COMPUTATIONAL MATERIALS DESIGN FOR ACCELERATED IMPLEMENTATION

G. B. Olson Northwestern University / QuesTek Innovations LLC Evanston IL

DOE SC-NE Workshop on Advanced Computational Mat. Sci.

March 31, 2004

MTL/SRG

UNIVERSITY

- A) Cybersteel 2020: Ultratough Plate Steels (ONR; CAT)
- B) HT Carburizing Steels (DOE-OIT; GM, P&W)

C) Superalloys (AF-MEANS, DARPA-AIM; RMCI)

D) Bulk Metallic Glasses (DARPA-SAM)

GOVERNMENT

NAWC/AD	Α
Lee	
ARL/WMD	В
Montgomery	
AFRL	C,D
Woodward	Miracle

CSM	С
Eberhart	
WISCONSIN-MAD	C,D
Perepezko	
МІТ	D
Argon	Parks
IIT	D
Nash	
VIRGINIA	D
Poon	Shiflet

NORTHWESTERN A,B,C,D Freeman Olson Ghosh Ankenman Isheim Asta Liu Brinson Dunand Moran Fine Voorhees **High Resolution Microanalysis** WPI/CHTE В Apelian **PURDUE-CALUMET** В Abramowitz DREXEL С Doherty **KTH (Stockholm)** С Agren Sundman LEHIGH С Harlow **OHIO STATE** С Fraser Mills

INDUSTRY

QUESTEK	A,B,C,D				
Kuehmann	Qiu	Tang			
Huang	Rathbun	Tufts			
Jou	Scharer	Wright			
CATERPIL	LAR	A,B			
Chen	,	Johnson			
Hsieh		Yang			
ALLVAC ST	FEEL	A,B			
Lippard	Stevenson				
INLAND ST	EEL	Α			
Bhattachar	ya				
GM		В			
Mishra		Sachdev			
PRATT & W	/HITNEY	B,C,D			
Fowler		Schirra			
REFERENC	E METAL	S C			
Carneiro					
HOWMET		D			
Wolter		Wright			
BOEING		D			
Bowden					

S53 Nanostructured UHS Stainless Results

HIGH POWER-DENSITY GEARS

Current Applications

Gears: MASCAR

-Successfully completed race with narrow gear design -Moving forward with development

Ring & Pinion: Score -Finished entire race with new design -Production sets being made

Dog Rings and Camshafts: Currently in testing

For more info contact : C. Kuehmann or B. Tufts - QuesTek Innovations LLC - 847-328-5800

Heterogeneous Precipitation of Austenite on Copper Particles

Cu Ni

Isoconcentration surface with 10% Ni threshold

Toughness - Strength Combination

ARCHITECTURE DESIGN

PrecipiCalc[™] Timeline

Software/Hardware Improvement

Composition Profile (at.%) across Matrix Channel in between Secondary Precipitates w. Tertiary Precipitate in IN100 - Center 1st Disc

Impact of DARPA AIM Initiative

 Supply chain impact on material capability captured

Enables versatile processing for smaller lot sizes

Minidisk Microstructure Prediction with PrecipiCalc

QuesTен

INNOVATIONS LLC

Minidisk		Bore		Rim		Attachment	
Comparison		Exp.	РрС	Exp.	РрС	Exp.	РрС
Primary γ'	Fraction (%)	24 25.2	22.6	23.5 25	23.5	23.1 25.7	23.3
	Size (µm)	1.28	1.29	1.23 1.27	1.32	1.18 1.2	1.31
Secondary γ	Fraction (%)	32.4	35		34		34.6
		109		132	120	103	
	Size (nm)	129	107.9	157	135	114	84.2
					146		
Tertiary γ'	Size (nm)	18 20.8	21.5	19.7 21.8	21.4	21.4	20.7

Impact of DARPA AIM Initiative

 Material behavior intimately linked and participating in the design process
>4 months to improved capability

UG subrotor_orig.prt ugbatch.bat subrotor **iSIGHT** .exp forge.iges Output deform mach.prt .orl zones.data mach.inp forge.inp baseload ANSYS DEFORM BC file .inn ach.ec Modeling Modeling 8 Analysis Analysis & Post Postprocessing processing N Burst

INNOVATIONS LLC

PERFORMANCE

Tie-tetrahedra in the Nb-Pd-Hf-Al quaternary system at 1200°C

Relative Charge in Octahedral Hole versus Metal Sunbstitutional

Oxygen Diffusivity in Nb-X at 1300C (Microhardness)

Oxide scale in Alloy A' oxidized at 1300°C

A: Al₂O₃+HfO₂ B: HfO₂

MSc390 Materials Design Projects Spring 2003

I. Blastalloy II: LC160 Martensite

Client: ONR, Dr. Julie Christodoulou Advisors: Arup Saha; Yana Qian Team: Dan Cogswell, Joe Dudas, Ken Liu

- II. <u>Blastalloy III: PH-TRIP Austenite</u> Client: ONR, Dr. Julie Christodoulou Advisors: Dr. Su Hao; Zhe Liu Team: Danijel Gostovic, Sai-Pong Leung, Derek Norton
- III. <u>Dragonslayer II: Carburizing</u> <u>Stainless Bearing Steel (CS62+)</u> Client: DOE-OIT, P&W, QuesTek Advisors: Dr. Jay Gao; Ben Tiemens Team: Loren Darling, Thor Gudmundsson

- IV. <u>MX4: Ni Aeroturbine Blade Alloy</u> Client: NSF-FRG (OSU), P&W, GEAE Advisors: Dr. Gautam Ghosh; Chandler Becker Team: Travis Harper, Mike McCarren, Paul Von Dollen
- V. <u>Noburnium: Nb Superalloy</u> Client: AF-MEANS, Dr. Craig Hartley Advisors: Abhijeet Misra; Dave Bryan Team: Erhan Altinoglu, Jennifer Bolos, Nora Colligan
- VI. <u>Terminator 4: FrankenSteel Goes to Mars</u> (Biomimetic Self-Healing Alloy Composite) Client: NASA-Houston, Dr. Brad Files Advisors: Jin-won Jung; Michele Manuel Team: Wendy Cheng, Steve Knapp, Richard Scheunemann
- VII. <u>HT Aluminum/Bulk Metallic Glass</u> Client: DARPA-SAM, Boeing, P&W, QuesTek Advisors: Ryan Rathbun; Keith Knipling Team: Bryan Harder, Nik Hrabe, Alison Markowitz

V-Cr-Ti Alloys

Paradigm Shifts: MSE Integration

- a) discovery based → design based - downstream cost of discovery
- b) empirical \rightarrow mechanistic/predictive
- c) statistical (eng.) deterministic (sci.) $\} \rightarrow$ probabilistic
 - prediction of multiple properties from defect distribution functions
 - designed variation (predictive robust design: performance/variation tradeoff)
- d) computational mat. sci. (toys) \rightarrow computational mat. eng. (tools)
- e) reductionist analytical \rightarrow holistic (systems) synthetic

Optimal Integration: Tactical science in support of strategic engineering