A multiscale model for fracture and radiation damage in tungsten

Michael Moseler, Matous Mrovec, Christian Elsässer and Peter Gumbsch

Fraunhofer Institute for mechanics of materials in Freiburg, Germany

Fraunhofer IWM Freiburg and Halle - Core Competencies

Mechanics of Materials

Simulation

components

Materials and Component Testing

under condition of use (temperature, wear, pressure ...) yield significant results for assessment and simulation

Forming

Specific methods to improve forming processes: hot embossing of glass, springback during sheet forming, rolling of wires, forging, powder pressing and sintering

TG_hel_00802e.ppt

Failure Assessment

 $\Delta \sigma_{I}^{2} \Delta \varepsilon_{e}^{pl}$

 $\Delta \sigma_{Le}^2$

 $\sqrt{1+3N} \sigma_{\alpha} \Delta \sigma_{\alpha}$

of manufacturing or in-service related faults in the bases of safety and lifetime concepts

Microstructural Analysis

by high resolution diagnostics and ion beam technologies lead to a sound understanding of the materials microstructure

Modelling

Development of micromechanical models for damage, brittle fracture and thermocyclical stress

Fraunhofer society invested 3 Mio. € into development of MMM-Tools

Fraunhofer Institut Werkstoffmechanik

The linking of testing and simulation is significant

for the outstanding position of Fraunhofer IWM

in the simulation of materials, processes and

our current interest in tungsten: drawing of wires

understanding crack nucleation and crack propagation

by atomistic modelling

Fracture	toughness	of	tungsten	in	MPa	$m^{1/2}$
----------	-----------	----	----------	----	-----	-----------

Crack system	RT exp.	77 K exp.	Atomistic modeling
$\{100\}\langle 010\rangle$	8.7 ± 2.5	3.4 ± 0.6	2.05
{100}(011) {110}(001)	6.2 ± 1.7 20.2 ± 5.5	2.4 ± 0.4 3.8 ± 0.4	1.63 2.17
$\{110\}\langle 1\overline{1}0\rangle$	12.9 ± 2.1	2.8 ± 0.2	1.56
{crack plane} <crack front=""></crack>		Gu 32 :	mbsch J.Nucl.Mate 3 , 304 (2003)
		(using Fir	nnis-Sinclair-potentia

a multiscale problem

- → atomistic processes in nano- and microscale regions
 - far from equilibrium \rightarrow quantum treatment
 - close to equilibrium \rightarrow semi-empirical potentials

macroscale prescription of Dirichlet or von Neumann boundary conditions (BC) far away from the atomistic zone

- asymptotic stress field or strain field
- asymptotic temperature field

 \rightarrow physics outside the atomistic region is only relevant concerning the atomistic BC

- micro stresses, micro strains
- nonreflecting BC
- heat sink
- thermostat

a multiscale model

A: coupling schemes

FEAt: Kohlhoff, Gumbsch, Fischmeister, Phil.Mag.A 64, 851 (1991)
QC: Tadmor, Ortiz, Phillips, Phil.Mag.A 73, 1529 (1996)
SMA: Moseler, Nordiek, Haberland, PRB 56, 15439 (1997)
CLS: Broughton, Abraham, Bernstein, Kaxiras, PRB 60, 2391 (1999)

model for atomistic zone: 1-D solid

• atoms interact via 1st and 2nd neighbour potential:

 $\mathbf{E}_{pot} = \frac{1}{2} \sum_{i} \left[\mathbf{V}(\mathbf{x}_{i} - \mathbf{x}_{i-1}) + \mathbf{V}(\mathbf{x}_{i} - \mathbf{x}_{i-2}) \right]$

CLASS CONTINUUM **ATOMS** NODES

substitutional medium

• idea of **FEAt**, **QC**, **CLS**: replace nonlocal force field by 1st neighbour forces (from FEM) description for nodes), equal atomic and nodal positions

V(x)

• SMA: take heavier nodes on simple cubic lattice

the high-freqency problem

Energetic Cluster Impact (ECI): Moseler et al., NIMB 164, 522 (2000)

Fraunhofer Institut Werkstoffmechanik Seite 10

substitutional medium approach

Moseler et al., PRB 56, 15439 (1997)

new Q medium:
$$-m_Q^* \omega^2 \tilde{\mathbf{u}}_Q^*(\omega) = -\Phi_{QP}^* \tilde{\mathbf{u}}_P(\omega) - \Phi_{QQ}^* \tilde{\mathbf{u}}_Q^*(\omega)$$
coupled to old P zone:
$$-m_P \omega^2 \tilde{\mathbf{u}}_P(\omega) = \tilde{\mathbf{f}}_P(\omega) - \Phi_{PP} \tilde{\mathbf{u}}_P(\omega) + \tilde{\mathbf{\Theta}}_{PP}^*(\omega) \tilde{\mathbf{u}}_P(\omega)$$
$$\tilde{\mathbf{\Theta}}_{PP}^*(\omega) = -\Phi_{PQ}^* \tilde{\mathbf{G}}_{QQ}^*(\omega) \Phi_{QP}^*$$
dynamic of \mathbf{u}_P after substitution should be the same:

$$-m_{P}\omega^{2}\tilde{\mathbf{u}}_{P}(\omega) = \tilde{\mathbf{f}}_{P}(\omega) - \Phi_{PP}\tilde{\mathbf{u}}_{P}(\omega) + \tilde{\mathbf{\Theta}}_{PP}^{*}(\omega)\tilde{\mathbf{u}}_{P}(\omega) + \tilde{\mathbf{R}}_{P}(\omega) + \tilde{\mathbf{\Delta}}_{PP}(\omega)\tilde{\mathbf{u}}_{P}(\omega) \tilde{\mathbf{\Delta}}_{PP}(\omega) = \tilde{\mathbf{\Theta}}_{PP}(\omega) - \tilde{\mathbf{\Theta}}_{PP}^{*}(\omega)$$

if SM has the same long wave length (ω =0) behaviour:

$$\tilde{\boldsymbol{\Delta}}_{PP}(\omega) = \tilde{\boldsymbol{\Delta}}_{PP}(-i0) + \omega \tilde{\boldsymbol{\Delta}}_{PP}'(-i0) + \frac{1}{2}\omega^2 \tilde{\boldsymbol{\Delta}}_{PP}''(-i0) + \frac{1}{6}\omega^3 \tilde{\boldsymbol{\Delta}}_{PP}''(-i0) + \dots$$

New equation of motion for P boundary $\mathbf{M}_{PP}^* \ddot{\mathbf{u}}_P(t) = \mathbf{f}_P(t) - \Phi_{PP}^* \mathbf{u}_P(t) - \Phi_{PQ}^* \mathbf{u}_Q^*(t)$ atoms: $- \mathbf{M}_{PP}^* \beta_{PP} \dot{\mathbf{u}}_P(t) - \mathbf{M}_{PP}^* \beta_{PQ} \dot{\mathbf{u}}_Q^*(t)$

$$\mathbf{M}_{PP}^{*} = \mathbf{M}_{PP} - \frac{1}{6} \tilde{\Delta}_{PP}^{\prime\prime\prime}(-i0) \mathbf{M}_{PP}^{-1} \tilde{\Delta}_{PP}^{\prime}(-i0) \qquad \mathbf{M}_{PP} = m_{P} \mathbf{1}_{PP} + \tilde{\Delta}_{PP}^{\prime\prime}(-i0)/2$$

$$\beta_{PP} = i \mathbf{M}_{PP}^{*}^{-1} \left(\tilde{\Delta}_{PP}^{\prime}(-i0) + \frac{1}{6} \tilde{\Delta}_{PP}^{\prime\prime\prime}(-i0) \mathbf{M}_{PP}^{-1} \Phi_{PP}^{*} \right)$$

$$\beta_{PQ} = i \mathbf{M}_{PP}^{*}^{-1} \frac{1}{6} \tilde{\Delta}_{PP}^{\prime\prime\prime}(-i0) \mathbf{M}_{PP}^{-1} \Phi_{PQ}^{*}$$

Fraunhofer Institut

Werkstoffmechanik

- embedded cluster calculation
- avoid electronic finite size effects
- covalent materials: H termination
- ionic materials: Madelung potential from classical zone

• metals: bond order potentials

Horsfield, Bratkovsky, Pettifor, Aoki, Phys. Rev. B 53, 1656 (1996); Mrovec, Nguyen-Manh, Pettifor, Vitek, Phys. Rev. B 69, 0941XX (2004);

B: Choice of the potenials

QM: A bond order potential for tungsten

Bond part

$$E_{bond} = \sum_{i\alpha \neq j\beta} \Theta_{j\beta,i\alpha} H_{i\alpha,j\beta}$$
bond integrals
radial parts are functions of
interatomic distance
angular dependencies given
by Slater&Koster
types of bond integrals
depend on materials
studied
parametrized according to *ab*
initio data

$$\widehat{H}[U_n] = a_n[U_n] + b_n[U_{n-1}] + b_{n+1}|U_{n+1}\rangle$$

$$\int_{-\infty}^{E_F} G_{i\alpha,j\beta} (E + i\eta) dE_j^{E_F}$$
using Lanczos algorithm (recursion method)

$$\widehat{H}[U_n] = a_n[U_n] + b_n[U_{n-1}] + b_{n+1}|U_{n+1}\rangle$$

$$\int_{-\infty}^{G_{i\alpha,i\alpha}(Z)} - \frac{1}{Z - a_0 + \frac{(b_0)^2}{Z - a_2 - \frac{(b_0)^2}{U_n}}}$$

$$\Rightarrow \qquad \bigoplus_{n=0}^{\frac{40}{20}} \bigoplus_{n$$

Repulsive part

$$E_{rep} = E_{env} + E_{pair}$$

environment-dependent term E_{env}

- captures the s-p orbital overlap repulsion
- introduced to fit the correct Cauchy pressure

pair potential E_{pair}

- represents the electrostatic interaction between atoms and double counting correction

classical atomistic potentials: Second-Moment-Approximation or EAM (Finnis-Sinclair) (Johnson-Oh)

Interstitials in tungsten Formation energies in eV predicted by various methods

 $\langle 111 \rangle$ dumbbell

 $\langle 100 \rangle$ dumbbell

crowdion

tetrahedral

octahedral

	EAM	FS	BOP	MBPP
<110>	10.55	9.71	9.41	9.87
<111>	11.87	9.02	10.99	10.18
С	12.00	8.99	11.00	
<100>	13.79	9.88	11.91	
0	13.27	10.06	11.99	

Other semi-empirical potentials:

bcc-materials: directional bonding

a) modified embedded atom (Baskes 1991)

or

b) emprirical bond order potentials (Abell-Tersoff-Brenner-Type)

See e.g. Pt-potential of Albe, Nordlund, Averback PRB 65,195124 (2002)

efficiency: timing: BOP 10000 μs/atom/step EAM 30 μs/atom/step CM 2 μs/node/step (tested with Pentium-4 2Ghz) → systems sizes: 1 ns MD on 512 CPUs for one d

\rightarrow systems sizes:	1 ns MD on 512 CPUs for one day		
	BOP:	~2000 atoms	
	EAM:	~10 ⁷ atoms	
	CM:	~10 ⁸ nodes	

conclusion:

hybrid schemes will be important for future large scale MD simulations of energetic events in solids

balance between quantum accuracy $\leftarrow \rightarrow$ sufficient systems size and statistics

more work has to be done on QM-order-N-schemes

development of reliable empirical BOPs

