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Comparison of fission and fusion
(ITER) neutron spectra

• Main difference between fission and DT fusion neutron spectra
is the presence of significant flux above ~4 MeV for fusion
–High energy neutrons typically cause enhanced production of numerous

transmutation products including H and He
–The Primary Knock-on Atom (PKA) spectra are similar for fission and

fusion at low energies; fusion contains significant high-energy PKAs
(>100 keV)

Stoller & Greenwood, JNM 271-272 (1999) 57



Displacement Damage Mechanisms are being investigated
with Molecular Dynamics Simulations

Molecular dynamics modeling of displacement cascades up to
200 keV and low-dose experimental tests (microstructure, tensile
properties, etc.) indicates that defect production from fusion and
fission neutron collisions are similar
=> Defect source term is similar for fission and fusion conditions

Damage efficiency saturates when
subcascade formation occurs

Avg. 
fission

Avg. 
fusion

A critical unanswered question is the effect
of higher transmutant H and He

production in the fusion spectrum

5 nm
Peak damage state in
iron cascades at 100K

 50 keV PKA
(ave. fusion)�

10 keV PKA
(ave. fission)



Radiation Damage can Produce Large Changes in
Structural Materials

• Radiation hardening and embrittlement (<0.4 TM)
• Irradiation creep (<0.45 TM)
• Volumetric swelling from void formation (0.3-0.6 TM)
• High temperature He embrittlement (>0.5 TM)

In addition...

• The irradiation environment associated with a D-T fusion reactor is
more severe than in fission reactors
– Higher lifetime dose requirements for structure
– Higher He generation rates (promotes He embrittlement of grain boundaries, void

swelling)



Low tensile ductility in FCC and BCC metals after
irradiation at low temperature is due to formation of

nanoscale defect clusters

Outstanding questions to be resolved include:
 Can the defect cluster formation be
modified by appropriate use of nanoscale
2nd phase features or solute additions?
 Can the poor ductility of the irradiated
materials be mitigated by altering the
predominant deformation mode?
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Why is He/dpa ratio an important parameter for
fusion materials R&D?

• He generation can alter the microstructural evolution path of
irradiated materials (pronounced effects typically occur for >100
appm He)
– Cavity formation (matrix and grain boundaries)
– Precipitate and dislocation loop formation

Swelling in stainless steel is maximized
at fusion-relevant He/dpa values

He bubbles on grain boundaries can cause
severe embrittlement at high temperatures

Grain boundary

Management of He transmutation products (matrix trapping at engineered 2nd phases)
 is a key factor for fusion materials



Helium embrittlement of grain boundaries occurs at high
temperatures for helium concentrations above ~100 appm
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He trapping at nanoscale precipitates within grains is key for inhibiting He embrittlement

However……..  The formation and microstructural stability of these precipitates is
strongly affected by irradiation parameters, in particular the He/dpa ratio



Swelling Resistant Alloys For Fission Reactors Were
Successfully Developed

• Lowest swelling is observed in body-centered cubic alloys (V alloys, ferritic steel)
• Materials science strategy used for developing swelling-resistant stainless steel can be

applied to new alloys if effects of He on void swelling are understood

0

2

4

6

8

10

12

14

0 50 100 150 200

Vo
lu

m
et

ric
 S

we
lli

ng
 (%

)

Damage Level (dpa)

Ferritic steel

Ti-modified 
316 stainless steel

316 stainless steel

Tirr=400-500˚C



Swelling behavior of stainless steelsSwelling behavior of stainless steels

 Swelling behavior of RAFMs and austenitics near peak-swelling temperatures
are similar in the presence of helium, except for incubation dose.

Austenitic SS Ferritic/martensitic SS

Y. Katoh et al., 2003



Cavity formation in JLF-1 by dual-ion beam irradiationCavity formation in JLF-1 by dual-ion beam irradiation
－ 6.4 MeV Fe3+ ＋ Energy-Degraded 1.0 MeV He+
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Fusion materials research must rely heavily on modeling
due to inaccessibility of fusion-relevant operating regime
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• Extrapolation from currently available parameter space to fusion regime is much larger for
fusion materials than for plasma physics program

– Most of He effects data on irradiated materials is based on austenitic stainless steel (FCC);
relevance to BCC alloy systems is uncertain

– Recent fusion materials R&D has focused on low-dose deformation and fracture issues
• An intense neutron source such as IFMIF is proposed to develop and qualify fusion

structural materials prior to a construction decision for a fusion Demo reactor



Spallation Sources

Transmutation of
nuclear waste

ADS (F, B...)
ATW/AAA (US)
EA (I, E, F)

Neutrons as probes
for condensed matter

ISIS (GB)
LANSCE (US)
SINQ (CH)

SNS (US)
JPARC (J)
ESS (EU)

Tritium production

TRISPAL (F)
APT (US)

Typical Parameters:

Beam power several MW  (~1 GeV protons)
Pulse length ~ 1µs (several 1014 p/Pulse  100 kJ)
Repetition frequency  50/60  Hz
Thermal n-flux up to 7x1018 n/m2⋅s average
                          up to 2x1021 n/m2⋅s in pulse



Design of the SNS

Core Vessel
water cooled

shielding

Core Vessel
Multi-channel

flange

Outer
Reflector

Plug

Target
Inflatable

seal

  Target Module

Proton
Beam
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Overlap in Temperature for Fusion,
Generation IV Fission Reactors

and Spallation Facilities 

Operating Temperatures and Radiation Effects

Temperature, C

DEMO

SS Temp.
LimitTrans.

L.K. Mansur et al. ICFRM-11, J.Nucl. Mater. in press (2004)



Key Operating Conditions for Structural Materials

~2030-150~200Max displacement
damage

100-500˚C300-1000˚C300-1000˚CTemperatures

High, pulsedModerate, nearly
constant

Moderate, nearly
constant

Stresses

100 appm/dpa~0.1 appm/dpa10 appm/dpaHe/dpa

< 1 GeV
(p and n)

< 1 - 2 MeV< 14 MeVParticle Energy

Hg, PbBi, H2OH2O(SC), He, Pb,
PbBi

H2O, He, Li, PbLi,
FLiBe

Coolant

SpallationFission
(Gen IV)

Fusion

Based on L.K. Mansur et al. ICFRM-11, J.Nucl. Mater. in press (2004)



Conclusions
• The structural materials response to exposure to fission,

fusion and spallation neutron environments…
• Offers many similarities:

– Similar defect production source term
– Radiation hardening and embrittlement (<0.4 TM)
– Irradiation creep (<0.45 TM)
– Phase stability, radiation induced segregation phenomena (0.3-0.6

TM)

• And some important differences:
– Potential for He-enhanced radiation hardening and embrittlement

(<0.4 TM)
– He and H effects on void swelling (0.3-0.6 TM)
– High temperature He embrittlement (>0.5 TM)
– He-modified phase stability (0.3-0.6 TM)



Backup viewgraphs



Radiation stability is strongly dependent on exposure temperature, displacement
damage (dpa), damage rate, solute transmutation (H, He, ...)

=> He/dpa ratio is a useful radiation effects metric for fusion materials

• Fission sources
  fusion-relevant displacement damage
   low He generation (except Ni alloys, etc.)

• Ion accelerators
  generally limited to microstructural studies
  typically very high damage rates

• Spallation sources

• D-Li stripping source

under planning: IFMIF

Fusion Materials Irradiation Facilities

Modified from H. Bolt (IPP-Garching), 2002
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SNS Site Layout

Ring Injection
Dump

New Test
Facility

SNS Experimental Facilities Oak Ridge
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Specific Issues of Common Interest

• No prototype facilities available for Fusion, Gen IV Reactors, or
Liquid Metal Pulsed Targets

• All irradiations conducted in few facilities, e.g
HFIR and ATR  JMTR and JOYO
HFR  BOR 60
LANSCE  SINQ

• Common alloys--austenitics, ferritic-martensitics, high nickel alloys,
mechanically alloyed steels

• Theory and modeling of radiation response
• Can one technology provide radiation source for other technologies--

e.g., spallation for fusion, IFMIF for Gen IV, Gen IV for Fusion
• High transmutation gas effects on swelling and embrittlement--Fusion,

SCWR and NGNP (Ni bearing alloys), Spallation



Specific Issues of Common Interest
(continued)

• Very low dose rate, long time exposures

• Wide range of dose rates < 10-10 to > 10-7

• High temperature deformation mechanisms—Fusion Demo/Power Plants, Gen
IV

• Low temperature flow localization and fracture

• Behavior of structural composites (mechanical properties and structure)--
Fusion, NGNP, GFR

• Liquid metals in contact with irradiated structural materials--Fusion, LFR,
Spallation

• Water coolant in contact with irradiated structural materials--ITER, SCWR,
Spallation

• Gas coolant in contact with irradiated structural materials--Fusion, NGNP,
GFR



Key Cross-cutting Phenomena in Theory and
Modeling of Structural Materials

• hardening and nonhardening embrittlement including underlying microstructural
causes and the effects of helium on fast fracture; low temperatures and all doses

• flow localization, consequences and underlying microstructural causes, low to
intermediate temperatures, all doses

• high temperature deformation and fracture, including helium effects; higher
temperatures and doses

• irradiation creep and thermal creep; intermediate and high temperatures;
intermediate to high doses

• swelling and phase stability, intermediate temperatures; intermediate to high
doses

• welding, joining and processing issues
• fatigue and creep-fatigue interactions; dependent on cyclic loading; load level

and total cycles
• hydrogen and interstitial impurity effects on deformation and fracture
• chemical compatibility, erosion, bulk corrosion, stress corrosion cracking,

impurity and corrosion product transport



    Radiation damage is inherently multiscale with
    interacting phenomena ranging from ps-decades and nm-m
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