

COMPLIMENTS • CON COMPLIMENTI • SALUDOS • MIT EMPFEHLUNG • AVEC COMPLIMENTS

Porting and Optimization of CAM/CLM on the Cray X1

Matthew J. Cordery Cray Inc. mcordery@cray.com

- Porting of single MSP version.
- Optimization of single MSP version.
- Future plans.

- Obtained CAM v 2.0.1 source code from NCAR.
- Obtained T42/gx1v3 input data set.
- Obtained X1 port of netCDF
- Compiled under Programming Environment v4.2 using FORTRAN compiler (ftn) v4.2.0.1
 - •Options:
 - -s real64 (promotes R4 -> R8)
 - -DDISABLE_TIMERS (get better statistics)
 - -UCRAY (disable CRAY macro)

- <u>ESMF</u>
 - Created new UNICOS macro and directory
 - #define ESMC_HAVE_FORTRAN_UNDERSCORE
- <u>CAM</u>
 - Insert UNICOS macros where relevant
 - system() -> ishell()
 - getenv() -> pxfgetenv()

- Optimization
 - Concentrate on single MSP performance first
 - Identify areas where we can vectorize and multistream.
 - MPI version works
 - CAM timings and CrayPat analysis showed that 25% of run-time spent doing radiative transfer:
 - radcswmx()
 - radclwmx()

- Optimization
 - Concentrate on radcswmx()
 - Inserted compiler directives:
 - !DIR\$ PREFERVECTOR
 - !DIR\$ PREFERSTREAM
 - !DIR\$ CONCURRENT
 - Inlined several function/subroutine calls
 - Changed some array ranks to allow vectorization

Porting and Optimization of CAM

- Optimization
 - •radcswmx()

•Optimizing initialization loops did not give much of a performance gain.

Vectorized over spectral intervals in major work loop

- Optimization
 - Result:
 - Reduced run time by 35%
 - radcswmx() now accounts for only 7% of total run-time, rather than 25%.
 - Now #3 contributor to overall CPU time.

- Future plans:
 - Believe we can further multi-stream radcswmx().
 - Analyze other routines for optimization
 e.g. radclwmx(), pcond(), outfld(), radcswmx() may come back
 - Analyze MPI performance.
 - Analyze performance for different chunk sizes
 - e.g. chunksize = 256, 512, ...
 - Run longer models with different dynamics (e.g. FV rather than Euler).

END • FIN • FINALE • FINE

