Some Challenges to Multi-scale Modeling G. Malcolm Stocks

Oak Ridge National Laboratory

First principles based microstructure modeling

- How close are we to directly modeling micro-structural modeling base on first principles parameter?
 - Vaithyanathan, C. Wolverton and L. Q. Chen, Physical Review Letters 88, 125503 (2002)
- Model problem for Fusion relevant Multi Scale Modeling
 - Oxide dispersion Strengthened (ODS) Alloys
 - > Why are nanoscale "clusters" stable at high temperature?
 - Janotti, Fu, Krcma, Miller, M&C ORNL

Physical Review Letters 88, 125503 (2002)

UT-BATTELLE

Multiscale Modeling of Precipitate Microstructure Evolution

V. Vaithyanathan,1 C. Wolverton,2 and L.Q. Chen1

¹Department of Materials Science, Pennsylvania State University, University Park, Pennsylvania 16802 ²Ford Research Laboratory, MD3028/SRL, Dearborn, Michigan 48121-2053 (Received 2 August 2001; published 6 March 2002)

We demonstrate how three "state-of-the-art" techniques may be combined to build a bridge between atomistics and microstructure: (1) first-principles calculations, (2) a mixed-space cluster expansion approach, and (3) the diffuse-interface phase-field model. The first two methods are used to construct the driving forces for a phase-field microstructural model of θ' -Al₂Cu precipitates in Al: bulk, interfacial, and elastic energies. This multiscale approach allows one to isolate the physical effects responsible for precipitate microstructure evolution.

Oxide Dispersion Strengthen Alloys

Anderson Janotti, Chong Long Fu, Maja Krcma, Mike Miller, Metals and Ceramics Division (ORNL)

The 12YWT Ferritic Alloy Possesses Outstanding High Temperature Creep Strength

 Creep rate is 6 orders of magnitude lower than conventional steels at 600-900°C. (Larson-Miller Plot)

Nanoclusters Are Enriched in Y, Ti, and O

• Radial Concentration Profile (RCP) from the Center of Mass of a Particle

- No evidence of unique crystal structure in electron diffraction patterns
- RCP shows a diffuse interface structure

Nanoclusters Possess a High Degree of Thermal Stability

80 Maximum separation % envelope method Concentration, at. 60 Compositions are the average of all 40 nanoclusters analyzed in each condition arid 20 0 12YW 650°C 800°C 850°C 850°C 1 h As 10 h Processed Crept 1300°C1300°C

- High-temperature exposures have little effect on the average composition of the nanoclusters
- The (Y+Ti):O ratio is ~1 in the 12YWT alloy

100

- The size of the ~4nm diameter nanoclusters does not change significantly during thermal ageing or creep
- The high degree of stability for the nanoclusters appears to defy the laws of thermodynamics

Solubility of oxygen in Fe is strongly enhanced with Ti and Y additions

 $Fe/O \rightarrow Fe + FeO$

- The reaction $Fe:O/(Ti+Y) \rightarrow Fe/(Ti+Y):O$ can be exothermic
- The presence of vacancy plays an indispensable role in O solubility enhancement (and in the cluster formation and stability)

