
SLIDE 1 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

Bioinformatics
on the Cray X1

Jim Maltby
May 9, 2003

SLIDE 2 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

Outline of Talk

Cray X1 Overview

Cray Bit Manipulation Features

Cray BioLib

Other Life Sciences Efforts

SLIDE 3 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

Cray X1 Overview

SLIDE 4 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

Cray PVP

• Powerful vector processors
• Very high memory bandwidth
• Non-unit stride computation
• Special ISA features

• Modernized the ISA

T3E

• Extreme scalability
• Optimized communication
• Memory hierarchy
• Synchronization features

• Improved via vectors

Scalability with Vector Processors

SLIDE 5 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

CPU: Multi-streaming Processor
• New Cray Vector Instruction Set Architecture (ISA)
• 64- and 32-bit operations, IEEE floating-point

Each Stream:
• 2 vector pipes

(32 vector regs.
of 64 element ea)

• 64 A & S regs.
• Instruction &

data cache

MSP:
• 4 x P-chips
• 4 x E-chips (cache)

Single-
streaming
processor

#1

2 MB Ecache

Bandwidth per CPU
• Up to 76.8 GB/sec read/write to cache
• Up to 34.1 GB/sec read/write to memory

Single-
streaming
processor

#2

Single-
streaming
processor

#3

Single-
streaming
processor

#4

SLIDE 6 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

Cray X1 Node – 51.2 GFLOPS

2x2x1.6 GB/s
102.4 GB/s

12.8 GF (64bit)
MSP CPU

12.8 GF (64bit)
MSP CPU

12.8 GF (64bit)
MSP CPU

Interconnect network
2 ports/M-chip
1.6 GB/s/port peak in each direction

= 102.4 GB/s to the network

Local memory
Peak BW = 16 sections x 12.8 GB/s/section

= 204.8 GB/s

Capacity = 16, 32 or 64GB

Local Memory (Up to 64 GB, 16 sections)

M0 M10 M15M14M13M12M11M1 M2 M3 M4 M5 M6 M7 M8 M9

Cache
.5 Mbytes

Cache
.5 Mbytes

12.8 GF (64bit)
MSP CPU

Cache
.5 Mbytes

Cache
.5 Mbytes

SLIDE 7 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

Cray X1 Processor Node Module

16 to 64 GBytes Memory
200 GB/s

12.8 GF (64bit)
CPU

I/O I/O I/O I/O

X1 node board will have performance
~T916 - T932 or ~128pe T3E

100 GB/s

12.8 GF (64bit)
CPU

12.8 GF (64bit)
CPU

12.8 GF (64bit)
CPUX1 16 Node

819 Gflops

SLIDE 8 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

32 Nodes – 128 MSPs – 1.6 TFLOPS

RR

RRRR

RR RR

RR

RR

RR

SLIDE 9 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

Rough Estimates of Latency

Scalar Dcache 50 ns (20 CP)
Ecache 100 ns (40 CP)
Local memory 325 ns (130 CP)
Remote memory 500ns + 50*D

CP is a 400 MHz clock period
D is the number of one-way hops to a node

SLIDE 10 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

Programmers’s View

Traditional shared memory vector applications
– MSP-mode automatically by compiler + user-inserted Cray Streaming

Directives (CSDs), or SSP-mode
– OpenMP, pthreads
– 4 MSPs (51 GFLOPS) with high UMA memory bandwidth (1/4 dw/flop peak

load BW from M)
– Single node memory (8-32 GB)

Distributed memory applications
– MPI, shmem(), UPC, Co-arrays
– Same kinds of optimizations as on microprocessor-based systems

• Work and data decomposition
• Cache blocking (higher BW in cache –1/2 dw/flop, MSP improves short

VL)
– But less worry about communication/computation ratio, memory stride and

bandwidth
• Multiple GB/s network bandwidth between nodes
• Scatter/gather and large-stride support

SLIDE 11 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

Cray X1 OS Features
XFS File System
Batch Subsystem (PBS Pro)
Checkpoint/Restart (initiated by user command,

operator command or signal)
TCP/IP Support
Administrative Support

– NIS
– DNS
– Kerberos
– System dump and analysis utilities

Process limits
Accounting

SLIDE 12 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

Programming Environment

Fortran 95 compiler with Fortran 2000 features and
Fortran Co-array extensions

C/C++ compilers with UPC Extensions
CAL Assembler
MPI & shmem
OpenMP
Debugger
Performance Tool
Math and Scientific Libraries
I/O Libraries
X11R6

SLIDE 13 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

CRAY X1 Compilers

Supports language standards:
– Fortran 95 compliance, selected Fortran 2000 features
– C++ , more standards features
– C 89 plus 9X features

Utilizes proven compiler technology:
– Mature PDGCS base as on all CRAY J90, T90, T3E, and

SV1 platforms
– Vector, tasking code restructuring carries forward
– Common front-ends and run-time libraries

Exploits parallelism at different levels:
– Vectorization for all candidate loop nests
– Streaming includes both vectorized and scalar loop nests
– Tasking of parallel regions containing streamed loops or

routines

SLIDE 14 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

These special features allow complex bit and
logical manipulations at full vector speeds.

Typical uses include:
– Pattern searching
– Code manipulations
– Genomic searching and comparison

Cray X1 Bit Manipulation Features

Many are unique to Cray processors

SLIDE 15 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

Special Functional Units

Bit Matrix Multiply (BMM)
• Dynamically programmable bit unit

Pop Count
• Counts ones in a word

Leading Zero Count
Copy Sign
Vector Merge

• Merges registers according to bit mask
Logical

• AND, OR, XOR, XNOR, ANDNOT, MASK

SLIDE 16 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

j

j

popparand

bmm

input

output

i

i

1

Bit Matrix Multiply

SLIDE 17 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

bmmInput (v1) Output (v2)
1000000000000……………….…0000
0100000000000……………….…0000
0010000000000…………….……0000
0001000000000……………….…0000
0000100000000……………….…0000
0000010000000……………….…0000
0000001000000……………….…0000
0000000100000……………….…0000
1000000000000……………….…0000
0100000000000……………….…0000
0010000000000……………...…0000
0001000000000……………...…0000
0000100000000……………...…0000
0000010000000……………...…0000
0000001000000……………...…0000
0000000100000……………...…0000
1000000000000……………...…0000
0100000000000……………...…0000
.

.

.
1000000000000………………….0000
0100000000000………………….0000
0010000000000………………….0000
0001000000000………………….0000
0000100000000………………….0000
0000010000000………………….0000
0000001000000………………….0000
0000000100000…………….……0000

A C T G A C C G G T C A ……..….C C T G
A G G C A G G C A G G C………..A G G C
C C C G T A A C C T G G …………C C A G
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

..

.

.

.

.

.
A A A G T C C G T C C G…………..C C C A

A C T G A C T G A C T G ………….A C T G
A G G C A G G C A G G C ………..A G G C
C C C G C C C G C C C G ………….C C C G
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

..

.

.

.

.

.

.

.

.
A A A G A A A G A A A G ……….. A A AG

ENCODING: A = 00, C = 01, T = 10, G = 11 CAL: v2 v1*BT

Nucleotide manipulation example

SLIDE 18 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

Program Examples - Popcount/Leadz Operations

integer,parameter :: n=500
integer,dimension(n) :: a,b,c,d

b = popcnt(a)

c = poppar(a)

d = leadz(a)

#include <intrinsics.h>
const long n=500;
long a[n], b[n], c[n], d[n];
int i;

for (i=0; i<n; i++) b[i] = _popcnt(a[i]);

for (i=0; i<n; i++) c[i] = _poppar(a[i]);

for (i=0, i<n; i++) d[i] = _leadz(a[i]);

Easy access to special functions

FORTRAN C

SLIDE 19 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

Program Examples - BMM Operations

integer,dimension(64) :: bmm, a, b, c

bmm = m@ld(b)

a = m@mx(c)

#include <intrinsics.h>
long bmm[64], a[64], b[64], c[64];
int i;

for (i=0; i<64; i++) bmm[i] = _mld(b[i]);

for (i=0; i<64; i++) a[i] = _mmx(c[i]);

BMM from FORTRAN and C

FORTRAN C

SLIDE 20 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

Application: the Cray BioLib (CBL)

A library for high-speed genomic manipulation
– Search and sort routines
– Sequence manipulation routines
– SSD data transfer routines

Optimized use of SV1 bit manipulation
hardware

Open-source version being developed
Soon available on X1

SLIDE 21 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

Genesis of the Cray BioLib

Cray scientist Bill Long was working with Jack
Collins of NCI in 2001.

He discovered special functional units could be
used to greatly accelerate genomic search.

69

9000

0

5000

10000

Millions of Characters/Second
 (1 processor)

Alpha Cray SV1

The graph shows the performance
advantage of the SV1 over a 667 MHz Alpha

processor, searching for a 32 nucleotide
sequence in a 34 Mbp database. (Graph

courtesy National Cancer Institute)

SLIDE 22 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

Other Biological Libraries

EMBOSS – European Molecular Biology Open
Software Suite
– Individual standalone programs for use in

workflow scripts
BioPerl

– Perl scripts for automating common biological
computing tasks

Both of these popular libraries are “High level,”
not “High performance”

SLIDE 23 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

ARSC / ISB Collaboration

Development of new CBL functions
Development of open-source, Multiplatform

version
Large-scale scientific tests planned
Status: Ongoing development

SLIDE 24 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

Search and Sort routines

– cb_searchn performs gap-free searches for short
sequences of nucleotides, with a specified number of
mismatch errors allowed.

– cb_repeatn finds exact STRs (short tandem repeats), for
repeat lengths from 2 to 16.

– cb_sort is a multi-pass sort routine designed to sort
large blocks of packed data and return ordered location
information for the input data (Fortran only).

– cb_isort is a parallel sort routine for integer data, using
OpenMP parallelization. This allows larger arrays to be
sorted with higher performance.

– cb_isort1 is a version of cb_isort that does not provide
index arrays to the original location of the data, if they are
not needed. This saves time and memory.

SLIDE 25 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

Smith-Waterman Alignment

– cb_swX_fw calculates the Smith-Waterman score and
alignment with full-word accuracy for two input arrays of
genomic data. This routine is made up of three routines
that may also be called separately, as described below.

– cb_swX_fw_init initializes the Smith-Waterman scoring
matrix.

– cb_swX_fw_align calculates the optimal alignment
corresponding to the maximum score calculated in
cb_sw_fw_score.

– cb_sw_fw_score fills the scoring matrix and returns
the maximum score.

SLIDE 26 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

Sequence Manipulation routines

– cb_amino_translate_ascii converts nucleotide
sequences in ascii format to amino acid
sequences, in all three reading frames.

– cb_countn_ascii counts the number of A, C, T,
G, N characters in an ascii input file.

– cb_cghistn creates a histogram of C and G
density in a compressed (2-bit) input string, with
a user-defined window size.

– cb_revcompl generates the reverse
complement of a nucleotide string.

SLIDE 27 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

SSD routines

– cb_ssd_init initializes SSD storage for the other
routines.

– cb_copy_to_ssd copies a block of data from
memory to SSD.

– cb_copy_from_ssd copies a block of data from
SSD back into memory.

– cb_largest_ssdid finds the highest numbered
SSD storage area.

– cb_ssd_free frees up an SSD storage area.
– cb_ssd_errno performs error handling for SSD

routines.

SLIDE 28 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

File handling routines

– cb_read_fasta reads in a multi-record input file
in FASTA format.

– cb_fasta_convert extracts and organizes data
contained in a memory image of a FASTA format
data file.

– cb_compress compresses nucleotide or amino
acid data into various compressed formats.

– cb_uncompress converts data in compressed
formats back to ascii.

SLIDE 29 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

Miscellaneous support routines

– cb_malloc allocates memory blocks aligned for
highest performance with the other routines (C
only; in Fortran use the ALLOCATE statement).

– cb_block_zero sets the contents of a block of
memory to zero very efficiently.

– cb_free frees the memory blocks allocated by
cb_malloc (C only; in Fortran use the
DEALLOCATE statement).

– cb_version provides library version information.

SLIDE 30 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

Other Life Science Efforts

Amber Timings in MSP and SSP mode
• jac benchmark, DHFR in water
• 23,558 particles, 100 steps

Amber6 (sec) Amber7 (sec)

1 SSP 204 257

4 SSPs 60 80

8 SSPs 37 45

16SSPs 23 27

1 MSP 189 249

2 MSPs 100 127

4 MSPs 55 66

SLIDE 31 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

Code Development

Current Porting Efforts
– Amber7
– Gaussian
– GAMESS
– NWChem
– Charmm
– ADF
– GROMOS

SLIDE 32 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

International Collaborations

ARSC/ISB (Alaska)
– Cray BioLib

ICM (Poland)
– ADF, GROMOS

ZIB/Bielefeld (Germany)
– Protein structure, clustering

Sanger Institute (UK)
– Under definition

SLIDE 33 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

Conclusions

Cray X1 balanced architecture provides much
higher performance for large, closely coupled
simulations.

Cray X1 special features provide increased
performance for symbol manipulation.

The CBL provides a new way to accelerate
biological code development.

SLIDE 34 James D Maltby, Cray Inc.
ORNL Biology Workshop on Cray X15/23/2003

Thank You!

jmaltby@cray.com
(206) 701-2107

