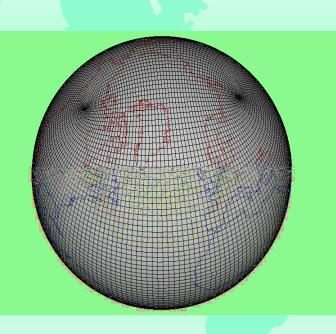
Performance-Portable POP


The Developer's Response to John Levesque's "State of the POP"

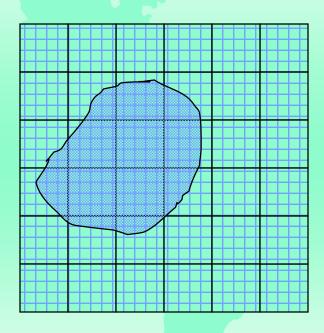
Philip Jones
Los Alamos National Laboratory
Boulder, Colorado
February, 2003

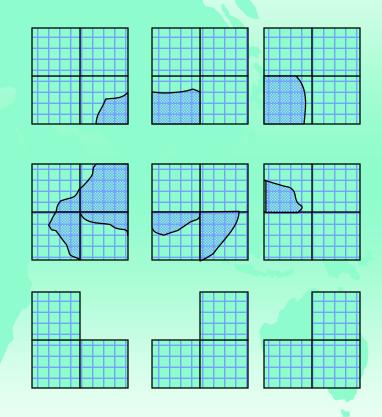
POP 2.0

(End of Feb or die trying)

- Sub-block decomposition scheme for performance
- Partial bottom cells
- Tripole grids
- Anisotropic GM
- New Jackett et al. EOS
- Manuals

http://climate.acl.lanl.gov/models/pop/current_release/

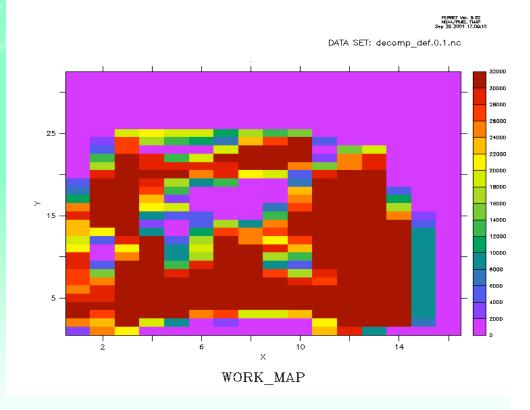

- netCDF output option
- F90 free-form with self-documenting ProTex


Performance Portability

- □ Sub-block decomposition
 - Domain decomposed into blocks sized for cache (or vector)
 - Land blocks eliminated
 - Remaining blocks distributed in load-balanced manner using a rake algorithm
 - Priorities can be set to maintain some locality during rake
 - Many blocks on each node provide OpenMP parallelism
 - Block loops at high level to amortize OpenMP overhead
 - Different block distribution used for barotropic solver to optimize for communication rather than load balance

Sub-blocks: The Bad Cartoon

Any resemblance to continents, real or imagined, is purely coincidental.



Actual Performance

• 0.1 Global

	old	new
Total	115s	55s
Baroclinic	93s	38s
Barotropic	9s	7s

POP 2.0 Performance

- 0.1 Global (3600x2400x40 on 480 procs)
 - 2x improvement on 02k
 - 30% improvement on IBM (Eagle)
- 1 degree
 - Little opportunity for land elimination
 - Improvement at small processor counts
 - No degradation at large processor counts
- OpenMP not
- Vector identical to POP 1.4.3

