Dynamic Reconfiguration and Virtual Machine
Management in the Har ness M etacomputing System

Mauro Migliardi*, Jack Dongarra®®, Al Geist’, Vaidy Sunderam’

Emory University', Dept. Of Math & Computer Science
Atlanta, GA, 30322 USA
om@mathcs.emory.edu
Oak Ridge Natonal Laboratory?,

University of Tennessee & Knoxvill €

Abstract. Metacomputing frameworks have recaéved renewed attention o late,
fueled bah by advances in hardware axd retworking, and by novel concepts
such as computationa grids. However these frameworks are often inflexible,
and forcethe gplicaioninto afixed environment rather than trying to adapt to
the gplicaion’'s neals. Harness is an experimental metacomputing system
based uponthe principle of dynamic reconfigurability nat only in terms of the
computers and retworks that comprise the virtual machine, but aso in the
cgpabiliti es of the VM itself. These charaderistics may be modified under user
control via a"plug-in" mechanism that is the ceantral fedure of the system. In
this paper we describe how the design o the Harness gstem allows the
dynamic configuration and reconfiguration o virtual madines, including
naming and addressng methods, as well as plugin locdion, loading,
validation, and synchronization methods.

1 Introduction

Harness is an experimental metacomputing system based upon the principle of
dynamicdly remnfigurable networked computing frameworks. Harness sippats
reconfiguration nd only in terms of the computers and retworks that comprise the
virtual machine, but also in the caabiliti es of the VM itself. These charaderistics
may be modified under user control via a"plug-in® medanism that is the central
feaure of the system. The moativation for a plugin-based approach to reconfigurable
virtual madines is derived from two observations. First, distributed and cluster
computing techndogies change often in response to new madiine caabiliti es,
interconnedion retwork types, protocols, and application requirements. For example,
the availability of Myrinet [1] interfaces and Illi nois Fast Messages has recantly led to
new models for closely couged Network Of Workstations (NOW) computing
systems. Similarly, multicast protocols and Letter algorithms for video and audio
codecs have led to a number of projeds that focus on tele-presence over distributed
systems. In these instances, the underlying middieware ather needs to be changed o

re-constructed, thereby increasing the dfort level invoved and hampering
interoperability. A virtual machine model intrinsicdly incorporating reconfiguration
cgpabiliti es will addressthese isaues in an effedive manner. The second reason for
investigating the plugiin model is to attempt to provide a virtua machine
environment that can dyramicdly adapt to meea an applicaion's needs, rather than
forcing the gplication to fit into a fixed environment. Longlived simulations evolve
through several phases: data inpu, problem setup, cdculation, and analysis or
visualization d results. In traditional, staticdly configured metacomputers, resources
needed duing ore phase ae often underutilized in other phases. By alowing
applicaions to dyremicdly reconfigure the system, the overall utilization d the
computing infrastructure can be enhanced.

The overall goals of the Harness projed are to investigate and develop three key
cgpabiliti es within the framework of a heterogeneous computing environment:

e Tedniques and methods for creding an environment where multiple distributed
virtual madcines can collaborate, merge or split. This will extend the airrent
network and cluster computing model to include multiple distributed virtual
machines with multi ple users, thereby enabling standalone & well as collaborative
metacomputing.

* Spedficaion and design d plug-in interfaces to allow dynamic extensions to a
distributed virtual machine. This asped involves the development of a generalized
plug-in paradigm for distributed virtual machines that all ows users or applicaions
to dyramicdly customize adapt, and extend the distributed computing
environment's feaures to match their neads.

« Methoddogies for distinct parallel applicdions to dscover ead other,
dynamicdly attach, collaborate, and cleanly detach. We envision that this
cgpability will be enabled by the aeaion o a framework that will integrate
discovery services with an API that defines attachment and detachment protocols
between heterogeneous, distributed appli cations.

In the preliminary stage of the Harnessprojed, we have focused uponthe dynamic
configuration and reoonfiguration o virtual madines, including raming and
addresing schemes, as well as plugin locaion, loading, validation, and
synchronizaion methods. Our design choices, as wel as the aaysis and
justifications thereof, and preliminary experiences, are reported in this paper.

2 Architectural Overview of Harness

The achitedure of the Harness ystem is designed to maximize epandability and

openness In arder to acoommodate these requirements, the system design focuses on

two major aspeds:

e the management of the status of a Virtua Madine that is composed of a
dynamicadly changeable set of hosts;

« the caability of expanding the set of services delivered to users by means of
pluggng into the system new, possbly user defined, modues on-demand withou
compromising the mnsistency of the programming environment.

Local Environment 2

Host:
@ Applications
Kernels User B

Plugins
Plugins

Local Environment 1

Loca Environment 3

Fig. 1. A Harness Virtual Machine

2.1 Virtual Machine Startup and Har ness System Requirements

The Harness system allows the definition and establishment of one or more Virtual
Machines (VMs). A Harness VM (see figure 1) is a distributed system composed of a
VM status server and a set of kernels running on hosts and delivering services to
users.

The current prototype of the Harness system implements both the kernel and the
VM status server as pure Java programs. We have used the multithreading capability
of the Java Virtual Machine to exploit the intrinsic parallelism of the different tasks
the programs have to perform, and we have built the system as a package of severa
Java classes. Thus, in order to be able to use the Harness system a host should be
capable of running Java programs (i.e. must be VM equipped). The different
components of the Harness system communicates through reliable unicast channels
and unreliable multicast channels. In the current prototype these communication
commodities are implemented using the java.net package.

In order to use the Harness system, applications should link to the Harness core
library. The basic Harness distribution will include core library versions for C, C++
and Java programs but in the following description we show only Java prototypes.

This library provides access to the only hardcoded service access point of the

Harness ystem, namely the are function
(j ect H command(S ring WSyniol i cNane, String[] theConmand).

The first argument to this function is a string spedfying the symbolic name of the
virtual machine the gplicaion wants to interad with. The seaond argument is the
adual command and its parameters. The command might be one of the User Kernel
Interface ommands as defined later in the paper or the registerUser command. The
return value of the are function depends onthe cmmand isued.

In the following we will use the term user to mean a user that runs one or more
Harness applicaions on a host, and we will use the term applicaion to mean a
program willi ng to request and wse services provided by the Harness ystem.

Any applicdion must register via registerUser before isaling any command to a
HarnessVM. Parameters to this command are userName and user Password; this cdll
will set a seaurity context objed that will be used by the system to ched user
privileges. When the registration procedure is completed the gplicaion can start
isaiing commands to the Harness ystem interading with alocd Harnesskernel.

A Harnesskernd is the interface between any applicaion running ona host and
the Harness ystem. Each haost willi ng to participate in a HarnessVM runs one kernel
for each VM. The kernel is bodstrapped by the core library during the user
registration pocedure. A Harness kernel delivers rvices to user programs and
cooperates with ather kernels and the VM status server to manage the VM. The status
server ads as a repository of a centralized copy o the VM status and as a dispatcher
of the eventsthat the kernel entities want to publish to the system (seefigure 2 in next
page). Each VM has only ore status server entity in the sense that all the other entities
(kernels) seeit as a single mondithic entity with asingle accespoint. HarnessVM'’s
use a built-in communication subsystem to dstribute system events to the
participating adive entities. Applications based on messge pasing may use this
substrate or may provide their own communications fabric in the form of a Harness
plug-in. In the prototype, native communicaions use TCP and UDP/IP-multi cast.

2.2 Virtual Machine Management: Dynamic Evolution of a HarnessVM

In ou ealy prototype of Harness the scheme we have developed for maintaining the

status of a HarnessVM is described below. The status of ead VM is composed of the

following information:

« membership, i.e. the set of participating kernels;

e services, i.e. the set of services that, based on the plug-in modues currently
loaded, the VM is able to perform both asawhole and ona per-kernel basis;

« baseline, i.e. the services that new kernels neals to be ale to deliver to join the
VM and the semantics of these services;

It is important to ndice that the VM status is kept completely separated from the

internal status of any user applicaion in order to prevent its consistency protocol

from constraining wsers' applications requirements.

Kernels

Plugins
Plugins Events

Host
@ Applications

2C
1 Kernels Try toComply
User (Application)
Requires Loading
of aplugin
8| &L
1| &5 S
@ o
2D
User A . Kernels Send Back
ToVM Server
& & Ack or Nack I
VM Forwards 2B
3 A Acks/Nacks &
Kernels Gives 2A To Requestor
Positive/Negative Kernel Send Kernel
Confirmation to Request to <D
User (Application) o 28
VM Server 2D @

VM SERVER A
[Forwards Request

oKernels

2D

Fig. 2. Event sequencefor adistributed plug-in loading

To prevent the status srver from being a single paint of failure, eacy VM in the
Harness ystem keeps two copies of its datus: one is centralized in the status server
and the second colledively maintained among the kernels. This medianism allows
remnstruction o the status of ead crashed kernel from the central copy and, in case
of status server crash, remnstructing the central copy from the distributed status
information held amongthe kernels.

Each HarnessVM isidentified by aVM symbalic name. Each VM symbalic name
is mapped orto a multicast address by a hashing function. A kernel trying to join a
VM multicasts a "join" messge on the multicast address obtained by applying the
hashing function to the VM symbdlic name. The VM server responds by conreding
to theinquiring kernel via areliable unicast channel, cheding the kernel baseline and
sending badk either an accetance messge or a rejedion message. All further
exchanges take placeon the reliable unicast channel. To leave aVM akernel sends a
"leave" messge to the VM server. The VM server pulishes the event to all the
remaining kernels and updies the VM status. Every servicethat ead kernel suppats
is pubished by the VM status srver to every other kernel in the VM. This
medanism alows ead kernel in a Harness VM to define the set of services it is
interested in and to keep a seledive up-to-date picture of the status of the whole VM.
Periodic “I'm alive” messages are used to maintain VM status information; when the
server deteds a aash, it publishes the event to every other kernel. If and when the
kernel rgjoins, the VM server gives it the old copy d the status and wait for a new,
potentially different, status gructure from the rejoined kernel. The new status is

chedked for compatibility with current VM requirements. A similar procedure is used
to deted failure of the VM server and to regenerate areplacanent server.

2.3 Services: the User Interface of Harness Kernels

The fundamental service delivered by a Harness kernel is the caability to
manipulate the set of services the system is able to perform. The user interface of
Harnesskernels accepts commands with the following general syntax:

<command> <locator > <targets> <Quality of Service> [additional parameters]

The commandfield can contain ore of the foll owing values:

* load toinstal aplug-ininto the system;

« run torunathreal to exeate plug-in code;

e unload to remove ax unwsed plug-in from the system;

« stop to terminate the exeaution o athread

Services delivered by dug-ins may be shared acording to permisson attributes st
on aper plug-in basis. Users may remove only services not in the core caegory. A
core service is one that is mandatory for a kernel to interad with the rest of the VM.
With the stop and unload commands a user can redaim resources from a service that
is no longer neeaded, but the nature of core services prevents any user from
downgrading a kernel to an inoperable state. However, althoughit is not possble to
change core services at run time, they do nd represent points of obsolescencein the
Harness ystem. In fad they are implemented as hidden plug-in modues that are
loaded into the kernel at boastrap time and thus easily upgaded. The core services of
the Harness ystem form the baseline and must be provided by ead kernel that
wishesto joinaVM. They are:

e the VM server crash recmvery procedure;

« the plug-in loader/linker modue;

« the mre wmmunication subsystem.

Commands must contain the unique locator of the plug-in to be manipulated. The

lowest level Harness locator, the one adually accepted by the kernel, is a Uniform

Resource Locaor (URL). However any user may load at registration time aplug-in

modue that enhances the resource management cgpabiliti es of the kernel by allowing

users to adopt Uniform Resource Names (URNS), instead of URLS, as locaors. The
version d this plugin provided with the basic Harnessdistribution all ows:

« cheding for the availability of the plug-in modue on multiple locd and remote
repositories (e.g. a user may ssimply wish to load the “SparseMatrixSolver” plug-in
withou spedfying the implementation code or itslocation);

 theresolution d any architecure requirement for impure-Java plug-ins.

However, the level of abstradion at which service negatiation and URN to URL
tranglation will take place and the a¢ual protocol implementing this procedure, can
be enhanced/changed by providing a new resource manager plug-in to kernels.

The target field of a command dfines the set of kernels that are required to
exeaute the command. Every non locd command is exeauted using a two phese

commit protocol. Each command can be isued with ore of the following Quality of
Servicg(QoS): al-or-nore and best-effort. A command submitted with a dl-or-nore
QoS succealsif and only if al of the kernels pedfied in the target field are ale (and
willi ng) to exeaute it. A command submitted with a best-eff ort QoS fail sif and ony if
al the kernels gedfied in the target field are unable (unwilli ng) to exeaute it. Both
the failure and the successreturn values include the list of kernel able (willi ng) to
exeaute the mmmand and the list of the unable (unwilli ng) ones.

3 Rédated Works

Metacomputing frameworks have been popdar for nealy a decale, when the avent
of high end workstations and ubiquitous networking in the late 80's enabled high
performance @ncurrent computing in networked environments. PVM [2] was one of
the ealiest systems to formulate the metacomputing concept in concrete terms, and
explore heterogeneous network computing. PVYM however, is inflexible in many
respeds. For example, multiple DVM merging and splitting is not suppated. Two
different users canna interad, cooperate, and share resources and programs within a
live PYM madine. PVYM uses internet protocols which may predude the use of
spedalized network hardware. A “plug-in” paradigm would aleviate dl these
drawbadks while providing gealy expanded scope and substantia protedion against
both rigidity and olsolescence

Legion [3] is a metacomputing system that began as an extension d the Mentat
projed. Legion can acommodate aheterogeneous mix of geographicdly distributed
high-performance madchines and workstations. Legion is an oljed oriented system
where the focus is on groviding transparent acessto an enterprise-wide distributed
computing framework. As such, it does not attempt to cater to changing reeds and it
is relatively static in the types of computing models it suppats as well as in
implementation.

The model of the Mill ennium system [4] being developed by Microsoft Research
is smilar to that of Legion's global virtual machine. Logicdly thereis only one global
Mill ennium system composed of distributed oljeds. However, at any gven instance
it may be partitioned into many pieces. Partitions may be caised by dsconreded o
wedkly-conreded operations. This could be onsidered similar to the Harness
concept of dynamic joining and splitting d DVMs.

Globus [5] is a metacomputing infrastructure which is built uponthe “Nexus’ [6]
communication framework. The Globus g/stem is designed aroundthe concept of a
toakit that consists of the pre-defined modues pertaining to communication,
resource dl ocation, data, etc. Globus even aspires to eventually incorporate Legion as
an optional modue. This moduarity of Globus remains at the metacomputing system
level in the sense that modues affed the global composition d the metacomputing
substrate.

The @owve projeds envision a much wider-scde view of distributed resources and
programming paradigms than Harness Harnessis nat being proposed as aworld-wide
infrastructure, but more in the spirit of PVM, it is a small heterogeneous distributed

computing environment that groups of collaborating scientists can use to get their
science done. Harness is also seen as a research tool for exploring pluggability and
dynamic adaptability within DVMs.

4 Conclusionsand Future Work

In this paper we have described our early work on the plug-in mechanism and the
dynamic Virtual Machine (VM) management mechanism of the Harness system, an
experimental metacomputing system. These mechanisms allow the Harness system to
achieve reconfigurability not only in terms of the computers and networks that
comprise the VM, but also in the capabilities and the services provided by the VM
itself, without compromising the coherency of the programming environment.
Early experience with small example programs show that the system is able;
e to adapt to changing user needs by adding new services via the plug-in
mechanism;
« tosafely add or remove servicesto adistributed VM;
« tolocate, validate and load locally or remotely stored plug-in modules;
« to cope with network and host failure with alimited overhead;
 to dynamically add and remove hosts to the VM via the dynamic VM management
mechanism.
In a future stage of the Harness project we will test these feature on rea world
applications.

References

1 N. Boden et a., MYRINET: a Gigaht per Second Local Area Network, |IEEE-Micro, Vol,
15, No. 1, February 1995.

2 A. Geidt, A. Beguelin, J. Dongarra, W. Jiang, B. Mancheck and V. Sunderam, PVM:
Parallel Virtual Machine a User’s Guide and Tutorial for Networked Parallel Computing,
MIT Press, Cambridge, MA, 1994.

3 A. Grimshaw, W. Wulf, J. French, A. Weaver and P. Reynolds. Legion: the nex logical
step toward a naionwide \rtual computer, Technica Report CS-94-21, University of
Virginia, 1994.

4 Microsoft Corporation, Operating S/stems Diredions for the Next Mill enium, position
paper available at http://www.research.microsoft.com/research/og/Millennium/mgoal s.html

5 |. Foster and C. Kesselman, Globus: a Metacomputing Infrastructure Todlkit, International
Journal of Supercomputing Application, May 1997.

6 |. Foster, C. Kesselman and S. Tuecke, The Nexus Approach to Integrating Multithreading
and Comnunication, Journa of Parallel and Distributed Computing, 37:70-82, 1996

