
An Architecture for a Multi-Threaded Harness Kernel �

Wael R. Elwasif, David E. Bernholdt, James A. Kohl, and G. A. Geist

Computer Science and Mathematics Division, Oak Ridge National Lab
Oak Ridge, TN 37831, USA

�elwasifwr,bernholdtde,gst,kohlja�@ornl.gov

Abstract. Harness is a reconÞgurable, heterogeneous distributed metacomput-
ing framework for the dynamic conÞguration of distributed virtual machines,
through the use of parallel �plug-in� software components. A parallel plug-in is
a software module that exists as a synchronized collection of traditional plug-ins
distributed across a parallel set of resources. As a follow-on to PVM, the Harness
kernel provides a base set of services that plug-ins can use to dynamically deÞne
the behavior of the encompassing virtual machine. In this paper, we describe the
design and implementation details of an efÞcient, multi-threaded Harness core
framework, written in C. We discuss the rationale and details of the base kernel
components � for communication, message handling, distributed control, groups,
data tables, and plug-in maintenance and function execution � and how they can
be used in the construction of highly dynamic distributed virtual machines.

Keywords: Harness, Parallel Plug-ins, PVM, Virtual Machines, Multi-threaded

1 Introduction

Next-generation high-performance scientiÞc simulations will likely depart from present
day parallel programming paradigms. Rather than relying on monolithic platforms that
export a large, static operating environment, applications will need the ßexibility to dy-
namically adapt to changing functional and computational needs. The application itself
will dictate the ongoing conÞguration of the parallel environment, and will customize
the run-time subsystems to suit its varying levels of interaction, roaming connectivity,
and distinct execution phases.

Harness [2, 4, 9] is a heterogeneous distributed computing environment, developed
as a follow-on to PVM [8]. Harness is a dynamically conÞgurable distributed operat-
ing environment for parallel computing. It is designed with a lightweight kernel as a
substrate for �plugging in� necessary system modules based on runtime application di-
rectives. Plug-ins can be coordinated in parallel across many networked machines, and
can be dynamically swapped out during runtime to customize the capabilities of the
system. Plug-in components can control all aspects of a virtual parallel environment,

� This material is based upon work supported by the Department of Energy under grant DE-
FC0299ER25396, and the Mathematics, Information and Computational Sciences OfÞce, Of-
Þce of Advanced ScientiÞc Computing Research, OfÞce of Science, U. S. Department of En-
ergy, under contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.



2 Wael Elwasif et al.

including use of various network interfaces, resource or task management protocols,
software libraries, and programming models (including PVM, MPI and others).

Harness is a cooperative effort among Oak Ridge National Laboratory, the Univer-
sity of Tennessee, and Emory University, and involves a variety of system prototypes
and experiments that explore the nature and utility of parallel plug-ins and dynamically
conÞgured operating environments. This paper describes the architecture and imple-
mentation of an efÞcient, multi-threaded Harness kernel. This kernel exports the core
interface for interacting with the Harness system, and provides a platform for the devel-
opment of applications and plug-ins for use with Harness. The core functions provided
by the kernel can be utilized to control the loading and unloading of plug-ins, the ex-
ecution of arbitrary functions exported by plug-ins, and manipulation of system state
information via a simple database interface.

While the merit of a �pluggable� design has been recognized in web browsers and
desktop productivity suites, it has yet to manifest itself in collaborative heterogeneous
computing environments for distributed scientiÞc computing. PVM supports some lim-
ited dynamic pluggability, with �hoster�, �tasker�, and �resource manager� tools that
can be instantiated at runtime to take over handling of certain system functions [10].
Traditional distributed computing platforms usually provide a static model in which the
set of services available to applications cannot be easily altered. Globus [6] provides
an integrated set of tools and libraries for accessing computational Grid resources. Le-
gion [11] provides an object-based interface for utilizing arbitrary collections of com-
puters across the global internet. NetSolve [3] consists of a front-end library and back-
end server for farming out scientiÞc computations on resources available over the net-
work. The Harness model is distinct from these approaches in that it centers on the
concept of the dynamic virtual machine as pioneered by PVM. User-level plug-ins can
be added to Harness without modiÞcation to the base system, and Harness supports
interactive loading and unloading of pluggable features during execution. The Harness
(and PVM) virtual machine model provides ßexible encapsulation and organization of
resources and application tasks, allowing groups of computers and tasks to be manipu-
lated as single uniÞed entities.

Harness offers a perfect testbed for high-performance component-based systems
such as the Common Component Architecture (CCA) [1, 7]. Both CCA and Harness
build applications and system functionality using pluggable modules. Harness incorpo-
rates the dynamic capability to load and unload these components, where the CCA does
not require this ßexibility. For Harness to be a CCA-compliant framework, it need only
load an appropriate �CCA Services� plug-in that implements the base CCA interfaces.

2 The Architecture of the Harness Daemon

The Harness daemon is a multi-threaded application that provides a runtime environ-
ment under which threadsafe plug-in functions run. The Harness daemon described
here is being implemented in C-language at ORNL. C was chosen for this prototype to
provide a high performance implementation with a small application footprint for more
efÞcient use of resources. This design choice requires special handling that is implicitly
taken care of in object-based languages, such as plug-in instantiation and function inter-



Lecture Notes in Computer Science 3

face description. A Java-based prototype of Harness [14] has been under development
at Emory University for the past year. Our use of C minimizes the runtime resource
requirements, while still guaranteeing a high degree of portability in the production
system, though with some increased complexity. Our resulting system architecture and
interface are compatible with all source language implementations of Harness, given
appropriate syntactic variations. Work such as the SIDL (ScientiÞc Interface Descrip-
tion Language) [13, 15], as a cooperative project to the CCA, will likely provide the
necessary language-speciÞc processing to handle such variations.

The Harness daemon, in and of itself, is not intended to be a high-performance
messaging system, nor do we expect many applications to make direct calls to the Har-
ness APIs. The basic Harness APIs are intended primarily for use by plug-ins, which
in turn provide the bulk of the actual user-level functionality. The services at the core
of Harness are intended to serve two basic purposes: to provide the means for Harness
daemons to exchange command and control information, and to act as a substrate for
the loading/unloading and invocation of plug-in functionality. The design is intention-
ally minimalist to remain ßexible and avoid unnecessary constraints on what plug-ins
or user applications can do.

Communicator 
Plug-In 
(HCom)Plug-In A Plug-In B

User Application

Harness Proxy

GroupsPlug-Ins DatabaseInvocationIdentity Control

HCore API

Controller (HCtl)

Message 
Handler (HMsg)

HMsg API
Msg TypesSend/ReceiveMsg Creation

(Local HCore Functionality)
Identity Plug-Ins Invocation Database Groups

Other 
Harness 

Daemons

Fig. 1. A Schematic Representation of a Harness Daemon.

Figure 1 depicts a Harness daemon with several plug-ins, connected to a user ap-
plication and to several other Harness daemons. The core of the Harness daemon, rep-
resented as the heavy box, contains three functional units with distinct roles: the lo-
cal HCore functionality, the Controller (HCtl), and the Message Handler (HMsg). The
HCore API functions are not directly exposed to the Harness user (e.g. the plug-in
writer). All calls are routed through the Controller (HCtl) unit, which validates com-



4 Wael Elwasif et al.

mands and coordinates their execution with the overall Harness virtual machine. The
Message Handler (HMsg) unit exposes a second, self-contained API for processing and
routing all incoming and outgoing messages. The HCore and HMsg APIs are exported
for use by plug-ins and applications, represented in Figure 1 as dashed boxes.

The interactions between the HCtl and HMsg units are simple and well-deÞned,
so modular implementations of each can be exchanged without impacting the other.
These are not plug-ins, however, because some implementation of each unit must always
be present, and they cannot be dynamically replaced. Yet this modularity provides an
important ßexibility, particularly with respect to the Controller.

2.1 The Controller

The Controller mediates the execution of all user-level calls, satisfying security require-
ments and insuring that all local actions are appropriately coordinated with the rest of
the Harness virtual machine. Various choices of control algorithms can be imagined
in different circumstances. Strictly local control, ignoring the existence of other Har-
ness daemons, can be useful in a context where Harness is integrating several plug-
in functionalities on a single host (e.g. performance monitoring, debugging, resource
management). A master/slave algorithm could be used to mimic the behavior and per-
formance characteristics of PVM. Perhaps the most interesting is a distributed, peer-
based controller using an algorithm such as [5] to provide fault tolerance and recovery
capabilities. Such algorithms involve multiple daemons working together to arbitrate
commands and store the state information for the virtual machine. This eliminates the
single point of failure in a master/slave control algorithm.

Within each of these broad classes of control algorithms, there are many possible
variations in the details of how particular commands behave within the collective envi-
ronment. The Controller can provide its own interface to allow tuning or modiÞcation
of its behavior, likely via conÞguration parameters passed through the environment or
a conÞguration Þle. This mechanism will be implementation-speciÞc and is not consid-
ered part of the main Harness APIs.

2.2 The Local HCore Functionality

The HCore API functions can be divided into six distinct encapsulated modules: Iden-
tity, Plug-Ins, Invocation, Database, Groups and Control.1 Each Harness daemon and
application task has an opaque Harness ID, or HID, which is locally generated and
globally unique. This HID is returned by h_myhid() and is used in many other func-
tions. Harness provides functions to load and unload plug-ins and allow them to register
exported methods. Function pointers to these plug-in methods can be acquired locally
for direct invocation, or remote invocations can constructed and executed in blocking or
non-blocking fashion. All registered plug-in functions are expected to accept an H_arg
(essentially C�s argv) as input. Functions in libraries or other software modules that
export non-H_arg arguments can easily be converted to Harness plug-in functions by
enclosing them in simple argument-parsing function wrappers.

1 The full API for these functions is published on the Harness web site [12].



Lecture Notes in Computer Science 5

A simple database interface is available both to the Harness core and to plug-ins, and
is the fundamental subsystem that the local Harness daemon and the virtual machine
use to maintain their state. Database tables can be public or private. An h_notify
function makes it possible for plug-ins to request notiÞcation on certain events which
manifest themselves as changes to database tables.

Nearly all HCore functions take a �group� argument, specifying a subset of the cur-
rent Harness virtual machine on which the functions are to be executed. Three groups
are always available: local, global and control. The local and global groups indicate
that the operation should take place on the local daemon or on all daemons partic-
ipating in the virtual machine, respectively. The control group designates use of the
selected decision-making daemon(s) in whatever control algorithm is running. Knowl-
edge of this group is needed, for example, to allow �leaf� daemons (i.e. those daemons
not directly participating in the decision-making control algorithm) to recover from
faults or partitioning of the virtual machine. Users can also create other groups for their
convenience through functions provided in the API.

Currently the only control function in the API (aside from any exported HCtl inter-
face) is h_exit(), which terminates the local Harness daemon.

2.3 The Message Handler and Communication Modules

The core message processing of the Harness daemon is handled by two distinct but
closely cooperating units: communication plug-ins and the message handler. Commu-
nication (HCom) units are plug-ins that are responsible for sending and receiving mes-
sages. HComs are not mandatory � it is possible to use Harness with strictly local
functionality. However, most interesting uses of Harness involve inter-machine com-
munication and therefore HComs. HComs treat message trafÞc as opaque, and are only
responsible for putting messages out on the wire and receiving them from other nodes.
Simultaneous use of multiple HCom plug-ins is possible. We expect that each HCom
will handle all trafÞc of a given protocol, so that one might process TCP trafÞc, and
another, for example, transmissions using the SOAP protocol.

The Message Handler (HMsg) unit is part of the daemon itself, and provides a uni-
form interface between the communication plug-ins and the daemon processing. HMsg
is responsible for accepting outbound messages from local plug-ins, or from the HCore,
and passing them on to HCom for transmission. HMsg is also responsible for process-
ing of all inbound messages. As shown in Figure 2, HComs place inbound messages
on a queue in HMsg. Within HMsg, messages are removed from the queue and routed
according to their message type. Two pre-deÞned message types designate messages
containing HCore interface commands and communications for the control algorithm.
Plug-ins can register additional message types, and provide their own message handler
functions. Aside from HCore messages, all messages are dispatched from the HMsg
router directly to HCtl or to the appropriate registered plug-in handler. HCore command
messages remain in HMsg for further processing and are parsed to extract the command
name and arguments, which are then queued for processing by the local thread pool.
This thread pool sits at the boundary of HMsg and HCtl, as HCore commands are ex-
ecuted only by passing them to HCtl for validation. HCtl passes commands on to the
internal HCore layer to actually be carried out.



6 Wael Elwasif et al.

TCP HCom

SOAP HCom

Plug-In B 
Message 
Handler

Plug-In A 
Message 
Handler

In-bound 
HCom Queue

HCore
Processing 

Queue

HCore
Thread 

Pool

Control 
Algorithm 

(HCtl)

Msg Type 
Routing

HCore

Plug-In Registered

C
on

tr
ol

HMsg

HCore Msg
Parser

HCore API (HCtl)

Fig. 2. Internal Message Handler Organization (HMsg).

HMsg provides an API for the construction and parsing of HCore command mes-
sages, and assumes symmetric and compatible HMsg implementations on both ends
of any HCom messaging connection. Plug-ins can also provide their own functions to
create and parse messages (for example those with their own message types). HMsg
contains a user-level function to actually send the resulting message buffers. HMsg�s
role here is a small but crucial one: it determines which of the several possible HComs
should be used to transfer the message, and then places the message on the outbound
queue for that HCom.

The HCom/HMsg system is designed to be a ßexible, low-overhead mechanism for
the processing of messages. However we expect that high performance communica-
tion plug-ins will be developed and utilized for actual production scale data transfer in
application tasks. The Harness infrastructure will be applied to set up customized out-
of-band data channels. The internal Harness communication paths should be used for
command and control functions but need not be used for actual data transmission.

3 Multi-Threaded Architecture

The Harness kernel is designed to be a multi-threaded application. Plug-in and HCore
functions are executed in separate threads that are allocated from a worker pool man-
aged by the kernel. In addition to these worker threads, plug-ins and other kernel com-
ponents can also have multiple threads of execution. For example, the communication
plug-in HCom can have one thread to handle system-level communication calls, and
one or more threads to manage the interface to other components of the Harness kernel
(e.g. the output queue fed by HMsg).



Lecture Notes in Computer Science 7

Using a multi-threaded Harness kernel protects the daemon from blocking unnec-
essarily, such as when a plug-in function waits for I/O. It is therefore not necessary
to restrict plug-in functions to be non-blocking and return control immediately to the
Harness kernel. The basic design philosophy of Harness is to afford plug-ins maxi-
mum operational ßexibility. Plug-ins should be allowed to exploit blocking and/or non-
blocking communication modalities, independent of the native kernel implementation.
In addition, providing separate threads of execution within the Harness kernel enables
�long-running� plug-in functions, such as those typically found in parallel applications
which loop indeÞnitely in I/O-bound states. Separating these invocations leaves the Har-
ness kernel available to process other requests. While much of this same functionality
can be accomplished by instantiating each plug-in in its own process, this design incurs
extra overhead for inter-plug-in communication and synchronization. Such issues are
likely for cooperating parallel plug-in systems, and overheads could be signiÞcant for
closely-coupled plug-ins.

As a result of the multi-threaded nature of the Harness kernel, it is necessary to re-
quire that all plug-in functions are threadsafe. To alleviate the potential complexity in
converting non-threadsafe libraries into plug-ins, Harness provides a utility suite that
includes basic threading synchronization operations and �mutexes� that assist plug-in
functions in protecting critical sections and handling mutual exclusions. A trivial so-
lution for a given library is to acquire a single mutex lock before executing any of its
plug-in functions, however more complex (and efÞcient) solutions are possible using a
set of distinct mutexes for dependent function groups. For plug-ins that cannot easily
be made threadsafe through the use of simple mutex wrapper functions, a threadsafe
plug-in proxy can coordinate plug-in function invocations with an external process that
implements the given functions. The protocol by which such proxies would communi-
cate is not dictated by Harness. As a side beneÞt, the Harness utility interface also serves
as an abstraction layer that hides the implementation-speciÞc details of the underlying
thread implementation on a given platform (e.g. pthreads in Unix-based systems and
Windows threads in Win32 systems).

4 Conclusion

We have described the multi-threaded architecture of the Harness kernel. Harness is
being developed as a follow-on to PVM to explore research issues in reconÞgurable
heterogeneous distributed computing. Harness daemons are intended to provide basic
command and control communication among themselves, and a substrate for dynami-
cally plugging in user or system modules. These plug-ins are expected to be the main
source of user-level functionality.

The Harness kernel presents two APIs to the user (plug-in developer). The HCore
API provides the basic functionality of the daemon itself: managing plug-ins, invoking
functions, and maintaining the database (which allows both the daemon and plug-ins
to store state information). The HMsg API has a concise interface focused on the pro-
cessing and sending of messages to other Harness tasks. The HMsg unit of the kernel,
together with specialized HCom communication plug-ins, is responsible for all com-
munication among Harness daemons, and provides a means for point-to-point commu-



8 Wael Elwasif et al.

nication among plug-ins as well. We have described the structure of the HMsg unit in
some detail, as well as the multi-threaded nature of the Harness kernel.

References

1. Rob Armstrong, Dennis Gannon, Al Geist, Katarzyna Keahey, Scott Kohn, Lois McInnes,
Steve Parker, , and Brent Smolinski. Toward a common component architecture for high-
performance scientiÞc computing. In Proceedings of the The Eighth IEEE International Sym-
posium on High Performance Distributed Computing, 1998.

2. M. Beck, J. Dongarra, G. Fagg, A. Geist, P. Gray, J. Kohl, M. Migliardi, K. Moore, T. Moore,
P. Papadopoulos, S. Scott, and V. Sunderam. HARNESS: a next generation distributed virtual
machine. Special Issue on Metacomputing, Future Generation Computer Systems, 15(5/6),
1999.

3. Henri Casanova and Jack Dongarra. NetSolve: A network-enabled server for solving com-
putational science problems. The International Journal of Supercomputer Applications and
High Performance Computing, 11(3):212�223, Fall 1997.

4. J. Dongarra, G. Fagg, A. Geist, and J. A. Kohl. HARNESS: Heterogeneous adaptable recon-
Þgurable NEtworked systems. In IEEE, editor, Proceedings: the Seventh IEEE International
Symposium on High Performance Distributed Computing, July 28�31, 1998, Chicago, Illinois,
pages 358�359. IEEE Computer Society Press, 1998.

5. Christian Engelmann. Distributed Peer-to-Peer Control for Harness. M.Sc. thesis, University
of Reading, 2001.

6. I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. The Interna-
tional Journal of Supercomputer Applications and High Performance Computing, 11(2):115�
128, Summer 1997.

7. Dennis Gannon, Randall Bramley, Thomas Stuckey, Juan Villacis, Jayashree Balasubraman-
jian, Esra Akman, Fabian Breg, Shridhar Diwan, and Madhusudhan Govindaraju. Developing
component architectures for distributed scientiÞc problem solving. IEEE Computational Sci-
ence & Engineering, 5(2):50�63, April/June 1998.

8. Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and Vaidy Sun-
deram. PVM: Parallel Virtual Machine: A Users� Guide and Tutorial for Networked Parallel
Computing. ScientiÞc and engineering computation. MIT Press, Cambridge, MA, USA, 1994.

9. G. A. Geist. Harness: The next generation beyond PVM. Lecture Notes in Computer Science,
1497:74�82, 1998.

10. G. A. Geist, J. A. Kohl, P. M. Papadopoulos, and S. L. Scott. Beyond PVM 3.4: What we�ve
learned, what�s next, and why. Special Issue on Metacomputing, Future Generation Computer
Systems, 15(5/6):571�582, 1999.

11. Andrew S. Grimshaw, William A. Wulf, and the Legion team. The legion vision of a world-
wide virtual computer. Communications of the ACM, 40(1):39�45, January 1997.

12. ORNL Harness Home Page. http://www.csm.ornl.gov/harness/
13. S. Kohn, G. Kumfert, J. Painter, and C. Ribbens. Divorcing language dependencies from

a scientiÞc software library. In Proceedings, 10th SIAM Conference on Parallel Processing,
March 1999.

14. M. Migliardi and V. Sunderam. Plug-ins, layered services and behavioral objects applica-
tion programming styles in the harness metacomputing system. Future Generation Computer
Systems, 17:795�811, 2001.

15. B. Smolinski, S. Kohn, N. Elliott, N. Dykman, and G. Kumfert. Language interoperability
for high-performance parallel scientiÞc components. In Proceedings, Int�l Sym. on Computing
in Object-Oriented Parallel Environments (ISCOPE �99, 1999.


