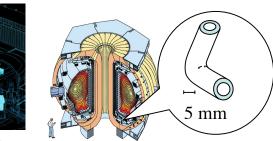
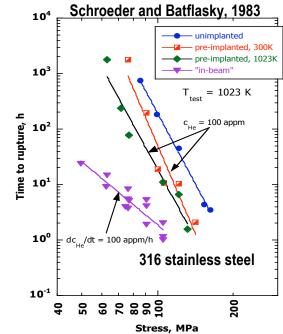

Modeling Deformation and Fracture

G. R. Odette

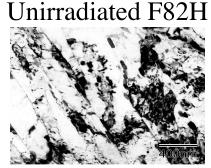

UC Santa Barbara

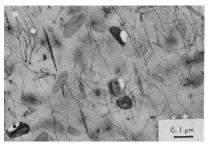
DOE SC-NE Workshop on Advanced Computational Materials Science: Application to fusion and Generation-IV Fission Reactors March 31 - April 2 Washington DC


The Challenge


- Development of reliable and long-lived fusion structures may be the greatest engineering challenge of all time due to unprecedented demands on materials related to:
 - high heat fluxes and time varying thermal-mechanical loads on heat transfer structures with large, complex, interconnected geometries involving intricate materials systems
 - in-service degradation of a host of performance sustaining mechanical properties, internal damage development, macroscopic cracking, corrosion and dimensional instabilities.
 - numerous synergistic and hard to predict potential failure paths
 - requirements for high reliability, long life and large demonstrable safety margins.
- Many issues shared with advanced fission/accelerator based technologies
- Need to reliably predict in-service properties

'Properties'


- Static (but rate dependent) constitutive & fracture 'properties' controlled by the evolved in-service microstructure
 - yield strength and strain hardening, 'ductility', fatigue crack growth rates & fracture toughness
- Time/history dependent properties where stresses, displacement defects, He, ... control the microevolutions & macro-damage
 - thermal and irradiation creep & rupture, thermo-mechanical fatigue, creep crack growth, creep-fatigue, environmentally assisted cracking, ...
- 'Properties' often influenced by extrinsic factors in both coupon tests & structures and properties interact in complex materials systems.



In-Service Property Changes

- Structural materials have very complex, multi-constituent, multi-phase, highly defected, non-equilibrium micro-structures that mediate an array of complex mechanical properties.
- Combinations of many environmental and material variables control microstructural and property evolutions
- Governing processes involve enormous degrees of freedom, are inherently
- " multi-scale (time/ length) with many mechanisms (multi-physics) that act in parallel, series and in opposition critical outcomes often depend on small differences between large competing effects (e.g., void swelling)

Radiation Damaged SS

Physically Based Property Change Models

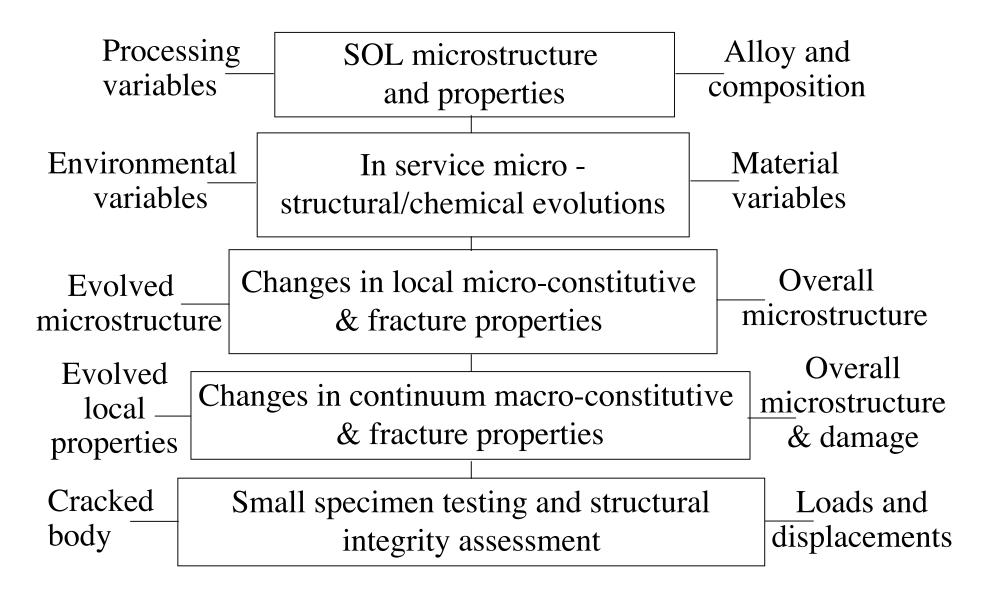
Objective - develop physically based property change (ΔP) models accounting for the combination of material and environmental variables statistically fit to high quality databases to provide *reliable interpolation and extrapolation*.

 $\Delta P = f_{model}[T_i, dpa, dpa rate, He, H, stress, ..., alloy,$ composition, microstructure/microchemistry, ...]

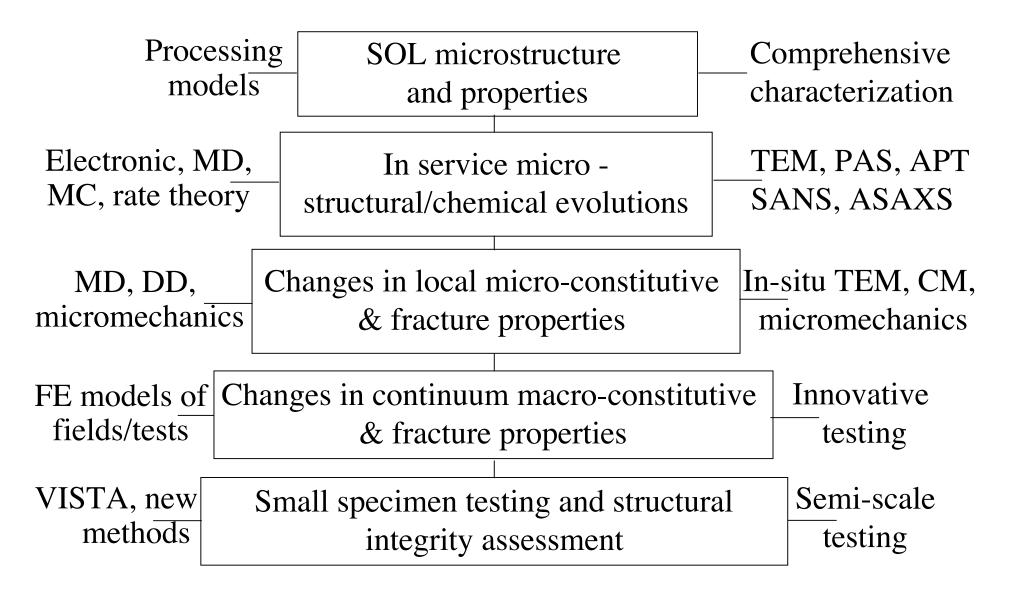
• Need *iterative cycles* of modeling and various kinds of experiments to build *understanding* and a *knowledge base*.

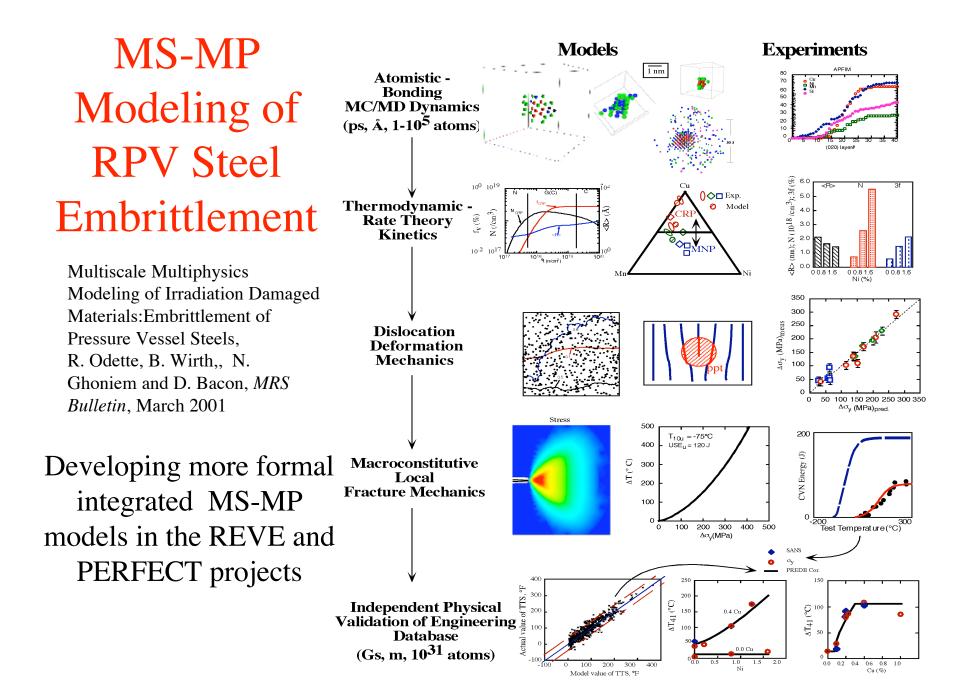
 $Experiments \leftrightarrow Multiscale Phenomena \leftrightarrow Models$

Mechanisms Controlled singlecombined variable Integrated (verification) Atomic properties Mechanisms and processes Functional properties


The Good News

- Challenges cross cut technologies/materials
- Depend on 'common' microstructures.
- Enormous opportunity to integrate models and experiments - not only for 'validation' but to build understanding.
- Models can most often be hierarchical.
- Hierarchical, physics-based atomic to structural scale *model designs* will be critical to success.
- Useful knowledge and models can be developed <u>without</u> perfect theory.
- Strategy roadmap answers to wellposed questions

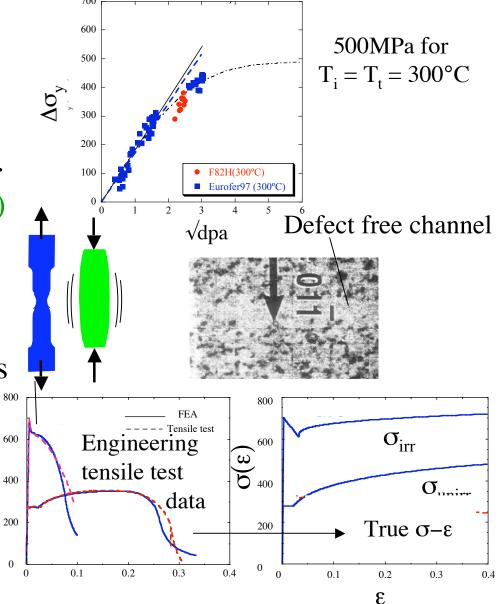

	Models
	Critical structural fracture loads & displacements controlled by $\sigma(\varepsilon)$, K _{Je} <i>FE models</i>
	Crack tip stress & strain fields controlled by $\sigma(\varepsilon)$, K _J & cracked-body size & geometry <i>FE models</i>
	Critical crack tip stress fields controlled by σ*-V* - hence by microstructure & microcrack arrest toughness <i>FE</i> & <i>dislocation models</i>
1	
	Microcrack arrest toughness controlled by intrinsic shear strength of the bcc ferrite lattice <i>FE</i> , dislocation and molecular dynamics models


Multiscale Fracture

Hierarchical Modeling Approach

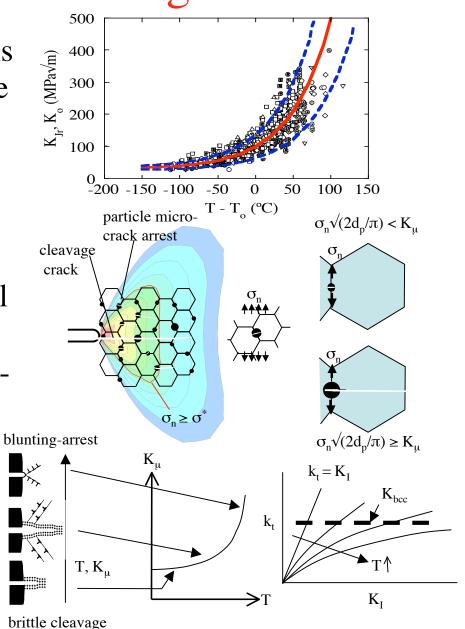
Modeling-Experiment Integration

Key Nearer Term Crosscutting Issues

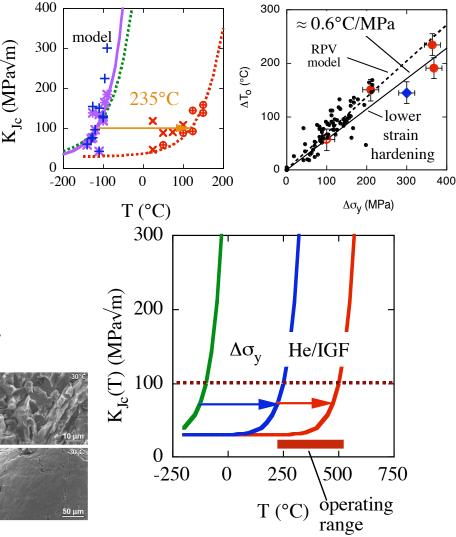

- Irradiation effects on true-stress strain constitutive laws, the causes & consequences of flow localization and their combined implications to effective 'ductility'.
- Validity & physical basis for the Master Curve (MC)-Shifts (ΔT_o) method for measuring/applying fracture toughness:
 - a universal fracture toughness temperature MC shape
 - size and geometry effects on effective fracture toughness
 - embrittlement MC ΔT_o shifts due to synergistic hardening and non-hardening mechanisms including He & H effect.
- Model based design of high performance radiation resistant alloys managing displacement and transmutant gas damage.

Key Nearer Term Crosscutting Issues

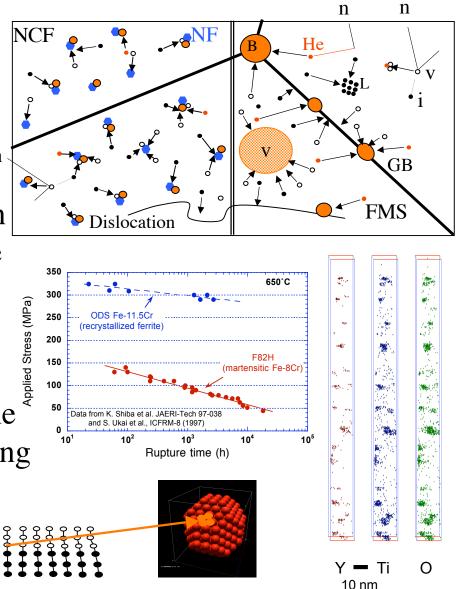
- High temperature creep/creep rupture including He effects.
- Dimensional instabilities due to possible void swelling and *irradiation creep* including He and H effects.
- Multiphysics models of time-dependent structural loading /deformation based on advanced constitutive-failure models and integrity assessment methods -- Virtual International Structural Test Assembly (VISTA).
- Development of models for high performance, high temperature materials (alloys, ceramics and composites) with good balance of properties including processing, manufacturing and joining.
- Other very important but more complex properties later tackle modeling later?


Irradiation Effects on Constitutive Properties

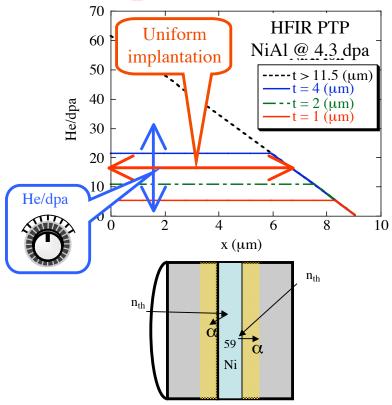
- Continuum true stress-strain hardening $\sigma(T_t, \varepsilon')$ constitutive and plasticity (J₂?) laws linked to microstructural evolution models (T_i, dpa, ...). $\sigma = \sigma_{vt}(\varepsilon', T) + \sigma_{va} + \sigma_{sh}(\varepsilon, \varepsilon', T)$
- Harmonization of continuum, crystal plasticity, dislocation dynamics and obstacle interaction views on the causes and consequences ('ductility'⁸⁰ for various geometries) of ⁶⁰ micro-flow localization and ⁴⁰ relations to experimental ²⁰ observables.


Physical Basis for a Master Toughness Curve

- MC method uses small specimens and ΔT models to predict fracture in large/complex structures.
- The universal (?) shape of the fracture toughness-temperature K_{Jc}(T) curve is not understood.
- Need integrated multiscale model including atomic scale processes that valve the much larger macro-continuum K_{Jc}(T) toughness.
- Key is experiments & MD + DD models of intrinsic BCC microarrest toughness at a nanoscale tip of a dynamic microcrack?


Master Curve Shifts (ΔT_0) and He Effects

- Modeled irradiation hardening $(\Delta \sigma_y)$ induced $\Delta T_o \approx 0.6^{\circ} \text{C/MPa.}_{g}$
- Peak hardening up to $\approx 600 \text{ MPa} \underbrace{\mathbb{E}}_{0}^{\mathbb{E}}$ => large ΔT_{0} => $T_{0} \ge 250^{\circ}\text{C}$.
- Spallation proton data suggests at > 600-800 appm He weakens grain boundaries producing very brittle intergranular facture that interacts synergistically with $\Delta \sigma_{v}$.
- Estimates of combined effects suggest $T_o > 500^{\circ}C$ possible clearly a show stopper!
- High concentrations of H may also be damaging


Model Based Design of Advanced Alloys

- Minimize displacement defect accumulation and protect grain boundaries from helium at both low and high temperature.
- Ultrahigh density of nanoscale solute clusters may provide high temperature creep strength while trapping helium in fine harmless bubbles as well as recombining vacancies and self-interstitials.
- Irradiation/thermal stability of the ^{*} nanoclusters and interface trapping properties are critical.
- Balance of properties?

Transport, Fate and Consequences

- Overarching challenge is to understand model the *transport & fate* of alloy and radiation produced species and their *consequences* to properties especially He (fusion).
- A comprehensive He fate model is under development but requires a large library of sub-models and material properties to be enabled.
- This model is being closely integrated with experiments, including an in-situ He implantation method providing controlled He/dpa ratios.

Basic He & He/dpa Mechanisms

- Diffusion & clustering kinetics with dpa.
- Trapping@dislocations/interfaces/boundaries,
- Sink strength effects and partitioning.
- Cluster/bubble sizes and stability
- Reaction to stress.
- He management.
- Model, FM and NCF alloys

Summary and Conclusions

- There are enormous opportunities to develop physically based models for better predictions of in-service properties of reactor materials.
- Developing such models is not an option -- it is an imperative.
- Advanced simulation tools will make important contributions.
- But, there are *no magic bullet* even with 'perfect' potentials and access to enormous numbers of computer cycles.
- We must embed *understanding* of complex physics in hierarchical models based on carefully planned development of sub-models and close integration with experiment.
- Efforts to develop such a *knowledge base* are on the cutting edge of materials science and will have a wide impact.