algorithm has a similar data distribution as the Ja-
cobi algorithm. This distribution is also a block distribution, but only the first
dimension of the 2D space is distributed. The processor arrangement for this
algorithm is a MASTER-WORKER formation where the master also shares the com-
putational workload. Because of its computational characteristics, we were able

130 T.M. Mintz, O. Hernandez, and D.E. Bernholdt

Global View Matrix-Matrix Multiply with Directives

T H global pro (MASTER_WORKER, MASTER SHARES_WORK)
2

3 jpragma global data map local data(a<nrows NCA>:[0..nrows-1,0..NCA-1]) \

4 global_demain(global_a:[0..NRA-1,0..NCA-1]) distribution (BLOCK, NONE)

5

6 j#pragma global data_map local_ data(c<nrows, NCB>:[0..nrows-1,0..NCB-1]) \

7 global domain(global c:[0..NRA-1,0..NCB-1]) distribution(BLOCK, NONE)

8

9 §pragma global forall index var(i, j) domain(global a) \
10 expression(global_a[i] [J] = i+3)
11
12 jpragma global forall index var(i, j) domain(global_¢) \
13 expression(global c[i][3] = 0.0)
14
15 for(k=0; k<NCB; k++)
16 #pragma global forall index var(i, j) domain(global_a) \
17 expression(global c[i] [k] = global c[i][k] + global a[i] [J] * b[3j][k])
pR:}
19 §pragma global update update domain(global c) on(MASTER)

C + MPI Matrix-Matrix Multiply

1 if (taskid == MASTER) {
> .

3

4 ali] [31= i+3;

5

6 offset = (extra > 0) ? averow+l : averow;

7 for (dest=1; dest<numworkers; dest++) {

8 rows = (dest <= extra) ? averowtl : averow;

] MPI_Send(soffset, 1, MPI_INT, dest, FROM MASTER, MPI COMM WORLD) ;

10 MPI_Send (srows, 1, MPI_INT, dest, FROM MASTER, MPI_COMM WORLD) ;

11 MPI_send (sa[offset][0], rows*NCA, MPI DOUBLE, dest, FROM MASTER, MPI_COMM WORLD) ;
12 offset = offset + rows;

13 }

14 rows = (extra > 0) ? averowil :@ averow

15

16 for (kE=0:; k<NCB; k++)

17 for (i=0; i<rows; i++) {

18 clil[k] = 0.0;

19 for (§=0; J<NCA; j++)

20 c[il[k] = clil[k] + a[il[3]1 * bI31[k]:

21 i

22 if(extra > 0) {

23 list offsets[0] = 0;

24 row_cnts[0] = (averow+l) *NCB;

25 for (dest=1; dest<numworkers; dest++) {

26 rows = (dest <= extra) ? averowtl : averow;

27 row_cnts[dest] = rows*NCB;

28 list_offsets[dest] = list offsets[dest-1]+row_cnts[dest-1];

29 }

30 MPI_Gatherv(MPI_IN PLACE,O0 MPI_DATATYPE NULL,&c,row_cnts,list offsets MPI_DOUBLE MASTER,MPT_COMM WORLD) ;
31 lelse

32 MPI_Gather(MPI_IN PLACE,0 MPI DATATYPE NULL,&C,rows*NCB,MPI_DOUBLE,MASTER MPI_COMM WORLD) ;
33}

34

35 if (taskid > MASTER) {
36 MPT Recv(&offset, 1, MPI_INT, MASTER, FROM MASTER, MPT COMM WORID, &status):

37 MPI_Recv(sxews, 1, MPI_INT, MASTER, FROM MASTER, MPI_COMM WORLD, &status);

38 MPT Recv(&a, rows*NCA, MPI_DOUBLE, FROM MASTER, mtype, MPT COMM WORLD, &status):
39

40 for (k=0; k<NCB; k++)

41 for (i=0; i<rows; i++) {

42 cli][k] = 0.0;

43 for (3=0; 3j<NCA; JF++)

44 clil[k] = c[i] (k] + a[i]1[3] * bI31[k];

45 }

46 if (extra > 0)

47 MPI_Gathexrv(&c,rows*NCB,MPI_DOUBLE, &, row_cnts,list_offsets,MPI_DOUBLE,MASTER,MPI_COMM WORLD) ;
48 else

49 MPI_Gathexr (&c,zows*NCB,MPI_DOUBLE, &C, rows *NCB,MPI_DOUBLE MASTER,MPI_CQMM WORLD) ;
50 }

Fig. 7. C+MPI and global view directives versions of Matrix-Matrix Multiplication
algorithm

to almost completely program this algorithm using our global view directives.
Figure 7 shows a comparison of the C+MPI version and the version using our
global view directives. The most obvious difference is the substantial reduction
in the lines of code. Another significant difference is the use of the data’s global
view to express loop computation. We were able to execute each loop using the
forall directive.

Since in the C+MPI code the master processor is responsible for computing
then distributing initial data, there is a considerable difference in the overhead.

Global View Programming Abstraction 131

Matrix Multiply C+MPI Overhead Matrix Multiply Directives Overhead

= |l ’

Average Exection Time (sec)
Average Execution Time (sec)

Number of Processors Number of Processors

(a) (b)

Fig.8. Graph of matrix-matrix multiply overhead for (a)C+MPI version and
(b)Directive version

Matrix-Matrix Multiply Communication

Average Execution Time (sec)
N
t

Number of Processors

Fig. 9. Graph of average execution time for communication needed to transfer the
matrix-matrix multiply solution to the master process

The directive code uses the forall directive to initialize data which does not re-
quire any message passing communication. Figure 8 provides the graphs plotting
the overhead.

As for the communication needed to update the matrix-matrix multiply solu-
tion on the master processor, the update directive is translated to OpenSHMEM
put operations on all the processors except the master with a barrier synchroniza-
tion. Even with a notoriously costly collective synchronization, the OpenSHMEM
translation of the directive provides a 2.5x average speedup over MPI. Figure 9
shows the average execution time for the matrix-matrix multiply communication.

5 Conclusion

Supercomputing architectures are steadily pushing the performance envelope in
order to reach the next levels of computing capabilities. While our computer

132 T.M. Mintz, O. Hernandez, and D.E. Bernholdt

and computational scientists have been able to steadily evolve their applications
to run on these advanced architectures, more and more effort is being spent
transforming source code. This is a definite signal to the HPC community for
a new programming paradigm that provides high- level abstractions for parallel
programming and enables good performance. We believe the PGAS model has
the potential to be or greatly influence a new paradigm. PGAS languages like
Chapel are continually making progress toward providing a rich set of features
for parallel programming and good run-time performance. We believe incremen-
tally transitioning scientific applications to PGAS languages will facilitate their
adoption. Our global view directives are a fitting approach to this incremen-
tal transition. By providing directive assertions for data distributions, processor
groups and arrangements, and global data movement, we enable global expres-
sions that are analogous to the expressions found in Chapel codes in applications
with an otherwise local, processor centric view of data.

Acknowledgment. This research is sponsored by the Office of Advanced Sci-
entific Computing Research; U.S. Department of Energy, including the use of
resources of the Oak Ridge Leadership Computing Facility. The work was per-
formed at the Oak Ridge National Laboratory, which is managed by UT-Battelle,
LLC under Contract No. DE-AC05-000R22725. This manuscript has been au-
thored by a contractor of the U.S. Government. Accordingly, the U.S. Govern-
ment retains a non-exclusive, royalty-free license to publish or reproduce the
published form of this contribution, or allow others to do so, for U.S. Govern-
ment purposes.

References

1. Top 500 supercomputers (2013), http://www.top500.org/

2. Bolosky, W., Fitzgerald, R., Scott, M.: Simple but effective techniques for numa
memory management. In: Proceedings of the Twelfth ACM Symposium on Oper-
ating Systems Principles, SOSP 1989, pp. 19-31. ACM, New York (1989)

3. Black, D., Gupta, A., Weber, W.D.: Competitive management of distributed shared
memory. In: COMPCON Spring 1989. Thirty-Fourth IEEE Computer Society In-
ternational Conference: Intellectual Leverage, Digest of Papers, pp. 184-190 (1989)

4. Blagodurov, S., Zhuravlev, S., Fedorova, A., Kamali, A.: A case for numa-aware
contention management on multicore systems. In: Proceedings of the 19th Inter-
national Conference on Parallel Architectures and Compilation Techniques, PACT
2010, pp. 557-558. ACM, New York (2010)

5. Rabenseifner, R., Hager, G., Jost, G.: Hybrid mpi/openmp parallel programming
on clusters of multi-core smp nodes. In: 2009 17th Euromicro International Confer-
ence on Parallel, Distributed and Network-based Processing, pp. 427-436 (2009)

6. Jin, H., Jespersen, D., Mehrotra, P., Biswas, R., Huang, L., Chapman, B.: High
performance computing using mpi and openmp on multi-core parallel systems.
Parallel Comput. 37(9), 562-575 (2011)

7. Kasim, H., March, V., Zhang, R., See, S.: Survey on parallel programming model.
In: Cao, J., Li, M., Wu, M.-Y., Chen, J. (eds.) NPC 2008. LNCS, vol. 5245, pp.
266—275. Springer, Heidelberg (2008)

http://www.top500.org/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Global View Programming Abstraction 133

Yelick, K., Bonachea, D., Chen, W.Y., Colella, P., Datta, K., Duell, J., Graham,
S.L., Hargrove, P., Hilfinger, P., Husbands, P., Iancu, C., Kamil, A., Nishtala,
R., Su, J., Welcome, M., Wen, T.: Productivity and performance using partitioned
global address space languages. In: Proceedings of the 2007 International Workshop
on Parallel Symbolic Computation, PASCO 2007, pp. 24-32. ACM, New York
(2007)

Bonachea, D., Hargrove, P., Welcome, M., Yelick, K.: Porting gasnet to portals:
Partitioned global address space (pgas) language support for the cray xt. Cray
User Group, CUG 2009 (2009)

Barrett, R.F., Alam, S.R., d Almeida, V.F., Bernholdt, D.E., Elwasif, W.R.,
Kuehn, J.A., Poole, S.W., Shet, A.G.: Exploring hpcs languages in scientific com-
puting. Journal of Physics: Conference Series 125(1), 012034 (2008)

Dun, N., Taura, K.: An empirical performance study of chapel programming lan-
guage. In: 2012 IEEE 26th International Parallel and Distributed Processing Sym-
posium Workshops PhD Forum (IPDPSW), pp. 497-506. IEEE Computer Society,
Los Alamitos (2012)

Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the chapel
language. Int. J. High Perform. Comput. Appl. 21(3), 291-312 (2007)

Kennedy, K., Koelbel, C., Zima, H.: The rise and fall of high performance fortran:
an historical object lesson. In: Proceedings of the Third ACM SIGPLAN Confer-
ence on History of Programming Languages, HOPL III, pp. 7-1-7-22. ACM, New
York (2007)

Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. In: Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications, OOPSLA
2005, pp. 519-538. ACM, New York (2005)

Chamberlain, B.L., Choi, S.E., Deitz, S.J., Snyder, L.: The high-level parallel lan-
guage zpl improves productivity and performance. In: Proceedings of the First
Workshop on Productivity and Performance in High-End Computing (PPHEC
2004), pp. 66-75. Citeseer (2004)

Carlson, W.W., Draper, J.M., Culler, D.E., Yelick, K., Brooks, E., Warren, K.: In-
troduction to UPC and language specification. Technical report, Center for Com-
puting Sciences (May 1999)

Nieplocha, J., Krishnan, M., Tipparaju, V., Palmer, B.: Global Arrays User Manual
Numrich, R.W., Reid, J.K.: Co-Array Fortran for parallel programming. ACM
Fortran Forum 17(2), 1-31 (1998)

Yelick, K., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B., Krishnamurthy, A.,
Hilfinger, P., Graham, S., Gay, D., Colella, P., Aiken, A.: Titanium: A high per-
formance Java dialect. Concurrency: Practice and Experience 10, 825-836 (1998)
Allen, E., Chase, D., Luchangco, V., Maessen, J.W., Ryu, S., Steele Jr., G., Tobin-
Hochstadt, S.: The Fortress language specification, version 0.785 (2005)

Cray Inc.: Chapel specification 0.4 (2005), http://chapel.cs.washington.edu/
specification.pdf

Charles, P., Donawa, C., Ebicioglu, K., Grothoff, C., Kielstra, A., Saraswat, V.,
Sarkar, V., Praun, C.V.: X10: An object-oriented approach to non-uniform cluster
computing. In: Proceedings of the 20th ACM SIGPLAN Conference on Object-
Oriented Programing, Systems, Languages, and Applications, ACM SIGPLAN,
pp. 519-538 (2005)

http://chapel.cs.washington.edu/specification.pdf
http://chapel.cs.washington.edu/specification.pdf

	A Global View Programming Abstraction for Transitioning MPI Codes to PGAS Languages
	Introduction
	Implementations of the PGAS Model
	Enabling a Global Perspective
	Data Distributions
	Processor Groups and Arrangements
	Data Movement

	Preliminary Experiments
	2D Jacobi Iterative Solver
	Matrix-Matrix Multiply

	Conclusion

