

CEA-C.HC- Paris

- Limitations of classical approaches

- "Local" successes

- Some suggestions

Microstructural evolution under irradiation : background

Engineering alloys =
major components (e.g. Fe Cr Ni Mn C...)
+ minor elements (C N S P...)

Microstructural evolution under irradiation : background

Engineering alloys =
major components (e.g. Fe Cr Ni Mn C...)
+ minor elements (C N S P...)

- Most (≈ 90%) modeling of

microstructural evolution under irradiation :

book keeping of point defects and of minor elements

 $\Rightarrow Defect and solute-defect clusters \\\Rightarrow Dislocation climb$

+ effective medium approx^{tion} for major components

=> swelling, hardening, segregation of minor elements...

Limitations of the classical approach

- Drawbacks of *effective medium* approx^{ion} (concentration dependent properties):
 - ? Irradiation induced segregations (e.g. Cr in Austenitic and ferritic steels)?
- -? Phase separation (e.g. Nb, O in Zaloys...)?
- ? Concentration dependent p^{pties} of dislocation cores (e.g. sink efficiency as a function of SFE, stability of Frank loops vs unfaulting...)?

e.g. (Austenitic steels)

 \Rightarrow Incubation dose for swelling?

 \Rightarrow Early dose recovery of the dislocation network?

Counterpart to the industrial skill with Calphad, Dictra...??

CEO - Competition ballistic / thermally activated atomic jumps

=> Stationary rather than equilibrium state(s)

- Dienes... 50's : order disorder transitions (stationary LRO, homogeneous)

Counterpart to the industrial skill with Calphad, Dictra...??

CEO - Competition ballistic / thermally activated atomic jumps

=> Stationary rather than equilibrium state(s)

- Dienes... 50's : order disorder transitions (stationary LRO, homogeneous)
- G.M. 84 : effective temperature T_{eff} = T(1+ Γ_{b} / Γ_{th})

=> local stability of stationary states (*binaries*)

Counterpart to the industrial skill with Calphad, Dictra...??

CEO - Competition ballistic / thermally activated atomic jumps

=> Stationary rather than equilibrium state(s)

- Dienes... 50's : order disorder transitions (stationary LRO, homogeneous)
- G.M. 84 : effective temperature $T_{eff} = T(1+\Gamma_b/\Gamma_{th})$ => local stability of stationary states (*binaries*)
- Bellon et al 86-96 : Stochastic potentials (T,C, Γ_{b}/Γ_{th} , dp/cascade)
 - => absolute stability of stationary states (*homogeneous, binaries*)

Counterpart to the industrial skill with Calphad, Dictra...??

- Competition ballistic / thermally activated atomic jumps => Stationary rather than equilibrium state(s)
- Dienes... 50's : order-disorder transitions (*stationary LRO, homogeneous*)
- G.M. 84 : effective temperature $T_{eff} = T(1+\Gamma_b/\Gamma_{th})$ => local stability of stationary states (*binaries*)
- Bellon et al 86-96 : Stochastic potentials (T,C, Γ_{b}/Γ_{th} , dp/cascade) => absolute stability of stationary states (*homogeneous, binaries*)
- Vaks et al 94 : Effective Hamiltonian $V_k^{eff} / k_B T = V_k f_k (\Gamma_b / \Gamma_{th}) / k_B T$ (*binaries, interstitial relocation*)

Spectacular successes (inversion of stabilities, effect of cascades size, patterning...) but limited.

Phase diagramme for dynamical equilibrium: FeAl under ball milling

Advanced Computational Materials Science 03-31 / 04-02 - 2004

Irradiation induced patterning (unmixing, binaries)

Cascade size effects

(R: range of ballistic relocation)

Comparison between KMC simulations and a Cahn-Hilliard type model (P. Bellon and R. Enrique, PRB 2001)

For binaries:

Inverse Kirkendal effect (RIS & RIP) and ballistic forcing ⇒ a single common theoretical frame (G.M. and P. Bellon SSP **50**, 1996, 189)

Higher complexity?

For the time being: brute force atomistic modeling!

Requires:

- Safe implementation of diffusion mechanisms in KMC(vacancy and self interst^{al}) (Soisson et al.),
- Safer phase field type equations (Nastar et al.),
- Safer alloy models (for cascade simulations, for kinetics...).

Learning from brute force atomistic simulations

- -1 Chemical hardening
 - 2 Fracture in oxides
- 3 Cascades in compounds

Plasticity of alloys: Solid Solution hardening

2.3 10⁵ atoms ;

• t ≤ 700ps (δt=2.10⁻¹⁵ s)

- EAM optimized for Ni(AI), Ni₃AI
- Boundary conditions :

X,Y => periodic;

$$Z= \pm Z_{max} => Z=c^t$$
 2D dynamics

 $7,5 \le \sigma_{XZ} \le 400 MPa$ f_{ext} on atoms at $\pm Z_{max}$

• **Temperature** : 300K rescaling velocities /100 time steps

$$(N,V,T,\sigma_{appl}) = c^{t}$$

(Rodary et al. 2004)

Advanced Computational Materials Science 03-31 / 04-02 - 2004

Glide of an edge dislocation : *random* solid solution 3 at% Al, <u>70MPa</u> (300K)

QuickTime[™] and a Cinepak decompressor are needed to see this picture.

Effective dislocation velocity = f(applied stress)

Advanced Computational Materials Science 03-31 / 04-02 - 2004

G. Martin, CEA-C.HC

From glide velocity $v(\sigma;c) \rightarrow$ to stress strain curves $\sigma(\varepsilon)$

From nano to macro scale?

¥ _{flow}/ c= 25 (MPa/at%) (vs 10 exp.); missing strain hardening (c%): A(c), D(c)

-1 Chemical hardening

results from solute-solute interaction,

(rather than from solute-dislocation interaction)

- 2 Fracture of oxides
- 3 Cascades in compounds

-1 Chemical hardening

- 2 Fracture of oxides
- 3 Cascades in compounds

Fracture of complex compounds; SiO₂ cristobalite vs glass

QuickTime[™] and a Cinepak decompressor are needed to see this picture.

Van Brutzel et al 2002

Advanced Computational Materials Science 03-31 / 04-02 - 2004

G. Martin, CEA-C.HC

Fracture of complex compounds; SiO₂ cristobalite vs glass

QuickTime[™] and a Cinepak decompressor are needed to see this picture.

Van Brutzel et al 2002

Advanced Computational Materials Science 03-31 / 04-02 - 2004

G. Martin, CEA-C.HC

Learning from brute force atomistic simulations

-1 Chemical hardening

- 2 Fracture in oxides:

Fracture of SiO2 glass proceeds by cavitation;

can be tuned by adjusting % of network modifiers.

- 3 Cascades in compounds

- -1 Chemical hardening
- 2 Fracture in oxides:
- 3 Cascades in compounds

Modeling complex materials

Crocombette et al. 2002

Zircon (ZrSiO₄) ≻Direct amorphization

Advanced Computational Materials Science 03-31 / 04-02 - 2004

Learning from brute force atomistic simulations

-1 Chemical hardening

- 2 Fracture in oxides:

-3 Cascades in compounds

Systematic: the more covalent the easier to amorphize

Complex materials under irradiation

For the time being:

Nothing as versatile as Calphad, Dictra...

Calphad, Dictra can be taken advantage of (e.g. for RIS), provided

the appropriate Mobility matrix is implemented;

Need for basic developments:

theory + experimental

(wishful thinking? combining appropriate skill and support!)

Atomistic simulations +

integration in multiscale m^{dlg} schemes

do teach a lot + several successful "niche applications". Advanced Computational Materials Science 03-31 / 04-02 - 2004