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What is “mesoscale”?
• an intermediate size scale, lying between the atomistic and 

macroscopic

• relevant to many phenomena in materials science and 
radiation effects
- grain growth
- dislocation evolution, by thermo-mechanical or radiation-

induced processes
- void swelling
- precipitation of additional phases, and solute segregation
- stress corrosion cracking, and irradiation-assisted SCC

• dependent on fundamental atomistic processes, and controls 
macroscopic observables such as strength, ductility, creep, ...
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Reaction rate theory: application to 
mesoscale modeling

• models based on the so-called reaction rate theory (by 
analogy to chemical reaction rates) are well suited to 
mesoscale problems in radiation effects

• the material is treated as a spatially-homogeneous effective 
medium with embedded effective sinks and sources for point 
defects

• time- and spatially-averaged point defect generation rates are 
also generally employed

• these assumptions have been relaxed in particular cases, e.g. 
to investigate cascade-induced fluctuations in point defect 
concentrations



SC-NE Workshop, 3/30-4/2/2004
ornl

Rate theory, con’t
• the models are formulated as a series of differential equations 

describing the production and fate of point defects and the 
corresponding evolution of the microstructure

• e.g. the vacancy (Cv) and interstitial (Ci) concentrations are 
given by: 

where the Di,v are the point defect diffusivities, the Si,v are 
the extended defect (GB, dislocation, etc.) sink strengths, α 
is the recombination rate coefficient, ηGdpa is the net point 
defect generation rate, and Gi,v

em is the total rate of emission 
of point defects from sinks 

dCi v,
dt

------------- ηGdpa Gi v,
em+〈 〉 αCiCv– Di v, Ci v, Si v,

T–=
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Rate theory, con’t
• and in a system with growing voids, the void growth rate is:

• analogous equations can be written to describe an evolving 
point defect cluster population, for helium generation and 
distribution, the redistribution of solute species, and for the 
other microstructural components

• greater or lesser detail can be built in as needed to simulate a 
given phenomenon, e.g. nucleation vs. growth regimes

• model predictions are found by simultaneous integration of 
the equations included in a given model

drv
dt

-------- 1
rv
----- Zv

vDv Cv Cv
v

–⎝ ⎠
⎛ ⎞ Zi

vDiCi–⎝ ⎠
⎛ ⎞=
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Rate theory, con’t
• model predictions can be compared with experimental data 

and parameter uncertainties evaluated

• when well calibrated with experimental data, such models 
have some predictive capability
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However, devil is in the details ...
• data fitting with incomplete models leads to use of “effective” 

parameter values, limits confidence in model extrapolation

- more complex models may be ‘stiffer’ with respect to arbitrary 
parameter choices, but,

- more complex models introduce additional parameters

• ab initio methods and MD can provide improved estimates of 
material parameters, e.g. defect formation energies, primary 
radiation damage parameters

- former is largely limited to pure materials and small atomic 
systems, e.g. limited information on diffusion and defect 
formation energy parameters

- latter is limited by range of materials for which realistic 
interatomic potentials can be developed
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Neutron energy spectrum differences are an 
issue for extrapolation of models calibrated 

using fission reactor data
• solid transmutations vary due to relatively high threshold 

energy (>5 MeV) for many reactions, 10 to 100s appm/dpa 
levels of new solute can be created - potentially significant for 
some materials

• most attention has been focused on gaseous transmutation 
products, He from (n,α) and H from (n,p) reactions
- fission: ~0.2-0.5 appm He/dpa (higher for some elements with 

thermal neutrons
- DT fusion: ~10-20 appm He/dpa
- spallation (SNS):  ~500 appm H/dpa, ~100 appm He/dpa
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• previous modeling indicated that microstructural response 
may not be a monotonic function of He level

• caveats: overly simplistic cavity nucleation model, 
predictions very sensitive scaling of cavity density with He, 
accounting for differences in displacement rate

(Stoller, et. al., JNM 1988)
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Considerable recent work on He and H effects 
related to SNS target R&D

- Simultaneous injection of D, He, and Fe
- D analyzed by the nuclear reaction 3He(D,4He)p
- He and Fe irradiation affect retention of D
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Key results of SNS studies
• High hardening and underlying defect structure caused by 

high He content

• Deformation mechanism changes, flow localization and 
dislocation channeling

• Retention of H in response to different radiation damage 
states (contrary to expectations), additional hardening 
observed from H
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Hardening increment per dpa increased in He-
implanted material
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He (dose) effect on deformation mechanism

- 316 LN, 350 keV He implanted at 200 C to various levels and 
strained to 10% at RT

- associated with fine-scale He bubble formation
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Influence of damage state on H retention

0

0.5

1

1.5

2

2.5

3

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

D
 C

on
ce

nt
ra

tio
n 

(a
t%

) H
e C

oncentration (at%
)

Depth (µm)

27°C

186°C

Simulated He
Profile

- Hydrogen retention in the irradiated specimens 
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Additional hardening increment from H 

30

35

40

45

50

55

60

65

0.1 1 10

360 keV He only

  360 keV He
+ 180 keV H

%
 H

ar
de

ni
ng

 a
t 1

50
 n

m

He concentration (at.%)



1DOE Workshop 31 March 2004

Irradiation Assisted Stress
Corrosion Cracking

• IASCC occurs in Fe, and Ni base austenitic reactor materials in LWRs
• Component cracking occurs at stress levels well below design stress

stress radiation

environment

IASCC

Intergranular cracking
S. M. Bruemmer, NERI 02-0110
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Irradiation Assisted Stress
Corrosion Cracking
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- Similar mechanism 
may be present for 
Gen IV SCWR, LFR 
or water-cooled 
fusion 

- EPRI believes 
improved IASCC 
predictive capability 
could save $100K-
$500K per plant per 
year

S. M. Bruemmer, 2001 Env. Deg. Conf
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Dose Effect-BWR

~1 dpa

- IASCC susceptibility 
increases at higher 
fluence
- transition occurs at 
higher dose in PWR

G.S. Was, 2003 Env. Deg Conf
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Grain Boundary Segregation

G.S. Was, 2003 Env. Deg Conf
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Grain Boundary Segregation

G.S. Was, 2003 Env. Deg Conf
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Grain Boundary Cr Enrichment
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J. I. Cole & G.S. Was, NERI 02-0110
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Effect of bulk Ni on RIS
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- RIS has a complex 
dependency on 
composition 
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T. R. Allen, NERI 02-0110
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Effect of bulk Ni on 
microstructure

Proton irradiation to 0.5 Proton irradiation to 0.5 dpadpa at 400at 400°°CC
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J. I. Cole and J. Gan, NERI 02-0110
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Hardening

S. M. Bruemmer, 2001 Env. Deg Conf
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Hardening 

G.S. Was, 2003
Env. Deg Conf

• For a given corrosion potential, CGR is similar for 
materials with similar strength (cold-work or irradiation) 
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Annealing

G.S. Was, 2003 Env. Deg Conf
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Summary
• rate theory models can be successfully applied to 

investigating radiation effects in materials at the mesoscale, 
intermediate link in multiscale chain

• relative success is qualified by knowledge that simplified 
models often hide an insufficient physical basis in their 
parameter choices

• extrapolation/interpolation of He, H-effects remains 
problematic, He partitioning and the influence of He on cavity 
density is critical

• resolving the complexity of IASCC involves synergistic 
effects of chemical (aqueous) environment, stress state, and 
irradiation on the microstructure
- critical factors include radiation-induced hardening and solute 

segregation,
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