Molecular dynamics study on radiation hardening and fracture processes in FCC metals

Hideo Kaburaki (JAERI)

DOE Workshop on Advanced Computational Materials Science, 31 Mar.-2 Apr.,2004

Effect of external shear stress for unfaulting

Unfaulting process of H721 vacancy loop

Partial dislocation loop

Central symmetry parameter representation

Stacking fault

Results of unfaulting critical shear stress

for vacancy loops

Hardening process --- the interaction of an edge dislocation with a hexagonal interstitial dislocation loop

200 Å Number of atoms 3.8×10^5

Interatomic potential : Embedded-atom method (EAM) potential **Cu, Al** [Y. Mishin *et al.*, *PRB* (2001).] $E_{tot} = \frac{1}{2} \sum_{ij} V(r_{ij}) + \sum_{i} F(\overline{\rho}_{i})$ *V*: Pair potential *F*: Embedding energy

Pinning structure formed due to the interaction of an edge dislocation and an interstitial cluster in **Cu**

H007

Pinning structure formed due to the interaction of an edge dislocation and an interstitial cluster in Al

H007

H037

H169

H721

A molecular dynamics study on displacement cascades in the strain field of an edge dislocation in Cu

Temperature dependence on the crack-tip dislocation nanostructures (Cu)

0 K

Disl. motion on the slip plane (Cu, 50K)

16 ps

20 ps

22 ps

24 ps

Expansion and emission process of stacking-fault loops

