Some Challenges to Multi-scale Modeling

G. Malcolm Stocks
Oak Ridge National Laboratory

- First principles based microstructure modeling
 - How close are we to directly modeling micro-structural modeling base on first principles parameter?

- Model problem for Fusion relevant Multi Scale Modeling
 - Oxide dispersion Strengthened (ODS) Alloys
 - Why are nanoscale “clusters” stable at high temperature?
 - Janotti, Fu, Krcma, Miller, M&C ORNL
Multiscale Modeling of Precipitate Microstructure Evolution

V. Vaithyanathan,1 C. Wolverton,2 and L. Q. Chen1

1Department of Materials Science, Pennsylvania State University, University Park, Pennsylvania 16802
2Ford Research Laboratory, MD3028/SRL, Dearborn, Michigan 48121-2053

(Received 2 August 2001; published 6 March 2002)

We demonstrate how three “state-of-the-art” techniques may be combined to build a bridge between atomistics and microstructure: (1) first-principles calculations, (2) a mixed-space cluster expansion approach, and (3) the diffuse-interface phase-field model. The first two methods are used to construct the driving forces for a phase-field microstructural model of θ′-Al2Cu precipitates in Al: bulk, interfacial, and elastic energies. This multiscale approach allows one to isolate the physical effects responsible for precipitate microstructure evolution.

\[F_{\text{tot}} = F_{\text{bulk}} + F_{\text{inter}} + F_{\text{elast}}, \]

\[F_{\text{bulk}} + F_{\text{inter}} = \int_V \left\{ \frac{f[c(\vec{r}), \eta_p(\vec{r})]}{2} \right\} |

\[\frac{\partial c}{\partial t} = M \nabla^2 \left[\frac{\partial f}{\partial c} - \alpha \nabla^2 c \right], \]

\[\frac{\partial \eta_p}{\partial t} = -L(\hat{\phi}_p) \left[\frac{\partial f}{\partial \eta_p} - \beta_{ii}(p) \nabla_i \eta_p + \frac{\delta E_{el}}{\delta \eta_p} \right], \]
Oxide Dispersion Strengthen Alloys

Anderson Janotti, Chong Long Fu, Maja Krcma, Mike Miller, Metals and Ceramics Division (ORNL)
The 12YWT Ferritic Alloy Possesses Outstanding High Temperature Creep Strength

- Creep rate is 6 orders of magnitude lower than conventional steels at 600-900ºC. (Larson-Miller Plot)
Nanoclusters Are Enriched in Y, Ti, and O

- Radial Concentration Profile (RCP) from the Center of Mass of a Particle

- No evidence of unique crystal structure in electron diffraction patterns
- RCP shows a diffuse interface structure

M.K. Miller
Nanoclusters Possess a High Degree of Thermal Stability

Compositions are the average of all nanoclusters analyzed in each condition

- High-temperature exposures have little effect on the average composition of the nanoclusters
- The (Y+Ti):O ratio is ~1 in the 12YWT alloy
- The size of the ~4nm diameter nanoclusters does not change significantly during thermal ageing or creep
- The high degree of stability for the nanoclusters appears to defy the laws of thermodynamics
Solubility of oxygen in Fe is strongly enhanced with Ti and Y additions

Fe/O \rightarrow Fe + FeO

- The reaction Fe:O/(Ti+Y) \rightarrow Fe/(Ti+Y):O can be exothermic
- The presence of vacancy plays an indispensable role in O solubility enhancement (and in the cluster formation and stability)

$E_f = 1.5$ eV

1.9 eV (V-O$_i$ pair)

Formation energy of V-O$_i$ is 0.4 eV higher than that of O$_i$, despite high Fe vacancy formation energy \sim 2 eV

0.7 eV

Y significantly reduces the vacancy formation energy by 1.2 eV

\sim 0 eV

Ti provides Ti-O chemical affinity

Low oxygen solubility \sim 1-2 ppm at 900 C°