
March 30, 2004 1

Lessons Learned from ASCI

Douglass Post
Los Alamos National Laboratory

International Workshop on Advanced Computational
Materials Science for Nuclear Materials

Washington, DC
April 1, 2004

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of
Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-
free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos
National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos
National Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not endorse
the viewpoint of a publication or guarantee its technical correctness.

Abridged version of
LA-UR-04-0388
Approved for public release;
Distribution is unlimited

March 30, 2004 2

Outline
• Introduction
• Case study “lessons learned”
• Quantitative Estimation
• Conclusions

March 30, 2004 3

Three Challenges
Performance, Programming and Prediction

• Performance Challenge-Building powerful
computers

• Programming Challenge—Programming for
Complex Computers
– Rapid code development
– Optimize codes for good performance

• Prediction Challenge—Developing predictive
codes with complex scientific models
– Develop codes that have reliable predictive capability

• Verification
• Validation
• Code Project Management and Quality

March 30, 2004 4

Lessons Learned are
important 1

2

3

4
Case studies conducted after each crash.
Lessons learned identified and adopted
by community

Tacoma Narrows Bridge buckled
and fell 4 months after construction!

• 4 stages of design maturity for a
methodology to mature—Henry
Petroski—Design Paradigms

• Suspension bridges—case studies of
failures (and successes) were essential
for reaching reliability and credibility

March 30, 2004 5

Computational Science is at the third stage.

• Computational Science is in the midst of the third stage.
• Prior generations of code developers were deeply scared of

failure, didn’t trust the codes.
• New generation of code developers trained as computational

scientists
• New codes are more complex and more ambitious but not as

closely coupled to experiments and theory
– Disasters occurring now

• We need to assess the successes and failures, develop
“lessons learned” and adopt them

• Otherwise we will fail to fulfill the promise of computational
science

• Computational science has to develop the same professional
integrity as theoretical and experimental science

March 30, 2004 6

ASCI was launched to develop
predictive capability for nuclear weapons

• In late 1996, the DOE launched the Accelerated Strategic
Computing Initiative (ASCI) to develop the“enhanced”
predictive capability by 2004 at LANL, LLNL and SNL that
was required to certify the US nuclear stockpile without
testing
– ASCI codes were to have much better physics, better resolution

and better materials data
– Develop massively parallel platforms (20 TFlops at LANL this year,

100 TFlops at LLNL in 2005-2006)
– ASCI included development of applications, development and

analysis tools, massively parallel platforms, operating and
networking systems and physics models

• ~ $6 B expended so far

March 30, 2004 7

Case Studies: “Lessons Learned”
The Successful ASCI projects emphasized:
• Building on successful code development history and prototypes
• Highly competent and motivated people in a good team
• Risk identification, management and mitigation Software Project Management:

Run the code project like a project
• Determine the Schedule and resources from the requirements
• Customer focus

– For code teams and for stakeholder support
• Better physics and computational mathematics is much more important than

better “computer science”
• The use of modern but proven Computer Science techniques,

– They don’t make the code project a Computer Science research project
• Develop the team
• Software Quality Engineering: Best Practices rather than Processes
• Validation and Verification
The unsuccessful ASCI projects didn’t emphasize these

March 30, 2004 8

LLNL and LANL had no “big code project”
experience before ASCI

• But they did have a lot of successful small team
experience—small teams developing and integrating
one package at a time

• But ASCI needed rapid code development on an
accelerated time scale

• LLNL and LANL launched large code projects with
very mixed success
– They hadn’t done it before and
– They didn’t look at the “lessons learned” from other

communities

March 30, 2004 9

It’s all about Teams!
• Tom DeMarco states that there are four

essentials of good management:
– “Get the right people
– Match them to the right jobs
– Keep them motivated.
– Help their teams to jell and stay jelled.
(All the rest is Administration.)”— “The Deadline”

• Management’s key role is the support and
nurturing of teams

Crestone
ProjectTeam

T. DeMarco, 2000; DeMarco and Lister, 1999; Cockburn and Highsmith, 2001; Thomsett, 2002; McBreen, 2001

March 30, 2004 10

• Tom DeMarco lists five major risks for software projects:
1. Uncertain or rapidly changing Requirements, Goals and Deliverables
2. Inadequate resources or schedule to meet the requirements
3. Institutional turmoil, including lack of management support for code

project team, rapid turnover, unstable computing environment, etc.
4. Inadequate reserve and allowance for requirements creep and scope

changes
5. Poor Team performance.
To these we add two:
6. Inadequate support by stakeholder groups that need to supply essential

modules, etc.
7. Problem is too hard to be solved within existing constraints

• Poor team performance is usually blamed for problems
– But, all risks but #5 are the responsibility of management!

• ASCI experience: Management attention to 1—4, 6,7 was been
inadequate.

Risk identification, management and
mitigation are essential

T. DeMarco, 2002a

March 30, 2004 11

Software Project Management
• Good organization of the work is essential
• Manage the code project as a project

– Clearly defined deliverables, a work breakdown structure
for the tasks, a schedule and a plan tied to resources

• Execute the plan, monitor and track progress with
quantitative metrics, re-deploy resources to keep
the project on track as necessary

• Insist on support from sponsors and stakeholders
• Project leader must control the resources,

otherwise the “leader” is just a “cheerleader”!

Brooks, 1987; Remer, 2000; Rifkin, 2002; Thomsett, 2002; Highsmith, 2001

March 30, 2004 12

• Requirements determine the schedule and resources

• Schedule
– The rate of software development, like all knowledge based work, is

limited by the speed that people can think, analyze problems and
develop solutions.

• Resources
– The size of the code team is determined by the number of people who

can coordinate their work together
• Specifying the schedule and/or resources plus the requirements

has been one of the greatest problems for ASCI (and for many
other code development projects in our experience).

• Then the code development plan is over-specified.

Requirements, Schedule and
Resources must be consistent.

Schedule
Resources

Requirements

D. Remer, 2000; T. Jones, 1988; Post and Kendal, 2002; S. Rifkin,2002

March 30, 2004 13

ASCI codes take about 8 years to develop.
• We have studied the record of most of the ASCI

code projects at LANL and LLNL to identify the
necessary resources and schedule

• The requirements are well known and fixed. LANL
and LLNL have been modeling nuclear weapons
for 50 to 60 years.

• The data indicate that it takes about 8 years and a
team of at least 10 to 20 professionals to develop
a code with the minimum capability to provide a 3
Dimensional simulation of a nuclear explosion

Post and Cook, 2000: Post and Kendall, 2002

March 30, 2004 14

We used simple metrics to estimate
schedule and resource requirements

FP =
C + + SLOC

53
+
C SLOC
128

+
F77 SLOC

107






Key parameter is a “function point” —FP—, a weighted total
of inputs, outputs, inquiries, logical files and interfaces

SLOC: Single
Line of Code

T. Capers-Jones, 1998Schedule = FPx 0.4 < x < 0.5; use x = .47

Team Size = FP
150

Corrections for Lab environment compared to industry
Schedule= FP schedule + delays

Delays up to 1.5 years for recruiting, clearance, learning curve
Schedule multiplier of 1.6 for complexity of project

1.6 based on contingency required compared to industry due to
complexity of classified/unclassified computing environment,
unstable and evolving ASCI platforms, paradigm shift to massively
parallel computing, need for algorithm R&D, complexity of models,
etc.

predicted bugs = FP1.25 predicted documentation = FP1.1 5
D. Remer, 2000; E. Yourdon, 1997

March 30, 2004 15

Software Resource Estimates for the LLNL and LANL Code Projects*
LLNL LANL Code Projects

ASCI A ASCI B Legacy A Antero Shavano Blanca Crestone
Single Lines of
Code (1000s)

184k 490k 410k 300k 500k 200k 314k

Function Points 4800 4000 5400 2900 4800 3800 2900
estimated
schedule

8.7 7.6 6.9 6.6 8.1 7.4 6.7

Project age (c.
initial milestone)

3 9 N/A 4 3.5 8 8

Successful in
achieving initial
ASCI milestone

No Yes N/A No No No Yes

Estimated staff
requirements

22 27 24 14 22 18 14

real team size 20 22 8 17 8 35 12
*Yellow shading denotes historical data; white background denotes computed numbers

ASCI codes take 8 years to develop

March 30, 2004 16

Result of not estimating the time and resources
needed to complete the requirements was failure of

many code projects to meet their milestones.
• Code Projects were asked to do 8 years of work in 3.5 years

+ Management changed the requirements 6 months before the due date
• Result:

– 3 out of 5 code projects “failed” to meet the milestones (those with less than
8 years of experience)

– 2 out of 5 code project succeeded in meeting the milestones (those with
more than 8 years of experience)

• Management at LLNL and LANL blamed the code teams, and in some
cases, punished them
– Morale was devastated, project teams were reduced and are only now are

beginning to recover
• Real cause was no realistic planning and estimation by upper level

management
• DOE and labs now drafting more appropriate milestones and schedules

Post and Cook, 2000: Post and Kendall, 2002

March 30, 2004 17

Focus on Customer

• Customer focus is a feature of every
successful project

• Inadequate customer focus is a feature of
many, if not most, unsuccessful projects

• Code projects are unsuccessful unless the
users can solve real problems with their
codes

User

McBreen, 2001; D. Phillips, 1997: R. Thomsett, 2002; E. Verzuh, 1999

March 30, 2004 18

Better Physics and math
the key

• Predictive ability of codes depends on the
quality of the physics and the solution
algorithms
– Correct and appropriate equations for the

problem, physical data and models, accurate
solutions of equations,…

R. Laughlin, 2002;Post and Kendall, 2002

March 30, 2004 19

Employ modern computer science techniques,
but don’t do computer science research.

• Main value of the project is improved science (e.g.
physics and math)

• Implementing improved physics (3-D, higher
resolution, better algorithms, etc.) on the newest,
largest massively parallel platforms that change
every two years is challenging enough. Don’t
increase the challenge!!!

• LANL spent over 50% of its code development
resources on a project that had a major computer
science research component. It was a massive
failure (~$100M).

T. Demarco, T. Lister (2002); Post and Cook, 2000: Post and Kendall, 2002

March 30, 2004 20

• Codes are developed by teams, not by
organizations or processes

• Invest in building the skills of the team
members

Cockburn and Highsmith, 2001; DeMarco and Lister, 1999

Team Development is important!

March 30, 2004 21

Software Quality Assurance:
Practices rather than Processes

• Attention to project management is more important, but:
• Software Quality Assurance (SQA) and is a big issue for DOE

and DOD codes (10 CFR 830, etc.)
• Heavy processes stifle innovative software—the kind of

innovations necessary to solve computational scientific and
technical problems
– Scientists are trained to question authority, look for value added for

any procedure
• ASCI had more success emphasizing “Best practices” than

“Good processes”
• If the code team doesn’t implement SQA on their own terms, the

sponsors may implement SQA on their terms, and the teams
won’t like it much less

DeMarco and Boehm, 2002; DPhillips,1997; Remer, 2000; DeMarco and Lister, 2002; Rifkin, 2002; Post and Cook, 2000: Post and Kendall, 2002

March 30, 2004 22

Verification and Validation
• Customers (e.g. DOD) want to know why they should believe code

results
• Codes are not reality, but only a model of reality
• Verification and Validation are essential
• Verification

– Equations are solved correctly
– Regression suites of test problems, convergence tests, manufactured

solutions, analytic test problems, conserved quantities
– New methods urgently needed

• Validation
– Ensure models reflect nature
– Check code results with experimental data
– Need shift in experimental paradigms toward specific and dedicated

validation experiments rather than use of existing data
– NNSA is funding a large experimental program to provide validation data

• National Ignition Facility, DAHRT, ATLAS, Z,…

NIF

DAHRT

Roach, 1998; Roache, 2002; Salari and Knupp, 2000; Lindl, 1998; Lewis, 1992; Laughliin, 2002)

March 30, 2004 23

Conclusions
• If Computational Science is to fulfill its promise for society, it will need to

become as mature as theoretical and experimental methodologies.
• Prediction Challenge

• Need to analyze past experiences, successes and failures, develop “lessons
learned” and implement them—DARPA HPCS doing case studies of ~ 20
major US code projects (DoD, DOE, NASA, NOAA, academia, industry,…)

• Major lesson is that we need to improve:
•Verification
•Validation
•Software Project Management and Software Quality

• Programming Challenge
• HPC community needs to reduce the difficulty of developing codes for

modern platforms—DARPA HPCS developing new benchmarks,
performance measurement methodologies, encouraging new development
tools, etc.

March 30, 2004 24

Acknowledgements
Tom McAbee Douglas
Miller
Pat Miller
Myasa Peterson
James Rathkopf
Bill Reed
Donald Remer
Anthony Scannapieco
Jamileh Soudah
David Tubbs
Robert Weaver
Daniel Weeks
Robert Weaver
Don Willerton
Dan Weeks
Ed Yourdon
Michael Zika
George Zimmerman.

Tom Adams
Marvin Alme
Bill Archer
Donald Burton
Gary Carlson
John Cerutti
William Chandler
Randy Christiansen
Linnea Cook
Larry Cox
Tom DeMarco
Paul DuBois
Tom Gorman
Dale Henderson
Richard Kendall
Joseph Kindel
Kenneth Koch
Robert Lucas

I am grateful for the
invitation from the
program committee
and for discussions
with and assistance
from my colleagues:

March 30, 2004 25

References
1. Laughlin, R., The Physical Basis of Computability. Computing in Science and Engineering, 2002. 4(3): p. 27-30.
2. Petroski, H., Design Paradigms: Case Histories of Error and Judgement in Engineering. 1994, New York: Cambridge University Press. 221.
3. Gehman, H.W., et al., Report of the Columbia Accident Investigation Board. 2003, National Aeronautics and Space Administration: Washington, DC. p. 248.
4. Hallquist, J.O. Curent and Future Developments of LS-DYNA-1. in 4th European LS-DYNA Conference. 2003. ULM, Germany: Livermore Software Technology Corporation.
5. Taleyarkhan, R.P., et al., Evidence for Nuclear Emissions During Acoustic Cavitation. Science, 2002. 295(1): p. 1868-1873.
6. Shapira, D. and M. Saltmarsh, Nuclear Fusion in Collapsing Bubbles—Is It There? An Attempt to Repeat the Observation of Nuclear Emissions from Sonoluminescence. Physical Review Letters, 2002. 89(10): p.

104302-104305.
7. Post, D. and R. Kendall. Lessons Learned From ASCI. in DOE Software Quality Forum 2003. 2003. Washington, DC: Los Alamos National Laboratory.
8. Thomsett, R., Radical Project Management. 2002, Upper Saddle River, NJ: Prentice Hall.
9. DeMarco, T., The Deadline. 1997, New York, New York: Dorset House Publishing. 310.
10. Beck, K., Extreme Programming Explained. 2000, Boston: Addison Wesley.
11. Remer, D. Managing Software Projects. in UCLA Technical Management Institute. 2000. Los Angeles, CA: UCLA Extension Courses.
12. Vliet, H.v., Software Engineering, Principles and Practice. 2000, Chichester: John Wiley and Sons, Ltd. 726.
13. Brooks, F., The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition. 1995, Menlo Park: Addision-Wesley Publishing Co. 322.
14. Verzuh, E., The Fast forward MBA in Project Management. 1999: John Wiley.
15. Ruskin, A.M. and W.E. Estes, What Every Engineer Should Know About Project Management. 2 ed. What Every Engineer Should Know, ed. W. H.Middendorf. Vol. 33. 1995, New York: Marcel Dekker, Inc. 274.
16. DeMarco, T. and T. Lister, Waltzing with Bears, Managing Risk on Software Projects. 2003, New York, New York: Dorset House Publishing. 196.
17. Glass, R.L., Software Runaways: Monumental Software Disasters. 1998, New York: Prentice Hall PTR. 288.
18. Demarco, T. and T. Lister, Risk Management for Software. 2002, The Cutter Consortium: Arlington, MA.
19. Capers-Jones, T., Estimating Software Costs. 1998, New York: McGraw-Hill.
20. Yourdon, E., Death March. 1997, Upper Saddle River, NJ: Prentice Hall PTR.
21. Symons, C.R., Function Point Analysis: Difficulties and Improvements. IEEE Transactions on Softwware Engineering, 1988. 14(1): p. 2-11.
22. Brooks, F.P., No Silver Bullet: Essence and Accidents of Software Engineering. Computer, 1987. 20(4): p. 10-19.
23. Oberkampf, W. and T. Trucano, Verification and Validation in computational fluid mechanics. Progress in Aerospace Studies, 2002. 38: p. 209-272.
24. Roache, P.J., Verification and Validation in Computational Science and Engineering. 1998, Albuquerque: Hermosa Publishers. 446.
25. Roache, P.J., Code Verification by the Method of Manufactured Solutions. Transactions of the ASME, 2002. 124: p. 4-10.
26. Kamm, J.R., W.J. Rider, and J.S. Brock. Combined Space and Time Convergence Analysis of a Compressible Flow Algorithm. in AIAA Conference on Computational Fluid Dynamics. 2003. Orlando, Florida: AIAA.
27. Pautz, S.D. Verification of Transport Codes by the Method of Manufactured Solutions: the ATTILA Experience. in ANS International Meeting on Mathematical Methods for Nuclear Applications. 2001. Salt Lake City, Utah:

American Nuclear Society.
28. Paulk, M., The Capability Maturity Model. 1994, New York: Addison-Wesley.
29. Halberstam, D., The Reckoning. 1986, New York: William Morrow and Co.
30. Phillips, D., The Software Project Manager's Handbook. 1997, Los Alamitos: IEEE Computer Society.
31. DeMarco, T. and B. Boehm, The Agile Methods Fray. Computer, 2002. 35(6): p. 90-92.
32. Boehm, B., Get ready for agile methods, with care. Computer, 2002. 35(1): p. 64-69.
33. Highsmith, J. and A. Cockburn, Agile software development: the business of innovation. Computer, 2001. 34(9): p. 120-127.
34. Herbsleb, J., et al., Software Quality and the Capability Maturity Model. Communications of the ACM, 1997. 40(June, 1997): p. 30-40.
35. Humphrey, W.S., Winning with Software: An Executive Strategy. 2001, Pittsburg: Software Engineering Institute.
36. Huizenga, J., et al., Cold Fusion Research, A Report of the Energy Research Advisory Board to the United States Department of Energy. 1989, United States Department of Energy: Washington, DC 20585. p. 62.

