
Computational Science Infrastructure
(Charge “c”)

host: D. E. Keyes

William Gropp,
ANL

Jeff Nichols,
Malcolm Stocks,

ORNL

David Keyes,
Columbia U

François Gygi,
LLNL

Douglass Post,
LANL

Leslie Greengard,
NYU

Invited panelists

Tetsuya Sato,
ESC

Olivier Pironneau,
INRIA/Jussieu

Invited Panelists

• Leslie Greengard, Courant Institute, NYU
• William Gropp, Argonne National Lab
• François Gygi, Lawrence Livermore National Lab
• David Keyes, Columbia University
• Jeff Nichols, Oak Ridge National Lab
• Douglass Post, Los Alamos National Lab
• Malcom Stocks, Oak Ridge National Lab

Session IV
• David Keyes (5 min)

Reflection on what we’ve heard so far
• Bill Gropp (30 min)

Hardware and software environments for high-end simulation
• Doug Post (20 min)

Lessons learned from ASCI software projects
• François Gygi (20 min)

Current limits of first principles simulations
• Leslie Greengard (20 min)

Fast algorithms, potential theory, and computational engineering
<Break (20 min)>
• David Keyes (30 min)

Lessons learned from SciDAC and software from the SciDAC ISICs
• Malcolm Stocks (5 min)

Computational “end stations” for reactor wall material simulations
• Jeff Nichols (30 min)

Karaoke
Open microphone

Personal remarks
• Thanks! We “spies” have enjoyed the free

“professional short course” in materials
simulation and reactor environments

• We’re still missing some vital information
that we need to write our chapter!!

• Our presentations will (we hope) draw some
of what we’re missing out from you, while
also communicating some useful experience
(and URLs) back to you

• Last 30 minutes of open discussion is
intentional and sacrosanct

Personal remarks, cont.
• We’ve all done science, too, before going

over to the dark side
• We don’t know what all your “nails” look

like, but we have hammers ☺
• We, and many of our colleagues, approach

collaborations with materials scientists with
great confidence and zeal

Personal observations
• You seem to need:

– Stiff integrators
– Implicit solvers (mainly for potentials?)
– Force summations (for DD)
– Sensitivity analysis, uncertainty quantification
– Large-scale data bases, visualization, data mining
– Remote data, platform, and instrument access

• You have some highly relevant experience in
programs like PERFECT
– Mixture of simulation, experimental validation,

and community training

Personal observations
• In some ways, you’re like everyone else:

“better” means
– Bigger

• Avogadro’s is a big number
• BCs need to be less intrusive
• Diluent factors need to be smaller
• Interactions between multiple cascades important (?))

– Faster
– Cheaper

Personal questions
• Do you guys have important community

codes? If so…
– On what do you run them?
– What is their parallel programming model?
– In what are they written?
– Are they open source? Version controlled?
– What are their storage requirements?
– What are their complexity bottlenecks?
– What are their performance bottlenecks?

Personal questions
• Parallelizing a code involves:

– Decomposition into (generally balanced)
concurrent tasks

– Assignment of tasks to processes
– Orchestration of processes (communication,

synchronization, replication)
– Mapping processes to processors

• How are your workhorse codes doing this?
• With PDE-based codes, the first question

leads immediately to answering all of the
others

	Computational Science Infrastructure(Charge “c”)host: D. E. Keyes
	Invited panelists
	Invited Panelists
	Session IV
	Personal remarks
	Personal remarks, cont.
	Personal observations
	Personal observations
	Personal questions
	Personal questions

