COMPUTATIONAL MATERIALS DESIGN FOR ACCELERATED IMPLEMENTATION

G. B. Olson
Northwestern University / QuesTek Innovations LLC
Evanston IL

DOE SC-NE Workshop on Advanced Computational Mat. Sci.
March 31, 2004
MTL/SRG

A) Cybersteel 2020: Ultratough Plate Steels (ONR; CAT)

B) HT Carburizing Steels (DOE-OIT; GM, P&W)

C) Superalloys (AF-MEANS, DARPA-AIM; RMCI)

D) Bulk Metallic Glasses (DARPA-SAM)

<table>
<thead>
<tr>
<th>GOVERNMENT</th>
<th>UNIVERSITY</th>
<th>INDUSTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAWC/AD</td>
<td>NORTHWESTERN</td>
<td>QUESTEK</td>
</tr>
<tr>
<td>Lee</td>
<td>Olson</td>
<td>Kuehmann</td>
</tr>
<tr>
<td>A</td>
<td>Ankenman</td>
<td>Qiu</td>
</tr>
<tr>
<td>ARL/WMD</td>
<td>Asta</td>
<td>Huang</td>
</tr>
<tr>
<td>Montgomery</td>
<td>Brinson</td>
<td>Rathbun</td>
</tr>
<tr>
<td>B</td>
<td>Dunand</td>
<td>Tufts</td>
</tr>
<tr>
<td>AFRL</td>
<td>Fine</td>
<td>Jou</td>
</tr>
<tr>
<td>C,D</td>
<td>Voorhees</td>
<td>Scharer</td>
</tr>
<tr>
<td>Woodward</td>
<td>High Resolution Microanalysis</td>
<td>Wright</td>
</tr>
<tr>
<td></td>
<td>WPI/CHTE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apelian</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PURDUE-CALUMET</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abramowitz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DREXEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Doherty</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KTH (Stockholm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agren</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sundman</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEHIGH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harlow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OHIO STATE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fraser</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mills</td>
<td></td>
</tr>
<tr>
<td>CSM</td>
<td></td>
<td>CATERPILLAR</td>
</tr>
<tr>
<td>Eberhart</td>
<td></td>
<td>A,B</td>
</tr>
<tr>
<td>WISCONSIN-MAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perepezko</td>
<td></td>
<td>Chen</td>
</tr>
<tr>
<td>MIT</td>
<td></td>
<td>Johnson</td>
</tr>
<tr>
<td>Argon</td>
<td></td>
<td>Hsieh</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nash</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIRGINIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ALLVAC STEEL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A,B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lippard</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>INLAND STEEL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bhattacharya</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mishra</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sachdev</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRATT & WHITNEY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B,C,D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fowler</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schirra</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>REFERENCE METALS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carneiro</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HOWMET</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wolter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wright</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BOEING</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bowden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROCESSING

- TEMPERING
- SOLUTION TREATMENT
- HOT WORKING
- SOLIDIFICATION
- DEOXIDATION
- REFINING

STRUCTURE

- MATRIX
 - Lath Martensite
 - Ni: Cleavage Resistance
 - Co: SRO Recovery Resistance

- STRENGTHENING DISPERSION
 - (Mo, Cr, W, V, Fe)\(_2\)Cx
 - (Nb, V)Cx
 - Avoid Fe 3C, M6C, M23C6

- GRAIN REFINING DISPERSION
 - \(\frac{d}{f}\)
 - Microvoid Nucleation Resistance

- AUSTENITE DISPERSION
 - Stability (Size, Comp.)
 - Amount
 - Dilatation

- GRAIN BOUNDARY CHEMISTRY
 - Cohesion Enhancement
 - Impurity Gettering

PROPERTIES

- STRENGTH
- TOUGHNESS
- HYDROGEN RESISTANCE

PERFORMANCE
Transformation Design

Micromechanics Design

Nano Design

Quantum Design

Solidification Design

LM, TEM
MQD
DSC

LM, TEM
J_{IC}, \gamma_i

SANS, XRD
APFIM, AEM

\sigma_y, H

SAM
K_{GB}(\Delta\gamma)

LM
SEM/EDS

TC/MART
CASIS, MAP

TC(Coh)/DICTRA - K_C
ABAQUS/EFG

PPT-H

K_C

TC/\Delta\rho_L

TC, \Delta V

ABAQUS/SPO

TC, \Delta V

TC(Coh)/DICTRA - K_C

ABAQUS/EFG

FM
DVM

RW-S
S53 Nanostructured UHS Stainless Results

Fracture Toughness vs. Ultimate Tensile Strength

Typical Fracture Toughness $K_{IC, L-T}$ (KSI/IN$^{1/2}$)

Ultimate Tensile Strength (KSI)

- 15-5PH
- 13-8Mo
- Custom 465
- AF 1410
- AerMet 100
- Ferrium S53
- 4340/300M
Multiscale Ductile Fracture Simulator

Microvoiding matrix + primary particles

Iron matrix + secondary particles

Subatomic scale

Fracture toughness

CAT Steel

\(\sigma_Y = 1.1 \text{GPa} \)
\(d\sigma/d\varepsilon = 0.6 \text{ GPa} \)

\(\delta_{IC} = 120 \mu\text{m} \)
\(\gamma_i = 0.2 \)

\(f_{\text{TiN}} = 0.052\% \)
\(d_{\text{TiN}} = 1-10 \mu\text{m} \)

\(f_s = 0.015\% \)
\(d_s = 0.003-3 \mu\text{m} \)
Current Applications

Gears: NASCAR
- Successfully completed race with narrow gear design
- Moving forward with development

Ring & Pinion: SCORE
- Finished entire race with new design
- Production sets being made

Dog Rings and Camshafts: Currently in testing

For more info contact: C. Kuehmann or B. Tufts - QuesTek Innovations LLC - 847-328-5800
Heterogeneous Precipitation of Austenite on Copper Particles

Isoconcentration surface with 10% Ni threshold
Toughness - Strength Combination

Charpy V-notch Energy Absorption at 27°C (ft-lb) vs. Yield Strength (ksi)

- NUCu-60
- NUCu-100
- NU Bridge Steels
- HY-80
- HSLA-100
- HY-130
- HY-180
- Blastalloy160
- Co-Ni Steels
- AF1410
- AerMet100
ARCHITECTURE DESIGN

Integration Infrastructure
iSIGHT framework provided by Engineous Software

Core Utilities
3rd Party tools to extend iSIGHT’s integration capabilities

Analysis Components
Models provided by Pratt & Whitney, General Electric, Questek, and others. Integrated by Engineous into the DKB architecture via iSIGHT

* Distributed Resource Management

Analysis Components
Models provided by Pratt & Whitney, General Electric, Questek, and others. Integrated by Engineous into the DKB architecture via iSIGHT

* Distributed Resource Management
PrecipiCalc™ Timeline

Software/Hardware Improvement

- **1/01**: Birth
- **6/01**: Base Start
- **1/02**: Option Start
- **6/02**: PWA1100 F117 disk center
- **R88 coupons**

Lattice Parameters
- **γ/γ’**

Diffusivity Scaling
- 24 hours* on Pentium III 600MHz
- 2 hours* on Pentium III 1GHz with improved numerical nucleation treatment

Coherency Transition \(\sigma(R)\)
- 0.6 hours* on Pentium IV 2.2 GHz with compiler optimization
- 0.3 hours* on Pentium IV 2.2 GHz with optimized parameters
- 0.05 hours* on Pentium IV 2.2 GHz with cluster hardware

Applications/Demonstrations

- **1/03**: minidisk selected locations
- **iSIGHT integration with grain size and APB energy models**
- **spatial minidisk**
- **uncertainty error analysis**
- **prior heat treatment**
- **\(\gamma'/\text{carbide grain pinning}\)**

- **6/03**: R88 tensile samples
- **spatial V2500**

Diffusivity Scaling

- **202x190**

Coherency Transition

- **σ(R)**

Applications

- **3D/2D mapping**
- **Option**
- **Start**
- **3D/2D**
- **3D/2D**

Multiphase Interaction

- **minidisk**
- **spatial**

Uncertainty Error Analysis

- **\(\gamma'/\text{carbide grain pinning}\)**

* single IN100 PWA1100 simulation
Composition Profile (at.%) across Matrix Channel in between Secondary Precipitates w. Tertiary Precipitate in IN100 - Center 1st Disc

- **Ni**: Diffusion field in Secondary γ' precipitates
- **Al**: Secondary γ' precipitates
- **Ti**: Tertiary γ' precipitate (not fully resolved in this representation)
- **Co**: Tertiary γ' precipitate (not fully resolved in this representation)
- **Cr**: γ Matrix channel
- **Mo**: Secondary matrix inclusion within secondary γ' precipitate (not fully resolved in this representation)

Dieter Isheim, 8Dec 2002
Northwestern University
Impact of DARPA AIM Initiative

• Supply chain impact on material capability captured

➢ Enables versatile processing for smaller lot sizes

Weibull probability paper

PrecipiCalc

YS model

Yield Strength

1150F, integral data, sample size = 701
RT, integral data, sample size = 129
1150F, simulation 110303, sample size = 377
RT, simulation 110303, sample size = 377

chemistry

yield strength, ksi

145 150 155 160 165 170 175
0.001 0.010 0.050 0.100 0.250 0.500 0.750 0.900 0.990
Minidisk Microstructure Prediction with PrecipiCalc

<table>
<thead>
<tr>
<th>Minidisk Comparison</th>
<th>Bore</th>
<th>Rim</th>
<th>Attachment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary γ'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction (%)</td>
<td>24</td>
<td>22.6</td>
<td>23.5</td>
</tr>
<tr>
<td>Size (µm)</td>
<td>1.28</td>
<td>1.29</td>
<td>1.23</td>
</tr>
<tr>
<td>Secondary γ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction (%)</td>
<td>32.4</td>
<td>35</td>
<td>34</td>
</tr>
<tr>
<td>Size (nm)</td>
<td>109</td>
<td>107.9</td>
<td>132</td>
</tr>
<tr>
<td>Tertiary γ'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size (nm)</td>
<td>18</td>
<td>21.5</td>
<td>19.7</td>
</tr>
</tbody>
</table>

Diagram

- **Attachment**
- **Bore**
- **Rim**
Impact of DARPA AIM Initiative

- Material behavior intimately linked and participating in the design process
 - 4 months to improved capability
Compositional Variations (wt%, ±6σ):

- C ± 0.01
- Cr ± 0.2
- Mo ± 0.1
- W ± 0.1
- Co ± 0.3
- Ni ± 0.1
- V ± 0.02

Variations of:

- Structure — carbide solvus Ts, martensite Ms, precipitation control ΔG’s
- Property — hardness HRc, toughness CVN

Results of 1000 runs (12 minutes on a Pentium IV 2.2GHz CPU)
S53A Scale-up Properties

- **YS [ksi]**
 - S53A (300 pound heat): 63
 - S53A (3,000 pound heat): 60

- **UTS [ksi]**
 - S53A (300 pound heat): 285
 - S53A (3,000 pound heat): 285

- **El. [%]**
 - S53A (300 pound heat): 15
 - S53A (3,000 pound heat): 16

- **RA [%]**
 - S53A (300 pound heat): 59
 - S53A (3,000 pound heat): 63
Processing

- Coating
- Surface Treatment
- Aging
- Solution Treatment
- Solidification + Shaping
- Melt Refining

Structure

- Thermal Barrier Coating
- Oxygen Barrier Coating
- Bond Coat
- Oxide Scale (Al₂O₃, YAG)
- Film Interface

Properties

- Oxidation Resistance
 - Higher Dₐ/Dₒ
 - Low Oxygen Solubility

- Creep Strength
 - Dispersion Stability

- Ductility/Embrittlement Resistance
 - Metallic Matrix (with low O₂ solubility)

Solid Solution

- Lattice Parameters
- Solid Solution Strengthening
- Oxygen Activity
- Control Diffusivities

Dispersed Phases: PdAl,YAl (Pd,Pt, Ru)₂(Hf,Zr,Y,Nb)Al

- Lattice misfit
- High Stability
- Coherent Interface
- Low Coarsening Rate Constant
Tie-tetrahedra in the Nb-Pd-Hf-Al quaternary system at 1200°C
Relative Charge in Octahedral Hole versus Metal Substitutional
Diffusivity of Al in a Nb-X-5Al (in at%) bcc solid solution

Diffusivity of Al (m^2/sec)

1300°C

mol fraction X (X=Hf,Ti,Cr)

10^{-14}

10^{-15}

10^{-16}
Oxide scale in Alloy A’ oxidized at 1300°C

A: \(\text{Al}_2\text{O}_3 + \text{HfO}_2 \)
B: \(\text{HfO}_2 \)
I. Blastalloy II: LC160 Martensite
 Client: ONR, Dr. Julie Christodoulou
 Advisors: Arup Saha; Yana Qian
 Team: Dan Cogswell, Joe Dudas, Ken Liu

II. Blastalloy III: PH-TRIP Austenite
 Client: ONR, Dr. Julie Christodoulou
 Advisors: Dr. Su Hao; Zhe Liu
 Team: Danijel Gostovic, Sai-Pong Leung, Derek Norton

III. Dragonslayer II: Carburizing Stainless Bearing Steel (CS62+)
 Client: DOE-OIT, P&W, QuesTek
 Advisors: Dr. Jay Gao; Ben Tiemens
 Team: Loren Darling, Thor Gudmundsson

IV. MX4: Ni Aeroturbine Blade Alloy
 Client: NSF-FRG (OSU), P&W, GEAE
 Advisors: Dr. Gautam Ghosh; Chandler Becker
 Team: Travis Harper, Mike McCarren, Paul Von Donnen

V. Noburnium: Nb Superalloy
 Client: AF-MEANS, Dr. Craig Hartley
 Advisors: Abhijeet Misra; Dave Bryan
 Team: Erhan Altinoglu, Jennifer Bolos, Nora Colligan

VI. Terminator 4: FrankenSteel Goes to Mars (Biomimetic Self-Healing Alloy Composite)
 Client: NASA-Houston, Dr. Brad Files
 Advisors: Jin-won Jung; Michele Manuel
 Team: Wendy Cheng, Steve Knapp, Richard Scheunemann

VII. HT Aluminum/Bulk Metallic Glass
 Client: DARPA-SAM, Boeing, P&W, QuesTek
 Advisors: Ryan Rathbun; Keith Knipling
 Team: Bryan Harder, Nik Hrabe, Alison Markowitz
V-Cr-Ti Alloys

Isothermal Section at 600°C

Solubility Limits of C and O in V-4.1Cr-4.3Ti at 1000°C
Paradigm Shifts: MSE Integration

a) discovery based → design based
 - downstream cost of discovery

b) empirical → mechanistic/predictive

c) statistical (eng.)
 deterministic (sci.)
 } → probabilistic
 - prediction of multiple properties from defect distribution functions
 - designed variation (predictive robust design: performance/variation tradeoff)

d) computational mat. sci. (toys) → computational mat. eng. (tools)

e) reductionist analytical → holistic (systems) synthetic

Optimal Integration:
Tactical science in support of strategic engineering