IBM Research: Software Technology

X10 Tutorial

December 2006
IBM Research

This work has been supported in part by the Defense
Advanced Research Projects Agency (DARPA):
under contract No. NBCH30390004

Programming Technologies

© 2006 IBM Corporation

[
Il

i
|plji
1

IBM Research: Software Technology

X10 Team

= X10 Core Team = X10 Tools
— Rajkishore Barik — Philippe Charles
— Vincent Cave — Julian Dolby
— Chris Donawa — Robert Fuhrer
— Allan Kielstra — Frank Tip
— Sriram Krishnamoorthy — Mandana Vaziri
— Nathaniel Nystrom
— lgor Peshansky = Emeritus
— Christoph von Praun — Kemal Ebcioglu
— Vijay Saraswat — Christian Grothoff
— Vivek Sarkar
— Tong Wen = Research colleagues

— R. Bodik, G. Gao, R. Jagadeesan, J.
Palsberg, R. Rabbah, J. Vitek

— Several others at IBM

Programming Technologies

© 2006 IBM Corporation

Programming Technologies

I

[l
L

b

IBM Research: Software Technology

Recent publications

1. "X10: An Object-Oriented Approach to Non-Uniform Cluster Computing", P.
Charles, C. Donawa, K. Ebcioglu, C. Grothoff, A. Kielstra, C. von Praun, V.
Saraswat, V. Sarkar. OOPSLA conference, October 2005.

2. "Concurrent Clustered Programming”, V. Saraswat, R. Jagadeesan. CONCUR
conference, August 2005.

3. “Experiences with an SMP Implementation for X10 based on the Java
Concurrency Utilities Rajkishore Barik, Vincent Cave, Christopher Donawa, Allan
Kielstra,lgor Peshansky, Vivek Sarkar. Workshop on Programming Models for
Ubiquitous Parallelism (PMUP), September 2006.

4. "An Experiment in Measuring the Productivity of Three Parallel Programming
Languages”, K. Ebcioglu, V. Sarkar, T. EI-Ghazawi, J. Urbanic. P-PHEC
workshop, February 2006.

5. "X10: an Experimental Language for High Productivity Programming of Scalable
Systems", K. Ebcioglu, V. Sarkar, V. Saraswat. P-PHEC workshop, February
2005.

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Tutorial outline

il
ull]|

=% =

i
[

1) X10 in a nutshell

2) Sequential X10
— Type system
— Standard library

3) Concurrency in X10
— Activities
— Atomic blocks
— Clocks, clocked variables

4) X10 arrays
— Points
— Regions

5) Distributed X10
— Places
— Distributions
— Distributed arrays

6) Further examples

© 2006 IBM Corporation

IBM Research: Software Technology

X10 in a Nutshell

9p)
Q
(@)
ks
@)
c
am
o
(¢b)
|_
(@))
£
£
£
©
S
(@))
O
S
o

© 2005 IBM Corporation

IBM Research: Software Technology

il
ill
i

I
|

=1

i
i
|

|
i
1w

X10 Programming Model

Programming Technologies

SIOUQIUAS
AeooT

i

Storage classes:

Partitoned = Activity-local
Global

Addrass -
Space = Partitioned
bo Inbound (PGAS) global
Activities Activities
Globally = |mmutable
Asynchronous

Activities <: <: Activities

Place 0 e Place (MaxPlaces-1)

* Dynamic parallelism with a Partitioned Global Address Space
» Places encapsulate binding of activities and globally addressable data
* Number of places currently fixed at launch time

* All concurrency is expressed as asynchronous activities — subsumes
threads, structured parallelism, messaging, DMA transfers, etc.

» Atomic sections enforce mutual exclusion of co-located data
* No place-remote accesses permitted in atomic section
* Immutable data offers opportunity for single-assignment parallelism

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

X10 v0.41 Cheat sheet

|l
il
i

||j

A
i
1w

Stm:

DataType:

async [(Place)] [clocked ClockList] Stm ClassName | InterfaceName | ArrayType

when (SimpleExpr) Stm

finish Stm
next; c.resume()

for(1: Region) Stm

foreach (i1: Region) Stm

ateach (I : Distribution) Stm

Expr:
ArrayExpr

ClassModifier : Kind

MethodModifier: atomic

c.drop()

nullable DataType
future DataType
Kind :

value | reference

x10.lang has the following classes (among
others)

point, range, region, distribution, clock, array

Some of these are supported by special syntax.

Forthcoming support: closures, generics, dependent types, place types,

Implicit syntax, arra

literals.

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

il
il
i

]
||]
||I|

|
i

X10 v0.41 Cheat sheet: Array support

ArrayExpr:
new ArrayType (Formal) { Stm }
Distribution Expr -- Lifting
ArrayExpr [Region | -- Section
ArrayExpr | Distribution -- Restriction
ArrayExpr || ArrayExpr -- Union
ArrayExpr.overlay(ArrayExpr) -- Update

ArrayExpr. scan([fun [, ArgList])
ArrayExpr. reduce([fun [, ArgList])
ArrayExpr.lift([fun [, ArgList])

ArrayType:
Type [Kind] []
Type [Kind] [region(N) |
Type [Kind] [Region |
Type [Kind] [Distribution |

Region:

Expr : Expr --1-D region

| Range, ..., Range | -- Multidimensional Region
Region && Region -- Intersection
Region || Region -- Union
Region — Region -- Set difference

BuiltinRegion

Dist:

Region -> Place -- Constant distribution

Distribution | Place -- Restriction
Distribution | Region -- Restriction
Distribution || Distribution -- Union

Distribution — Distribution -- Set difference
Distribution.overlay (Distribution)

BuiltinDistribution

Language supports type safety, memory safety, place safety, clock safety.

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Comparison with Java

il
ull]|

=% =

i
[

X10 language builds on the Java
language

Shared underlying philosophy:
shared syntactic and semantic
tradition, simple, small, easy to
use, efficient to implement,
machine independent

X10 does not have:
= Dynamic class loading
= Java’s concurrency features

— thread library, volatile,
synchronized, wait, notify

X10 restricts:

= Class variables and static
initialization

X10 adds to Java:

value types, nullable

Array language

— Multi-dimensional arrays,
aggregate operations

New concurrency features

— activities (async, future), atomic
blocks, clocks

Distribution

— places

— distributed arrays

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

il
il
i

I
Il'ui

[l

|
|

X10 prototype implementation

X10 source program --- must contain a class named

F00.x10 Foo with a “public static void main(String[] args)
l method
x10c Foo.x10 |x10c X10 compiler --- translates F00.x10 to Foo.java,

x10 Foo

uses javac to generate Foo.class from Foo.java

FOO_CIaSS\‘ X10 program translated into Java ---

Foo.java /I #line pseudocomment in Foo.java

l specifies source line mapping in F00.x10
X10 Virtual Machine
(JVM + J2SE libraries + |, » External DLL’S
X10 libraries + X10 extern
X10 Multithreaded Runtime) interface
l X10 Abstract Performance Metrics
X10 Program Output (event counts, critical path)

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Examples of X10 compiler error messages

[l
![:H:H
iy

||I1

Case 1: Error message
identifies source file and
line number

1) x10c TutErrorl.x1

TutErrorl. x10: 8 Could not find field or |ocal variable "evenSuni.

for (int i =2 ; 1 <=n; i +=2) evenSum += i;
N N

D

2) x10c TutError2.x10
x10c: TutError2.x10:4:27:4:27. unexpected token(s) ignored

Case 1: Carats indicate

column range

Case 2: Error message
identifies source file, line

3) x10c TutError3.x10 number, and column range

x10c: C.\vivek\eclipse\workspace\ x10\ exanpl es\ Tutori al \ Tut Error3.java: 49:
| ocal variable nis accessed fromwthin inner class; needs to be decl ared

final

Case 3: Error message reported by Java
compiler — look for #line comment in .java file to
identify X10 source location

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Tutorial outline

il
ull]|

=% =

i
[

1) X10 in a nutshell

2) Sequential X10
— Type system
— Standard library

3) Concurrency in X10
— Activities
— Atomic blocks
— Clocks, clocked variables

4) X10 arrays
— Points
— Regions

5) Distributed X10
— Places
— Distributions
— Distributed arrays

6) Further examples

© 2006 IBM Corporation

IBM Research: Software Technology ==

Sequential X10

= Qverview

= value types

= nullable types | e B
= Safety properties DS

Programming Technologies

© 2005 IBM Corporation

Programming Technologies

=1

IBM Research: Software Technology

- Runtime constant.
Sequentlal XlO Can be changed by using the

i

ull]|

NUMBER_OF LOCAL PLACES
option in x10 command line

pl ace. MAX_PLACES

.;?

pl ace. FI RST_PLACE pl ace. LAST_PLACE

. “’\\\;

public class HelloWrld { ‘00\
public static voldimain(Btring[] args) {

Systemout.printin("Hello, world!'");
}

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

[
Il

i
hy
i

Value types : immutable instances

value class

— Can only extend value class

or x10.lang.Object.
— All fields are implicitly final

— Can only be extended by
value classes.

— May contain fields with
reference type.

— May be implemented by
reference or copy.

Values are equal (==) if their

fields are equal, recursively.

public val ue conplex {
double im re;
publ i c conpl ex(double im
double re) {
this.im=1im
this.re = re;
}
publ i c conpl ex add(conpl ex a)
{
return new conplex(imra.im
ret+a.re);

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Memory safety

[l
Il
i
ILH

Runtime invariants

= An object may only access
memory within its
representation, and other

objects it has a reference to.

— X10 supports no pointer
arithmetic.

— Array access is bounds-
checked dynamically (if
necessary).

= No “ill mem ref”

— No object can have a
reference to an object who's
memory has been freed.

— X10 uses garbage collection.

= Every value read from a
location has been previously
written into the location.

— No uninitialized variables.

© 2006 IBM Corporation

il
ull]|

=% =

IBM Research: Software Technology

i
[

Pointer safety

X10 supports the nullable type constructor.

= For any datatype T, the datatype nullable<T> contains all the value
of T and null.

= |f a method is invoked or a field is accessed on the value null, a
NullPointerException (NPE) Is thrown.

Runtime invariant
No operation on a value of type T, which is not of the form nullable
S, can throw an NPE.

n

@

)

o

[®

e

= public interface Table { May return null
2 voi d put (Obj ect 0);

CC» nul | abl e<Chj ect et (Qoj ect 0);

= } Cannot throw NPE.
% public class Foo {

o)

=

o

bool ean check (T {
return h.get(this) !'= null;

© 2006 IBM Corporation

[l
Il
ill
w”'ll

!Ei

IBM Research: Software Technology

i

x10.lang standard library

Java package with “built in” classes that provide support for selected X10
constructs
= Standard types
— boolean, byte, char, double, float, int, long, short, String
= x10.lang.Object -- root class for all instances of X10 objects
= x10.lang.clock --- clock instances & clock operations
= x10.lang.dist --- distribution instances & distribution operations
= x10.lang.place --- place instances & place operations
= x10.lang.point --- point instances & point operations
= x10.lang.region --- region instances & region operations

All X10 programs implicitly import the x10.lang.* package, so the x10.lang
prefix can be omitted when referring to members of x10.lang.* classes
= e.g., place.MAX_PLACES, dist.factory.block([0:100,0:100]), ...

Similarly, all X10 programs also implicitly import the java.lang.* package
= e.g., X10 programs can use Math.min() and Math.max() from java.lang

Programming Technologies

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Tutorial outline

il
ull]|

=% =

i
[

1) X10 in a nutshell

2) Sequential X10
— Type system
— Standard library

3) Concurrency in X10
— Activities
— Atomic blocks
— Clocks, clocked variables

4) X10 arrays
— Points
— Regions

5) Distributed X10
— Places
— Distributions
— Distributed arrays

6) Further examples

© 2006 IBM Corporation

IBM Research: Software Technology ==

Concurrency in X10

= async, finish
= future, force
= foreach

= Global vs. local termination
= Exception handling

= Behavioral annotations

= atomic

= Memory model

= clocks

5 ‘
; ’

!
e - -—a.-.:-.___d..-.

S Sl

Programming Technologies

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

async

=% =

il

In
Il

Stmt ::= async PlaceExpSingleListopt Stmt

async (P) S

= Creates a new child activity
at place P, that executes
statement S

* Returns immediately

= S may reference final
variables in enclosing blocks

= Activities cannot be named

= Activity cannot be aborted or
cancelled

cf Cilk’s spawn

/1 global dist. array
final double a[D = .;
final Int k = ..;

async (a.distribution[99]) {
// executed at A[99]’s
// place
atomic aJ99] = k;

+

= Memory model: hb edge
between stm before async
and start of async.

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

finish

[
Il

i
|plji
1

finish S
= Execute S, but wait until all

(transitively) spawned asyncs have
terminated.

Rooted exception model

= Trap all exceptions thrown by
spawned activities.

= Throw an (aggregate) exception if
any spawned async terminates
abruptly.

= implicit finish at main activity

finish is useful for expressing
“synchronous” operations on
(local or) remote data.

Stmt ::=finish Stmt

cf Cilk’s sync
finish ateach(point [i]:A)
Ali] =i;

finish async
(A.distribution [j])

Aljl = 2

[/ all Ai]l=i wll
/] before Aj]=2;

conpl ete

= Memory model: hb edge
between last stm of each
async and stm after finish S.

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Termination

[l

Il

In

]
i

s

Local termination:

Statement s terminates locally when activity has completed all its
computation with respect to s.

Global termination:
Local termination + activities that have been spawned by s
terminated globally (recursive definition)

— main function is root activity
— program terminates iff root activity terminates.
(implicit finish at root activity)

— ‘daemon threads’ (child outlives root activity) not
allowed in X10

© 2006 IBM Corporation

IBM Research: Software Technology

Termination (example)

termination

start |local | global
public void main (String[] args) {-———- O

finish {

© 2006 IBM Corporation

IBM Research: Software Technology

Rooted computation X10

public void main (String[] args) {

finish {
async { spawn hierarchy
for () {
}aSynC {... root activity

k4 }
g finish async {...
S }
=
5 oL
s |
= } /1 finish
1]
=
g > ance_stor
S root-of relation relation
o

© 2006 IBM Corporation

1L
i i"

=% =

IBM Research: Software Technology

i
[

Rooted exception model

public void main (String[] args) {

Propagation along the lexical scoping:
Exceptions that are not caught inside an activity are propagated
to the nearest suspended ancestor in the root-of relation.

finish { root-of relation
sync {
for () {
sync {...
}
g)
S | N async {... N\
2 . P
S }
(¢B) ..
'; y /1 finish exception flow along
g } ¢ ¢ root-of relation
=
-
(@)
=
o

© 2006 IBM Corporation

Programming Technologies

=% =

IBM Research: Software Technology

||I1

i

Example: rooted exception model (async)

Int result = 0O;

try {
finish {
ateach (point [i]:dist.factory.unique()) {
throw new Exception (“Exception from “+here.id)
}
result = 42;
} // Tinish

} catch (x10.lang.-MultipleExceptions me) {
System.out.print(me);
+

assert (result == 42); // always true

= Nno exceptions are ‘thrown on the floor’

= exceptions are propagated across activity and place
boundaries

© 2006 IBM Corporation

il
ull]|

=% =

IBM Research: Software Technology

i
[

Behavioral annotations

nonblocking

On any input store, a nonblocking method can continue execution or
terminate. (dual: blocking, default: nonblocking)

recursively nonblocking
Nonblocking, and every spawned activity is recursively nonblocking.

local
A local method guarantees that its execution will only access variables
that are local to the place of the current activity.
(dual: remote, default: local)

sequential
Method does not create concurrent activities.
In other words, method does not use async, foreach, ateach.
(dual: parallel, default: parallel)

Sequential and nonblocking imply recursively nonblocking.

Programming Technologies

© 2006 IBM Corporation

[
Il

In

IBM Research: Software Technology

il

Static semantics

= Behavioral annotations are checked with a conservative
Intra-procedural data-flow analysis.

= Inheritance rule: Annotations must be preserved or
strengthened by overriding methods.

= Multiple behavioral annotations must be mutually
consistent.

Programming Technologies

© 2006 IBM Corporation

il
ull]|

=% =

IBM Research: Software Technology

i
[

foreach

foreach (FormalParam: Expr) Stmt

foreach (pointp: R) S
= Creates |R| async statements in parallel at current place.

foreach (point p:R) S for (point p: R)
async { S}

= Termination of all (recursively created) activities can be ensured
with finish.

= finish foreach is a convenient way to achieve master-slave
fork/join parallelism (OpenMP programming model)

Programming Technologies

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

atomic

[l
ot
iy

||I1

= Atomic blocks are conceptually
executed in a single step while
other activities are suspended:
Isolation and atomicity.

= An atomic block ...
— must be nonblocking
— must not create concurrent
activities (sequential)
— must not access remote data
(local)

» Memory model: end of tx hb
start of next tx in the same
place.

Stmt ;= atomic Statement

MethodModifier ::= atomic

/|l target defined in lexically
/'l encl osi ng scope.
atom ¢ bool ean CAS(Ohj ect ol d,

hj ect new) {
i f (target.equals(old)) {
target = new
return true;

}

return fal se;

/'l push data onto concurrent
/'l |ist-stack

Node node = new Node(data);
atom c {

node. next = head;

head = node;
}

© 2006 IBM Corporation

IBM Research: Software Technology

i

Static semantics of atomic blocks

i i"

An atomic block must...be local, sequential, nonblocking:

= ...not include blocking operations
— no await, no when, no calls to blocking methods
= ... hot include access to data at remote places
— no ateach, no future, only calls to local methods
= ... hot spawn other activities
— no async, no foreach, only calls to sequential methods

Programming Technologies

© 2006 IBM Corporation

Programming Technologies

[l
[
i

T
]

IBM Research: Software Technology

Using X10 method annotations

A method declaration, foo(), can be annotated with:

= nonblocking =» no static occurrence in foo() of when, force(), next();
any method that foo() invokes must also be annotated as
nonblocking

= local =» all data accessed in foo() is statically guaranteed to be
place-local; any method that foo() invokes must also be annotated as
local

To check if an activity (async, foreach, ateach, future) is local
nonblocking

— Check local body of activity to ensure that it satisfies the conditions

— Check that all methods called in activity are also annotated (and
checked) as local nonblocking

— NOTE: this also works in the presence of recursion

© 2006 IBM Corporation

[l
I

b

|

||I1

IBM Research: Software Technology

Exceptions in atomic blocks

= Atomicity guarantee only for successful execution.
— Exceptions should be caught inside atomic block
— Explicit undo in the catch handler

bool ean nove(Col l ection s, Collection d, Cbject o) {
atom c {
I f (!s.renmove(0)) {
return false; // object not found
} else {
try {
d. add(o);
} catch (RuntinmeException e) {
s.add(o); // explicit undo

throw e, [/ exception cf. [Harris CSJP’04]

urn true; // nove succeeded

= (Uncaught) exceptions propagate across the atomic block boundary;
atomic terminates on normal or abrupt termination of its block.

Programming Technologies

© 2006 IBM Corporation

1L
i i"

=% =

IBM Research: Software Technology

i
[

Data races with async / foreach

final double arr[R] = .., // global array

cl ass Reduce(p {
doubl e accu = 0.0;
doubl e sum (double[.] arr) {
finishforeach (point p: arr) {
at oni c: arr[p];

concurrent conflictin
retur n< 2

access to shared variable;
} data race

X10 guideline for avoiding data races:
= access shared variables inside an atomic block
= combine ateach and foreach with finish

= declare data to be read-only where possible (final or value type)

Programming Technologies

© 2006 IBM Corporation

Programming Technologies

= = ====
= —

3

IBM Research: Software Technology

Memory Model Please see: http://www.saraswat.org/rao.html

= X10v 0.41 specifies = A process is a pomset of
sequential consistency per steps closed under certain
place. transformations:
— Not workable. — Composition
= We are considering a — Decomposition
weaker memory model. — Augmentation
= Built on the notion of — Linking
atomic: identify a step as — Propagation
the basic building block.
— A ste.p IS a partial write = There may be opportunity
function. for a weak notion of atomic:
= Use links for non hb-reads. decoup|e atomicity from

ordering.
Correctly synchronized programs behave as SC.

Correctly synchronized programs = programs whose SC
executions have no races.

© 2006 IBM Corporation

IBM Research: Software Technology

Concurrency Control: Clocks

= clock
= Clocks safety
= Clocked variables

Programming Technologies

© 2005 IBM Corporation

[
Il

In

IBM Research: Software Technology

g

Clocks: Motivation

= Activity coordination using finish and force() is accomplished by
checking for activity termination

= However, there are many cases in which a producer-consumer
relationship exists among the activities, and a “barrier’-like coordination is
needed without waiting for activity termination

— The activities involved may be in the same place or in different places

Phase O

Phase 1

Activity O Activity 1 Activity 2

Programming Technologies

© 2006 IBM Corporation

Programming Technologies

il
ull]|

=% =

IBM Research: Software Technology

i
[

Clocks (1/2)

clock ¢ = clock.factory.clock();
= Allocate a clock, register current activity with it. Phase 0 of ¢ starts.

async(...) clocked (cl1,c2,...) S

ateach(...) clocked (cl1,c2,...) S

foreach(...) clocked (c1,c2,...) S

= Create async activities registered on clocks c1, c2, ...

c.resume();

= Nonblocking operation that signals completion of work by current
activity for this phase of clock c

next;

= Barrier --- suspend until all clocks that the current activity is registered
with can advance. c.resume() is first performed for each such clock, if
needed.

= Next can be viewed like a “finish” of all computations under way in the
current phase of the clock

© 2006 IBM Corporation

ill
i

=% =

IBM Research: Software Technology

Clocks (2/2)

||I1

i

c.drop();

= Unregister with c. A terminating activity will implicitly drop all clocks
that it is registered on.

c.registered()

= Return true iff current activity is registered on clock c
= c.dropped() returns the opposite of c.registered()

ClockUseException

= Thrown if an activity attempts to transmit or operate on a clock that it is
not registered on

= Or if an activity attempts to transmit a clock in the scope of a finish

Programming Technologies

© 2006 IBM Corporation

Programming Technologies

[l
]l
Ih

IBM Research: Software Technology

Semantics

il

Static semantics

— An activity may operate only on those clocks it is registered with.
— Infinish S,S may not contain any (top-level) clocked asyncs.

Dynamic semantics

— A clock ¢ can advance only when all its registered activities have
executed c.resume().

— An activity may not pass-on clocks on which it is not live to sub-
activities.

— An activity is deregistered from a clock when it terminates

= Memory model: hb edge between next stm of all
registered activities on c, and their subsequent stm

Supports over-sampling, hierarchical nesting.
No explicit operation to register a clock.

© 2006 IBM Corporation

IBM Research: Software Technology

Behavioral annotations for clocks

clocked (cO,..., ck).

= A method m that spawns an async clocked(cO0,...,ck) must declare
{c0,...,ck} (or a superset) in its annotation: clocked (cO,..., ck).

= {c0,...,ck} are fields of type clock declared in the calss that declares
m.

Programming Technologies

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Example (TutClockl1.x10)

[l
[
iy

i
1

finish async {
final clock ¢ = clock.factory. clock();
foreach (point[i]: [1:N) clocked (c){

while (true) {

parent transmits clock

int old Ai = Ali]; to child
int new Ai = Math.mn(Ali],B[i]);
if (i >1)
new Ai = Math.mn(new A i,B[i-1]);
if (i <N)
new A i = Math.m n(new A i, B[i+1]);
Ali] = new A i;
next ;
int old Bi =B[i];
int newBi = Math.mn(B[i],Ai]);
if (i >1)
new B i = Math.mn(new B i,A1-1]);
if (i <N)
new B i = Math.m n(new B i, A[i1+1]);
B[i] = newB i;
next ;
if (old Ai == new Ai & old Bi == newB.i)
br eak; Ty :
L // while exiting from while loop

} /1 foreach
} /1 finish async

terminates activity for
iteration i, and automatically
deregisters activity from clock

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Clock safety

[l

Il

In

il

]

= An activity may be registered on one or more clocks

= Clock c can advance only when all activities registered
with the clock have executed c.resume() and all posted
activities have terminated globally.

Runtime invariant: Clock operations are guaranteed to
be deadlock-free.

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Deadlock freedom

=% =

= ==

= Central theorem of X10:

— Arbitrary programs with
async, atomic, finish (and
clocks) are deadlock-free.

= Key intuition:
— atomic is deadlock-free.

— finish has a tree-like
structure.

— clocks are made to satisfy
conditions which ensure tree-
like structure.

— Hence no cycles in wait-for
graph.

= Where is this useful?

— Whenever synchronization
pattern of a program is
iIndependent of the data read
by the program

— True for a large majority of
HPC codes.

— (Usually not true of reactive
programs.)

© 2006 IBM Corporation

IBM Research: Software Technology

Clock example: SPECjbb

il
ill
i

[l
I

i
i
i
il
1

finish async {

final
final

cl

ock ¢ new cl ock();

Conpany conpany =

creat eConpany(...);

for (int w:

[0:wh_num) {

async clocked(c) { // a warehouse
I nt node;

atom c { node

conpany. node;

b

initialize;

next;

Il 1.

while (node !'= STOP) {

sel ect a transaction;

t hi nk;

process the transacti on;

i f (node RECORDI NG)
record dat a;

I f (node RAMP_DOVN)
next:; [/ 2.

atom c { node

conpany. node;

Y /] while

Y /]

a war ehouse

conti nued next colum -->

/'l master activity
next; // 1.

atom c { conpany. node = RAMP_UP; };
sl eep ranpupti ne;

atom c { conpany. node = RECORDI NG };
sl eep recordingti ne;

atom c { conpany. node = RAMP_DOMWN;, };
next; // 2.

/1l all clients in RAMP_DOMW

conpany. node
} // finish async
/1 simulati on conpl et ed.

STOP;

print results.
master warehouses
phasel =fF==1F—-=—-=---
RAMP_UP
phase2 = § = = 4 L]~ = _RECORDING
finish RAMP_DOWN
iNISh == = = & - ~sTGP-
\ 4

© 2006 IBM Corporation

IBM Research: Software Technology

Futures

9p)
Q
(@)
ks
@)
c
am
o
(¢b)
|_
(@))
£
£
£
©
S
(@))
O
S
o

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

future

[
Il

i
hy
i

Expr ::=future PlaceExpSingleListopt {Expr }

future (P) S

= Creates a new child activity at
place P, that executes
statement S;

= Returns immediately.

= S may reference final variables
in enclosing blocks.

future vs. async
= Return result from
asynchronous computation

= Tolerate latency of remote
access.

/1 global dist. array
final double a[D = .;
final 1Int 1dx = .. ;

future<double> fd =
future (a.distribution[idx])
{
// executed at afi1dx]’s
// place
af[1dx];
};

future type

= no subtype relation between T
and future<T>

© 2006 IBM Corporation

IBM Research: Software Technology

future example

syl
[i"

[T
i

=1

public class TutFuturel {
static int fib (final int n) {
if (n<=0) return O;
if (n==1) return 1,
future<int> x = future { fib(n-1) };
future<int>vy = futurgsL fib(n-2) };
return x.force() +4.1orce();

© 2006 IBM Corporation

IBM Research: Software Technology

Example: rooted exception model (future)

doubl e div (final double divisor)
future<double> t = future { return 42.0 / divisor; }
doubl e resul t;
try {
result =1f. force();
} catch (AriaihneticException e) {
resul t 0. 0;

return résult:;

Exception is propagated when the future is forced.

Programming Technologies

© 2006 IBM Corporation

il
ull]|

=% =

IBM Research: Software Technology

i
[

Futures can deadlock

nul | abl e future<int> f1=null;

nul | abl e future<int> f2=null; int al() { _
nul | abl e future<int> tnp=null;
do
void main(String[] args) { tap:fz;
f1 = future(here){al()}; } while (tnmp == null);
f2 = future(here){a2()}; return tmp.force();
fl.force(); }
}
int a2() {
cyclic wait condition nul | abl e future<int> tnp=null;
do {
t mp=f 1;

} while (tnp == null);
return tnp.force();

}
X10 guidelines to avoid deadlock:

= avoid futures as shared variables

= force called by same activity that created body of future, or a
descendent.

Programming Technologies

© 2006 IBM Corporation

IBM Research: Software Technology

Concurrency Control:
Conditional atomic blocks, when, await

7
D
oy
o
O
=
=
O
@
I_
o)
=
e
=
©
P
D
@)
b
o

© 2005 IBM Corporation

IBM Research: Software Technology

= WhenStmt
= when (Expr) Stmt |

when

WhenStmt :

WhenStmt or (Expr) Stmt

when (E) S
— Activity suspends until a state in which
the guard E is true.

class OneBuffer {

[l
![:H:H

nul I abl e<Cbj ect > datum = nul | ;

boolean filled = fal se;

— In that state, S is executed atomically

and in isolation.

Guard E

boolean expression

must be nonblocking

must not create concurrent activities
(sequential)

must not access remote data (local)
must not have side-effects (const)

await (E)
— syntactic shortcut for when (E) ;

vol d send(oject v) {

when (! filled) {

datum = v;
filled = true;

} }

bj ect receive() {
when (filled)
(bject v = da

datum = nul | ;
filled = false
return v;

© 2006 IBM Corporation

IBM Research: Software Technology

i

Static semantics of guard for when / await

i i"

= pboolean field
= boolean expression with field access or constant values

class BufferBuffer {

voi d send(Object v) {
when (size() < MAX Sl ZE)
{
datum = v;
filled = true;

}

ompile-time error

© 2006 IBM Corporation

IBM Research: Software Technology

Semaphores

cl ass Semaphore {
private bool ean t aken;

void p() { acquire semantics
when (!taken)
taken = true;

}

atomc void v() {

taken = fal se: release semantics

Programming Technologies

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

[l
A8
syl
|i':1 ii Il

Atomic blocks: Simplifying barrier synchronization

Original Java code

/1 Main thread (see spec.jbb. Company):
// Wait for all threads to start.

synchronized (company.initThreadsStateChange) {

while (initThreadsCount !'= threadCount) {
try {
initThreadsStateChange.wait(Q);
} catch (InterruptedException e) {.}

}
} ...

// Tell everybody i1t’s time for warmups.

mode = RAMP_UP;

synchronized (initThreadsCountMonitor) {
initThreadsCountMonitor.notiftyAIl();

}

X10 atomic sections

// Main thread: ..
[/ Wait for all threads to start.

when(conpany. i ni t Thr eadsCount ==
t hreadCount) {

node = RAMP_UP;
I ni t ThreadsCount Reached = true;

// Worker thread
// (see spec.jbb.TransactionManager): ..

synchronized (company.initThreadsCountMonitor) {
synchronized (company.initThreadsStateChange) {

company. initThreadsCount++;

company. initThreadsStateChange.notifty();

}
try {

company. initThreadsCountMonitor.wait();

} catch (InterruptedException e) {.}

/1 Wbrker thread:
atomc {

conpany. i ni t ThreadsCount ++;
}

awal t (initThreadsCount Reached);
/I barrier synch.

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Tutorial outline

il
ull]|

=% =

i
[

1) X10 in a nutshell

2) Sequential X10
— Type system
— Standard library

3) Concurrency in X10
— Activities
— Atomic blocks
— Clocks, clocked variables

4) X10 arrays
— Points
— Regions

5) Distributed X10
— Places
— Distributions
— Distributed arrays

6) Further examples

© 2006 IBM Corporation

IBM Research: Software Technology ==

X10 Array Language

= point, region, distributior
= Syntax extensions
= Initialization

= Multi-dimensional arrays
= Aggregate operations

Programming Technologies

© 2005 IBM Corporation

il
ull]|

[l
[
i

T
]

IBM Research: Software Technology

point

A point is an element of an n-dimensional Cartesian

space (n>=1) with integer-valued coordinates e.g., [5], [1, 2], ...
— Dimensions are numbered from O to n-1
— n s also referred to as the rank of the point

A point variable can hold values of different ranks e.g.,
— pointp; p=1[1]; ... p=[2,3]; ...

Operations

— pl.rank
 returns rank of point pl1
— pl.get()
* returns element (i mod pl.rank) if i <0 or i >= pl.rank
— pLlt(p2), pl.le(p2), p1.9t(p2), pl.ge(p2)
 returns true iff pl is lexicographically <, <=, >, or >= p2
« only defined when pl.rank and pl.rank are equal

Programming Technologies

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

i

Syntax extensions for points

i i“

= Implicit syntax for points:
point p=1[1,2] = point p = point.factory(1l, 2)

= Exploded variable declarations for points:
point p [i,]] [l final int i,]

= Typical uses :

—for (point p i, J1)y { ...}
—for (point [1, J] - r) { ... }
—int sum (point [1,]], point [k, [])
{ return [i+k, j+I]; }
—int [] tarr = newint [2] (point [i,]]) { returni; }

© 2006 IBM Corporation

IBM Research: Software Technology

Example: point (TutPointl)

=1

i

ull]|

public class TutPoint {
public static void main(String[] args) {

point pl =11,2,3,4,5];
point p2 =11, 2];
point p3 =12,1];
Systemout.printin("pl =" + pl +
", pl.rank =" + pl.rank +
, pl.get(2) =" + pl.get(2));
Systemout.printin("p2 =" + p2 +
", p3 =" + p3 + p2.1t(p3) =" +
p2.1t(p3));
}
} Console output:
pl =11,2,3,4,5] ; pl.rank =5 ; pl.get(2)
p2 =[1,2] ; p3 =1[2,1] ; p2.1t(p3) = true

© 2006 IBM Corporation

Programming Technologies

S == ==t
i

IBM Research: Software Technology

Rectangular regions

A rectangular region is the set of points contained in a rectangular subspace

A region variable can hold values of different ranks e.g.,
— region R; R =[0:10]; ... R =[-100:100, -100:100]; ... R =[0:-1]; ...

Operations
— R.rank ::= # dimensions in region;
— R.size() ::= # points in region
— R.contains(P) ::= predicate if region R contains point P
— R.contains(S) ::= predicate if region R contains region S
— R.equal(S) ::=true if region R equals region S
— R.rank(i) ::= projection of region R on dimension i (a one-dimensional region)
— R.rank(i).low() ::= lower bound of it" dimension of region R
— R.rank(i).high() ::= upper bound of i"" dimension of region R
— R.ordinal(P) ::= ordinal value of point P in region R
— R.coord(N) ::= point in region R with ordinal value = N
— R1 && R2 ::=region intersection (will be rectangular if R1 and R2 are rectangular)
— R1 || R2 ::= union of regions R1 and R2 (may not be rectangular)
— R1 - R2 ::=region difference (may not be rectangular)

© 2006 IBM Corporation

=1

A
i
it

IBM Research: Software Technology

Example: region (TutRegionl)

public class TutRegion {

public static void main(String[] args) {

region Rl

-100: 100] ;
+ R1 +

[1:10,
R1. rank

Systemout. println("RlL
Rl.rank + " ; Rl.size()
R1. ordi nal ([10, 100])

region R2

" + Rl.size() + "
+ R1.ordinal ([10, 100]));
[1:10, 90: 100] ;

+ R + " R1. cont ai ns(R2)

Systemout.println("R2
" + Rl.contains(R2) + "
R2.rank(1).low) + "

}

Console output:

R2.rank(1).1ow)

R2. coor d(0) " + R2.coord(0));

R1. rank

Rl = {1:10,-100: 100} ;
R1. ordi nal ([10, 100])
R2 = {1:10, 90: 100}
R2.rank(1).l ow)

Programming Technologies

= 2009

R1. cont ai ns(
R2. coor d(

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Syntax extensions for regions

i

i i"

Region constructors

int hi, |o;
region r = hi;

= region r = region.factory.region(0, hi)
region r = [|ow hi]

= region r = region.factory.region(lo, hi)

region rl, r2; [/ 1-dimregions
regionr = [rl, r2]
= regionr =region.factory.region(rl, r2);
/[l 2-di mregion

© 2006 IBM Corporation

Programming Technologies

[l
[
i

T
]

IBM Research: Software Technology

X10 arrays

= Java arrays are one-dimensional and local
— e.g., array args in main(String[] args)
— Multi-dimensional arrays are represented as “arrays of arrays” in
Java

= X10 has true multi-dimensional arrays (as Fortran) that can be
distributed (as in UPC, Co-Array Fortran, ZPL, Chapel, etc.)

Array declaration

— T[.] A declares an X10 array with element type T

— An array variable can refer to arrays with different rank
Array allocation

— new T [R | creates a local rectangular X10 array with
rectangular region R as the index domain and T as the element
(range) type

— e.g., int[.] A = new int[[O:N+1, O:N+1] |;

Array initialization
— elaborate on a slide that follows...

© 2006 IBM Corporation

IBM Research: Software Technology

Array declaration syntax: [] vs [.]

General arrays: <Type>[.]
— one or multidimensional arrays
— can be distributed
— arbitrary region

Special case (“rail”): <Type>[]
— 1 dimensional
— 0-based, rectangular array
— not distributed
— can be used in place of general arrays
— supports compile-time optimization

Array of arrays (“jagged array”): <Type>[.][.]

Programming Technologies

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Simple array operations

=1

i

i i"

= A.rank ::=# dimensions in array
A.region ::=index region (domain) of array
A.distribution ::= distribution of array A
A[P] ::= element at point P, where P belongs to A.region
A | R ::=restriction of array onto region R

— Useful for extracting subarrays

© 2006 IBM Corporation

Programming Technologies

[
Il

i
|plji
1

IBM Research: Software Technology

Aggregate array operations

A.sum(), A.max() ::= sum/max of elements in array
Al <op> A2

— returns result of applying a pointwise op on array

elements, when Al.region = A2. region

— <op> caninclude +, -, *, and/
Al || A2 ::=disjoint union of arrays Al and A2
(Al.region and A2.region must be disjoint)
Al.overlay(A2)

— returns an array with region, Al.region || A2.region, with
element value A2[P] for all points P in A2.region and A1[P]
otherwise.

Future work: framework for array operators

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Example: arrays (TutArrayl)

il
ull]|

=% =

i
[

public class TutArrayl {
public static void main(String[] args) {
int[.] A=newint[[1:10,1:10]]

(point [i,j]) {
Systemout.println("Arank ="

, A.region ="
int[.] B=A] [1:5,1:5];
System out . pri "B.max() ="
}
} array copy

return i+j;}
+ A .rank +
+ A.region);

+ B.max());

Console output:

A.rank = 2 ;
B. max() = 10

A.region = {1:10,1: 10}

© 2006 IBM Corporation

Programming Technologies

il
ill
i

[l
l
|

IBM Research: Software Technology

|

i
1w

Initialization of mutable arrays

Mutable array with nullable references to mutable’ objects:

Ref Type nullable [] farr = new Ref Type[N]; // init with null value

Mutable array with references to mutable objects:

Ref Type [] farr = new RefType [N|; // conpile-tinme error, init required

dist d = dist.factory. bl ock(N);
Ref Type [.] farr = new Ref Type [d] (point[i]) { return RefType(here, i1); }

Execution of initializer is implicitly parallel / distributed
(pointwise operation):

That hold ‘reference to value objects’ (value object can be inlined)

int [] iarr = newint[N ; // init with default value, 0
int [] tarr =newint[] {1, 2, 3, 4}; [/ Java style
int [] tarr = new int[N (point[i])

{returni}; // explicit init

© 2006 IBM Corporation

Programming Technologies

il
ull]|

=% =

IBM Research: Software Technology

i
[

Initialization of value arrays

Initialization of value arrays requires an initializer.

Value array of reference to mutable objects:

Ref Type value [] farr = new val ue RefType [N;
/[l conpile-tinme error, init required

Ref Type value [] farr = new value RefType [N] (point[i])
{ return new Foo();

Value array of ‘reference to value objects’ (value object can be inlined)

'nt value [] tarr = new value int[] {1, 2, 3, 4},
/1l Java style I nit

'nt value [] tarr = new value int[N (point[i])
{ returni };
[l explicit init

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Tutorial outline

il
ull]|

=% =

i
[

1) X10 in a nutshell

2) Sequential X10
— Type system
— Standard library

3) Concurrency in X10
— Activities
— Atomic blocks
— Clocks, clocked variables

4) X10 arrays
— Points
— Regions

5) Distributed X10
— Places
— Distributions
— Distributed arrays

6) Further examples

© 2006 IBM Corporation

IBM Research: Software Technology ==

Distributed X10

= Places

= Locality rule
= Distributions _ Sa =
= async, futures E =

= ateach = |
= Distributed arrays

Programming Technologies

© 2005 IBM Corporation

Programming Technologies

=% — %

IBM Research: Software Technology

Places in X10

= place. MAX PLACES = total number of places (runtime constant)
= place.places = value array of all places in an X10

= place.factory.place(l) = place corresponding to index i

= here = place in which current activity is executing

= <place-expr=.toString() returns a string of the form “place(id=99)”
= <place-expr=>.id returns the id of the place

—| X10 Data Structures

X10 language defines mapping from X10
objects to X10 places, and abstract < l
performance metrics on places

\ ¥

X10 Places
Future X10 deployment system will define l

mapping from X10 places to system nodes; =<
not supported in current implementation

— System Nodes

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Locality rule

Any access to a mutable (shared heap) datum must be
performed by an activity located at the place as the
datum.

—> direct access via a remote heap reference is not
permitted.

—Inter-place data accesses can only be performed by
creating remote activities (with weaker ordering
guarantees than intra-place data accesses)

—>BadPlaceException is thrown if the locality rule is
violated.

© 2006 IBM Corporation

Programming Technologies

||:+|:H
HH"

[l
1

IBM Research: Software Technology

async and future with explicit place specifier

async (P) S
= Creates new activity to execute statement S at place P
= async Sis equivalentto async (here) S

future (P) { E }
= Create new activity to evaluate expression E at place P
= future{ E} isequivalentto future (here){ E}

Note that here in a child activity for an async/future computation will refer to
the place P at which the child activity is executing, not the place where
the parent activity is executing

Specify the destination place for async/future activities so as to obey the
Locality rule e.g.,

async (O location) Ox = 1;
future<int> F = future (A distribution[fi]) { Ai] }

© 2006 IBM Corporation

il
il
i

[l
T

IBM Research: Software Technology

1]
]
]|

Implicit syntax

= Use conventional syntax for = Invoke a method
operations on values of synchronously on values of
remote type: remote type

x.f =e //wite x.f of type T = & mel, ..en);

=» final Tv = e; -?inal .
finish async(x.loc) { tinal TL vl = ei'
X. f=v; ,
} final Tn vn = en;
= .= .x.f .[/read x.f of type T flcli?visyn$n§y.loc) {
9 } 1 T 1

future<T>(x.loc){x.f}.force()

Similarly for array reads and
writes.

= Similarly for methods
returning values.

Programming Technologies

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

1L
i i"

=% =

i
[

Inter-place communication using async and future

Question: how to assign A[i] = B[j], when A[i] and BJ[j]
may be in different places?

Answer #1:. Use nested async:

finish async (B.distribution[j]) {
final int bb = B[j];
async (A.distribution[i]) Ali] = bb;
}

Answer #2: Use future-force and an async:

final int b = future (B.distribution[j])

{ B[j] }.force();
finish async (Adistribution[i]) Ali]

© 2006 IBM Corporation

Programming Technologies

[
Il

In

IBM Research: Software Technology

ateach (distributed parallel iteration)

il

]

ateach (FormalParam: Expr) Stmt

ateach (point p:D) S
= Creates |D| async statements in parallel at place specified by
distribution.
ateach (point p:D) S for (point p:D.region)
async (Dip]) { S}

= Termination of all (recursively created) activities with finish.
= ateach Is a convenient construct for writing parallel matrix code
that is independent of the underlying distribution, e.g.,

ateach (point p : A distribution)
Alp] = f(B[p], dp], Dp])

= SPMD computation:

finish ateach(point[i] : dist.factory.unique()) S

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

=% =

||I1

i

Example: ateach (TutAteachl)

public class TutAteachl {

public static void main(String args[]) {
finish ateach (point p: dist.factory.unique()) {

Systemout.println("Hello from"

}
} /] main()

Console output:

Hello from 1
Hello fromO
Hello from 3
Hello from 4

here.id);

unique distribution: maps pointiin
region [0 : place. MAX_ PLACES-1]
to place place.factory.place(i).

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Distributions in X10

A distribution maps every point in a region to a place.

Creating distributions (x10.lang.dist):

— dist D1 = dist.factory.constant(R, here); // local distribution
— maps region R to here

— dist D2 = dist.factory.block(R); // blocked distribution

— dist D3 = dist.factory.cyclic(R); // cyclic distribution

— dist D4 = dist.factory.unique(); // identity map on
[0:MAX_PLACES-1]

© 2006 IBM Corporation

Programming Technologies

=% — %

IBM Research: Software Technology

Using distributions

D[P] = place to which point P is mapped by distribution D
= if point p isin D.region
= otherwise ArrayOutOfBoundException

Allocate a distributed array e.g., T[.JA=new T[D |;

= Allocates an array with index set = D.region, such that element
A[P] is located at place DI[P] for each point P in D.region

= NOTE: “new T[R]” for region R is equivalent to “new T[R->here]’

Iterating over a distribution — generalization of foreach to ateach

© 2006 IBM Corporation

Programming Technologies

= = ====
= —

3

IBM Research: Software Technology

Operations on distributions

D.region ::= source region of distribution
D.rank ::=rank of D.region

D | R ;= region restriction for distribution D and region R (returns
a restricted distribution)

D | P ::= place restriction for distribution D and place P (returns
region mapped by D to place P)

D1 || D2 ::= union of distributions D1 and D2 (assumes that
D1.region and D2.region are disjoint)

D1l.overlay(D2) ::= asymmetric union of D2 over D1
D.contains(p) ::= true iff D.region contains point p
D1 — D2 ::= distribution difference: D1 | (D1.region — D2.region)

© 2006 IBM Corporation

IBM Research: Software Technology

Syntax extensions for distributions

Constant distributions
regionr = [0:N;
dist d = r->here
- dist d = dist.factory.constant(r, here);
dist d = 1000->here

- dist d = dist.factory.constant ([0, 1000],
here),;

Distributions are implicitly converted to regions

for (point [i,j]: d) {...}
- for (point [1,]]: d.region) {...}

Programming Technologies

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Multidimensional arrays

doubl e[.] darr = new double[|O: N, O: M -=>here];
for (point [1,]]: darr.region)

darr[i,]J] = ..; y
= initial values in darr are 0.0 &=
= |teration schema N —°
— ‘lexicographical order’ (standard, fix) © o0 O

- [0,0], [0,1], [0, 2],
= Storage layout
— row major (fix)
— spatial access locality with standard iteration schema

© 2006 IBM Corporation

il
il i"

=% =

IBM Research: Software Technology

i
[

Distributed multidimensional arrays

dist cyclic = dist.factory.cyclic([0:4, 0:6])
di st blockcyclic = dist.factory.blockCyclic([0:4, 0:6], 6)
doubl e[.] darr = new doubl e[XXX] ;

// \Summg 4 places

ks cyclic block cyclic tiled A
(@)}

ke] ©® @0 ©0 00 ©oc ee

2 ©® @0 o0 @0 ®©o oo

= ©® @0 o0 00 ©6 ee

- ©@ @0 eo 0o ®® OO

- ©@ @0 @@ OO0 ®e® OO

‘g @@ @0 00 0O ®©e® OO

% for 1D arrays: cf. UPC Future work:

o hierarchically tiled
o .

£ N regions y

© 2006 IBM Corporation

il
ull]|

=% =

IBM Research: Software Technology

i
[

Example: RandomAccess (1/2)

dist D = dist.factory. bl ock(TABLE_SI ZE) ;
(1) final long[.] table = new long[D] (point [i]) { return i: }
(2) final |l ong[.] RanStarts = new |ong[dist.factory. unique()]
(point [i]) { return starts(i);};
(3) final long value [.] SmallTable = new [ong val ue[TABLE_SI ZE]
(point [i]) { return i*S TABLE INIT; };

(4) finish ateach (point [i] : RanStarts) {

| ong ran = next Random{RanStarts[i]);

for (int count: 1:N UPDATES PER PLACE) {
int J = f(ran);
| ong K = Smal | Tabl e[g(ran)];
async (table.distribution[J]) atomc table[J] "= K;
ran = next Randon{ran);

}

}
assert(tabl e.sunm() == EXPECTED RESULT);

Programming Technologies

© 2006 IBM Corporation

Programming Technologies

[l
[
"H"

IBM Research: Software Technology

||I1

i

Example: RandomAccess (2/2)

(1) Allocate and initialize table as a block-distributed array.

(2) Allocate and initialize RanSt ar t s with one random number seed
for each place.

(3) Allocate a small immmutable table that can be copied to all places.

(4) Everywhere in parallel, repeatedly generate random table indices
and atomically read/modify/write table element.

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

=% — %

JGF Monte Carlo benchmark -- Sequential

doubl e[] expectedReturnRate =

new doubl e[nRunsM] ;

final TolnitAll Tasks t =

for

(Tolnit All Tasks) initAl Il Tasks;

(point [i]: expectedReturnRate) {
PriceStock ps = new PriceStock();
ps.setlnitAll Tasks(t);
ps. set Task(tasks[i]);
ps.run();
ToResult r =

(ToResult) ps.getResult();
expect edReturnRate[i] =

r.get expectedReturnRate();
volatility[i] =

r.get _volatility();

A task array (of size
NRunsM) is initialized
with ToTask instances at
each index.

Task:

= Simulate stock
trajectory,

= Compute expected rate
of return and volatility,

" Report average
expected rate of return
and volatility.

© 2006 IBM Corporation

||:+|:H
HH"

i

=1

IBM Research: Software Technology

JGF Monte Carlo benchmark -- Parallel

doubl e[] expectedReturnRate =
new doubl e[nRunsM] ;

final TolnitAlTasks t =
(Tol nit Al l Tasks) initAl Il Tasks;
finish|foreach
(point [r]:expectedReturnRate) {
PriceStock ps = new PriceStock();
ps.setlnitAll Tasks(t);
ps. set Task(tasks[i]);
ps.run();
ToResult r =
(ToResult) ps.getResult();
expect edReturnRate[i] =
r.get expectedReturnRate();
volatility[i] =
r.get volatility();

Programming Technologies

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

JGF Monte Carlo benchmark -- Distributed

||:+|:H
I
Hi!"

i

=1

dist D= dist.factory.block([O0:(nRunsMC-1)1]);
doubl e[.] expectedReturnRate = new double[D]; ...

final TolnitAlTasks t =
(TolnitAll Tasks) initAl Il Tasks;
finish|ateach
(pornt [r]:expectedReturnRate) {
PriceStock ps = new PriceStock();
ps.setlnitAll Tasks(t);
ps. set Task(tasks[i]);
ps.run();
ToResult r =
(ToResult) ps.getResult();
expect edReturnRate[i] =
r.get expectedReturnRate();
volatility[i] =
r.get volatility();

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Tutorial outline

il
ull]|

=% =

i
[

1) X10 in a nutshell

2) Sequential X10
— Type system
— Standard library

3) Concurrency in X10
— Activities
— Atomic blocks
— Clocks, clocked variables

4) X10 arrays
— Points
— Regions

5) Distributed X10
— Places
— Distributions
— Distributed arrays

6) Further examples

© 2006 IBM Corporation

IBM Research: Software Technology ==

Cellular Automata Simulation: Game of Life

.1_ 4 : = -.= IIFFJ: | -
-
rrgy in

“Barriers”, Chapter 5.5.4, Java Concu
Practice, Brian Goetz et al

§ ——— T
o
i e
—r
—

Acknowledgment:

Programming Technologies

© 2005 IBM Corporation

Programming Technologies

[l
[KH]
10y F Il

[

IBM Research: Software Technology

|

||I1

Game of Life — Java version (1 of 2)

java.util.concurrent version (Listing 5.15, p102, JCiP)

public class Cellul arAutomata {

private final Board mai nBoard;
private final CyclicBarrier barrier;
private final Wrker[] workers;

publ ic Cel |l ul ar Aut omat a(Board board) {

t hi s. mai nBoard = board;

I nt count = Runtine.getRuntine().avail abl eProcessors();

this.barrier = new CyclicBarrier(count,

new Runnabl e() { // barrier action
public void run(){mi nBoard. conm t Newal ues();}});
this.workers = new Worker[count];
for (int i =0; i < count; i++)
wor kers[i] = new Wbr ker (mai nBoar d. get SubBoard(count, i));

} /1 constructor

public void start() {
for (int i =0; i < workers.length; i++) new Thread(workers[i]).start();
mai nBoar d. wai t For Conver gence() ;

} /] start()

} /1 Cellul ar Aut omat a

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Game of Life — Java version (2 of 2)

il
il
i

1]
]
]|

[l
||II

i

private class Wrker inplenents Runnabl e {

private final Board board;
public Worker(Board board) { this.board = board; }

public void run() {
whil e (!board. hasConverged()) {
for (int x = 0; x < board. get MaxX(); x++)
for (int y = 0; y < board. get MaxY(); y++)
boar d. set Newval ue(x, y, conputeVal ue(x, vy));
try { barrier.await(); }
catch (InterruptedException ex) { return; }
catch (BrokenBarrierException ex) { return; }
} /1 while
} /1 run()

private int conputeValue(int x, int y) {
[/ Conpute the new val ue that goes in (X,Yy)

}
[\Wbrker

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Game of Life — X10 version

[l
!L:u:!!
i l
i

||I1

public class Cellul arAutomata ({

private final Cell[.] mainBoardl, mai nBoard2;

public CellularAutomata(Cel l[.] board) {
mai nBoardl = board; nai nBoard2 = null;
} /1 constructor

public void start() {
finish async {
final clock barrier = clock.factory.
ateach (point[i] : dist.unique())
bool ean red = true;

cl ock();

cl ocked(barrier) {

whil e (!subBoar dHasConver ged(nai nBoar d1, nai nBoard2,red)) {

for (point[x,y] : mainBoardl |

here)

If (red) mainBoard2[x,y] = conputeVal ue(mai nBoardl, X, Yy);
el se mai nBoardl[x,y] = conputeVal ue(mai nBoard2, x, y);

next ;
red = ! red;
} /] while
} /1l foreach
if (! red) mainBoardl = mai nBoard2;
} /1 finish async
/1 Al boards have now conver ged
} /] start()
} /1 Cellul ar Aut omat a

/] answer

i's now in nmai nBoardl

© 2006 IBM Corporation

Programming Technologies

[l
L

b

IBM Research: Software Technology

i

Game of Life — X10 version

public class Cellul arAutomata ({
private final Cell[.] mainBoardl, mai nBoard2;
public CellularAutomata(Cel l[.] board) {
mai nBoardl = board; nai nBoard2 = null;
} /1 constructor

Example of transmitting
clock from parent to child

public void start() {
finish async {
final clock barrier = clock.factory.clock()/
ateach (point[i] : dist.unique()) clocked(barrier) {
bool ean red = true;
whil e (!subBoar dHasConver ged(nai nBoar d1, nai nBoard2,red)) {
for (point[x,y] : mainBoardl | here)
if (red) mainBoard2[x,y] = conputeVal ue(mai nBoardl, X, V);

el se mai nBoardl[x,y] = conputl NOTE: exiting from while loop terminates

ne>d<t " red: activity for iteration i, and automatically
} ;/e wt;i I ere ’ deregisters activity from clock
} /1l foreach
If (! red) mainBoardl = mainBoard2; // answer is now in mai nBoardl
} /1 finish async
/1 Al boards have now conver ged
} /] start()
} /1 Cellul ar Aut omat a

© 2006 IBM Corporation

IBM Research: Software Technology ==

Memoization

B e® e

ity
-

rency in

Acknowledgment:

“*Memoization”, Chapter 5.6, Java Con
Practice, Brian Goetz et al

Programming Technologies

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Memoization In Java

[l
il
il
[

A
i
]

||I1

public class Menoi zer<A V> i npl enents Conput abl e<A, V> {
private final Concurrent Map<A, Fut ure<V>> cache
= new Concurrent HashMap<A, Future<V>>();
private final Conputabl e<A V> c;
public Menorizer (Conputable<A V> c) { this.c = c;}
public V conmpute(final A arg) throws InterruptedException {
while (true) {
Future<V> f = cache.get(arg);
if (f==null) {
Cal | abl e<VvV> eval = new Cal |l abl e<V>() {
public V call () throws InterruptedException {
return c.conpute(arg);
}
3

Fut ureTask<V> ft = new Fut ureTask<V>(eval);
f = cache. putlfAbsent(arg, ft);
if (f ==null) { f =1t; ft.run();}
}
try {
return f.get();
} catch (Cancell ati onException e) {
cache. renove(arg, f);
} catch (ExecutionException e) {
t hrow | aunder Thr owabl e(e. get Cause()) ;

1333

© 2006 IBM Corporation

Programming Technologies

=1

IBM Research: Software Technology

i

Memoization

i i"

public class Menoizer inplenents Conputable {
private final ConcurrentMap cache =
new Concurrent HashMap () ;
private final Conputable c;

publ i c Menoi zer (Conputable ¢c) { this.c = c;}
public Cbject conpute (final Object arg) throws Exception

nul | abl e<Future> f = (Future) cache.get(arg);
1t (f == null) {

Future g = new Latch(c, arg);

f = cache.putlfAbsent(arg, 9);

I f (f==null) { f=qg; f.run();}
}

return f.force();

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Memoization (with proposed generics)

A8

In

i

s

public class Menoi zer<V, A> | npl enent s Conput abl e<V, A> {
private final Concurrent Map<future<V> A> cache =
new Concurrent HashMap<f ut ur e<V>, A>();
private final Conputable<V, A> c;

publ i c Menoi zer (Conput abl e<V, A> ¢) { this.c = c;}

public V conpute (final A arg) throws Exception {
nul | abl e<future<V>> f = cache. get(arg);
i f (f == null) {
future<vV> g = new Latch(c, arg);
f = cache. putlfAbsent(arg, g);
I f (f==null) { f=g; f.run();}
}
return f.force();
}
}

© 2006 IBM Corporation

IBM Research: Software Technology ==

Event Handling and Concurrency:
GUI Applications as an Exemplar

Acknowledgment:
“GUI Applications”, Chapter 9, Java Cogrré‘ncy In

Practice, Brian Goetz et al

Programming Technologies

© 2005 IBM Corporation

7
Q2
>
o
@)
e
=
O
(D)
l_.
o
=
=
=
©
—
(o)
O
—
o

[l
|

b

IBM Research: Software Technology

|

||I1

Scenario: Thread Hopping in a GUI Application (Java)

java.util.concurrent version (Listing 9.5, p196, JCiP)

private void | ongRunni ngTaskW t hFeedback() {
but t on. addAct i onLi st ener (new Acti onLi stener () {

public void actionPerfornmed(Acti onEvent e) {
but t on. set Enabl ed(fal se); | abel.setText("busy"); // 1) D m button
exec.execute(// 2) Submt |long-running task for execution
new Runnabl e() {

public void run() {

try {
/* Do big conmputation */
} finally {

/1 3) Submt task to run in GQJ even thread executor
Qui Execut or. i nstance(). execut e(new Runnabl e() {
public void run() {
butt on. set Enabl ed(true); | abel.setText("idle");

}
1),
}
} 1/ run()
1),

Y /1 run()
1),

[l
L

b

IBM Research: Software Technology

Scenario: Thread Hopping in a GUI Application (X10)

private void | ongRunni ngTaskW t hFeedback() {
butt on. set Enabl ed(fal se); |abel.setText("busy"); // 1) Dim button
async (ExecPlace) {// 2) Create |long-running task at ExecPl ace
/* Do big conputation */
/1 3) When done, create task at Qui Executor Pl ace
async (CGui ExecutorPl ace) {
but t on. set Enabl ed(true);
| abel . set Text ("idle");

%) }

[

= }

e

S

= | Swing utility X10 idiom

E’ SwingUtilities.isEventDispatchThread() here == GuiExecutorPlace
=

% SwinguUtilities.invokeLater() async (GuiExecutorPlace)
? SwinguUtilities.invokeAndWait() finish async (GuiExecutorPlace)
o

© 2006 IBM Corporation

Programming Technologies

I

[l
L

b

IBM Research: Software Technology

Single-threaded vs. Multi-threaded GUI frameworks

1)

2)

Java approach -- Single-threaded GUI framework
GUI objects are kept consistent by thread confinement
Pro: Programmer does not have to worry about deadlock in GUI thread
Cons:

« Cannot exploit parallelism to speed up GUI framework

* Reasoning about data accesses across task boundaries can still be tricky due
to nondeterminism of task scheduling

X10 approach — Single-place Multi-threaded GUI framework a

All GUI tasks are scheduled at GuiExecutorPlace -- GUI objects are accessed
only by activities in GuiExecutorPlace

Pro: Can easily exploit parallelism within GuiExecutorPlace

Con: atomic blocks necessary to ensure mutual exclusion among tasks (but
making atomicity explicit should also make the code more maintainable?)

See next slide on how to address overhead of atomic blocks in a Single-place
Multi-threaded GUI framework

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

[l
l
I

;

Performance Implications (Discussion)

= Use of atomic blocks can introduce additional overhead in X10 implementation,
compared to single-threaded Java version

For multi-core architectures, this additional overhead should be more than
compensated for by performance improvements due to concurrency ...

. but if there is a real need for improving the performance of GuiExecutorPlace for

execution on a single thread ...

Restrict GuiExecutorPlace to be a local nonblocking place
only local nonblocking activities are permitted to run at such a place

nonblocking = no static occurrence of when, force(), next() permitted (but finish
IS permitted)

local = all data accessed is statically guaranteed to be place-local

X10 runtime can use a single active worker thread for GuiExecutorPlace and
guarantee absence of interleaving among tasks at GuiExecutorPlace

=» atomic-enter and atomic-exit can then be replaced by no-ops

© 2006 IBM Corporation

IBM Research: Software Technology ==

Distributed Containers

= DistributedHashMap

Adaptation of ConcurrentHashMap

by Doug Lea for X10.

Programming Technologies

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

DistributedHashMap

=1

i

ull]|

= Keys
— Immutable objects (instances of value classes)

— hashing of entries according to keys across places
= Values

— references to mutable objects

Design goals
— Distribution of Key-Value pairs
— Thread-safety
— QOperations are linearizable
— Internal concurrency for optimization

© 2006 IBM Corporation

IBM Research: Software Technology

DistributedHashMap - design

Di stri but edHashMap Segnent Entry

Programming Technologies
O
N

© 2006 IBM Corporation

Programming Technologies

[l
[KH]
II'NFII

[

IBM Research: Software Technology

]|

||I1

DistributedHashMap - data structures

class DistributedHashMap {
Segnent[] segnents; <« references to segments in different places

) . (unique distributign)
Segnent segnent For (final int hash) ..

i nt hash(final Gbject x) { ... }

cl ass Segnent { L index in Segments|]
final int index; for consistency among concurrent
I nt count; < readers and writers
I nt nodCount; <« to detect ABA violation

Entry[] table;

i i tual lusi it
public final Semaphore sen mutual exclusion among writers /

fallback for global operations

A

class Entry {
final val ue key;
final int hash;
(bj ect val ue;
final null abl e<Entry> next;

A

key is an instance of a value type

© 2006 IBM Corporation

[
Il

i
|plji
1

IBM Research: Software Technology

DistributedHashMap - operations

Selected operations

bool ean cont ai nsVal ue(final val ue key)
— must not suffer from aba problem

— optimization: internal concurrency across places
— reader concurrency

nul | abl e<Obj ect> put (final val ue key,
final Object val ue)
— concurrent across places, sequential in each place

nul | abl e<Obj ect> get (final val ue key)
— concurrent intra and inter-place read access

others that we do not discuss here

Programming Technologies

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

DistributedHashMap — aba problem

[l
Il
"H|
{1

Linearizability requires that ABA problem cannot occur:
[l initially {kl, v} is in the table

/] thread 1 /] thread2

tabl e. put (k2, v); r = tabl e.containsVal ue(v);

t abl e. renove(kl, v);

= ABA problem: thread 2 must not observe r == false;

(could happen if k1, k2 target different segments and operations in

both thread occur concurrently)

= Problem can occur whenever Hashtable Is traversed
(operations ISEmpty, size, containsValue)

— Prevention of ABA complicates implementation significantly

— Modification counters

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

DistributedHashMap — get

class DistributedHashivap ..

nul | abl e<Cbj ect> get (final Object key) {

final int hash = hash(key); // throws Nul | Poi nter Exception if key nul

final Segnment segmentfor = segment For (hash);
return segnentfor.get(key, hash);

}
cl ass Segnent

nul | abl e<Cbj ect> get(final Cbject key, final int hash) {
atomic if (count==0) return

i nt hashl ndex = indexFor (hash, index);
nul | abl e<Entry> first = tabl e[hashl ndex];
nul | abl e<Entry> e = first;
for (e =first; e !=null; e =e.next)
if (e.hash == hash && e. key == key) {
hj ect val ue = e.val ue;
if (value !=null) return val ue;
br eak;

}
/1 Recheck under synch if key apparently not there or
Segrment seg = segnents|[hash & SEGQVENT MASK] ;

sem p();
try{
Entry newrirst = table[index];
if (e!=null || first = newrirst) {
for (e = newrirst; e !=null; e = e.next) {

if (e.hash == hash && eq(key, e.key))
return e.val ue;

}

return null;
} finally { semv();}

atomic, to reliably communicate
with put.

interference

© 2006 IBM Corporation

Programming Technologies

il
il
i

[l
|r:|I

(1}
il

IBM Research: Software Technology

DistributedHashMap — put

class DistributedHashivap ..

nul | abl e<Obj ect > put (final Object key, final Object value) {
i nt hash = hash(key);
Segnment segmentfor = segnent For (hash);
return segnentfor. put(key, hash, value);

}

cl ass Segnent
nul | abl e<Obj ect > put (final Object key, final int hash, final Object value) {

nul | abl e<Cbj ect> ol dval = null; . .
sem p(); acquire lock — exclusive put per segment,
try { sync with concurrent put.

nul | abl e<Entry> first = tabl e[indexFor (hash,index)];
nul | abl e<Entry> e = first;
while (e !'= null) {

if (e.hash == hash && key == e. key)

br eak; comparison of values with operator ==
e = e.next;

}
if (e!=null) {
ol dval = e.val ue;
atomc { e.value = value; }
} else { atomic write means release (sync with concurrent get)

nodCount ++;
tabl e[i ndex] = new Entry(key, hash, value, first);
atomc { count ++; }

} %inally { semv(): } — ——— atomic read + write means acquire-release sync with
return ol dval : concurrent get

} release lock, sync with concurrent put.

© 2006 IBM Corporation

Programming Technologies

[l

IBM Research: Software Technology

DistributedHashMap — containsValue (1/2)

1
il
]l

i

]|
Il L1

cl ass Segment
bool ean contai nsVal ue(final Object value) {

final int[.] nc = new int[segnments.distribution]; temporary distributed arrays

final boolean[.] vals = new bool ean[segnents. distribution];

/1 try wthout | ocking
finish ateach (point p:segnents) {
atom c {
nc[p] = segnents[p].modCount;
val s[p] = segnents[p]. contai nsVal ue(val ue);

}

if (vals.or())
return true;

finish ateach (point p:segnents) {
nc[p] -= segnents[p].nmodCount;

}

[

reduction

f (mc.sun() == 0) non-blocking

reduction
return fal se;

/'l resort to locking all segnents
for (point p:segments)
finish async (segnents.distribution[p]) { segnents[p].semp(); }

acquire all locks in order blocking

finish ateach (point p:segnents) {)
val s[p] = segments[p].containsVal ue(val ue); search in parallel across segments

segnent s[p] . sem v(); release locks in any order

return vals.or(); reduction

© 2006 IBM Corporation

Programming Technologies

[l

IBM Research: Software Technology

DistributedHashMap — containsValue (1/2)

1
il
]l

i

]|
Il L1

cl ass Di stributedHashivap ...
bool ean contai nsVal ue(final Object value) {

final int[.] nc = new int[segnments.distribution]; temporary distributed arrays

final boolean[.] vals = new bool ean[segnents. distribution];

/1 try wthout | ocking
finish ateach (point p:segnents) {
atom c {
nc[p] = segnents[p].modCount;
val s[p] = segnents[p]. contai nsVal ue(val ue);

}

if (vals.or())
return true;

finish ateach (point p:segnents) {
nc[p] -= segnents[p].nmodCount;

}

[

reduction

f (mc.sun() == 0) non-blocking

reduction
return fal se;

/'l resort to locking all segnents
for (point p:segments)
finish async (segnents.distribution[p]) { segnents[p].semp(); }

acquire all locks in order blocking

finish ateach (point p:segnents) {)
val s[p] = segments[p].containsVal ue(val ue); search in parallel across segments

segnent s[p] . sem v(); release locks in any order

return vals.or(); reduction

© 2006 IBM Corporation

IBM Research: Software Technology

DistributedHashMap — containsValue (2/2)

cl ass Segnment ...

bool ean contai nsVal ue(final Object value) { _ _
atomc if (count == 0) return; atomic read means acquire sync
for (point [p]: table) { with concurrent put.
nul | abl e<Entry> e = tabl e[p];
while (e !'=null) {
i f (e.val ue.equal s(val ue))
return true;
e = e.next;
}
}

return fal se;

Programming Technologies

© 2006 IBM Corporation

IBM Research: Software Technology

Examples of Array Kernels

= Jacobi
= Edminston
= NAS CG

Programming Technologies

© 2005 IBM Corporation

Programming Technologies

[l
il
il

IBM Research: Software Technology

Jacobi 1d

i

cl ass Jacobi { Single threaded main loop,
public static final int N=100; performing aggregate operations.
public static final double epsilon=0.002;

initializer

public static void main(String args[]) { Subsequent code
region R = [0..N+1]; does not assume
distribution D = distribution.blocked(R); Built-indistribution D is blocked.
region Rinner =[1..N;
distribution Dinner = D | R Inner; Restriction to a region
di stribution D boundary = D-D i nner; Distribution difference

int iters = 0;
doubl e[D] a = (D _boundary 0.0) || new doubl e[D_i nner] Lifting of <op> on base
_ { return Math. Randon(); }; type to array type
while (true) {
final double[D_inner] tenp = new doubl e[D_inner] (i)
f ut ur e<doubl e>l ow = future (a[i-1])
future<doubl e>l ow = future { ali +1] }
return(lowforce() .force())/2.0;};

Array

g
I rror reduce (Math. abs((a D i nner)-
Reduction doubl e erro ((((l - \
operation . . Restriction of array to

tenp)).operator '+ ()))]
(error < epsilon)

br eak: a subdistribution

_ Updating one array
a = a. overlay(tenp); with another.
| ters++;

}

Systemout. println("Nunber of iterations="+iters);

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

T

Edmiston

[l
[
i

=

wavefront
Algorithm for gene sequence comparison computation

> string c2

0 J'/ N

0
//
//\{, |
i ;/ _ [V
M
v
string cl result array e

efi, j] = min (e[i-1,j]] + iGapPen,
ell,j-1] + iGapPen,
e[i-1,j-1] + (c1[i] == c2[j] ? iMatch : iIMisMatch));

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

T

Edmiston - Parallelization

[l
]l
i

s

column-blocked
place-0 place-1 place-2 distribution

Y st asacaeac:

Computation in every place:
step (1): compute “warmup” in a place-local result array

step (2): compute results based on initial condition for steplin
result array

© 2006 IBM Corporation

Programming Technologies

[l
|

b

IBM Research: Software Technology

|

||I1

Edmiston

final RandCharStr cl, c2;

final int N=cl.s.length-1, int M= c2.s.|ength-1;
final dist D = columBl ocked([0:N,[0:M);

final int[.] e = newint[D;

/1 SPND conputation at each pl ace
finish ateach (point [p]:dist.factory.unique(D.places())) {
/1l get sub-distribution for this place
final dist nyD = D| here;
final int nyLow = nyD.region.rank(1).1ow);
final int nyH gh = nyD.region.rank(1). high();
final int overlapStart = Mth. max(0, nyLow overl ap);
final dist warmupD = [0: N, overlapStart: myLow] ->here;
/'l create a | ocal warnup array
final int [.] W= new int[warnupD];
/'l conmpute colums overlapStart+1 .. nyLow using colum overl apStart
computeMatri x(W cl, c2, overlapStart+1l, nyLow); (1)
/1 copy colum, e[0:N, nmyLow] = WO: N, nyLow ;
finish foreach (point [i] : [O:N) e[i,nyLow] = Wi, nyLow ;
computehMatrix(e, cl, c2, nyLowt+l, nyHi gh); (2)
}

voi d conmputeMatrix(int[.] a, final RandCharStr cl,
final RandCharStr c2, int firstCol, int lastCol) {
for (point[i,j] : [1:NfirstCol:lastCol])
a[i,j] = mn4(0, a[i-1,j]+i GapPen, ali,]-1]+i GapPen,
a[i-1,j-1] + (cl.s[i]==c2.s[j] ? iMatch : i MsMatch));

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

NPB — CG in X10

il
il
i

[l

|
|

i

Sparse matrix-vector multiplication: g = Ap

A

value array,
copy in every place

= sgquare matrix: na x na
" non-zero elements: nz

place-0

place-1

= sparse representation in column compressed format

= A [nZ]
= A_colidx [nZ]
= A_rowstr [na]

block
distribution

© 2006 IBM Corporation

IBM Research: Software Technology

NPB — CG in X10

il
il
i

[l
|r:|I

(1}
il

Programming Technologies

di st THREADS = dist.factory. bl ock([O: np-1]);
dist D = dist.factory. bl ock([1:na]);

double[.] p = new doubl e[D];
double[.] g = new doubl e[D];
double[.] r = new doubl e[D];
double[.] x = new double[D] (point [p]) { return 1.0; };
double[.] z = new double[D]; %
2,
final double value [.] Awval = new value double[nz+1] {...}; \9@
final int value [.] A_colidx_val = new value int [nz+1] {...};)
final int value [.] Arowstr_val = new value int [na+2] {...}; 9}})
for (point iter: [Ll:niter]) { *
finish ateach (point[p]: THREADS)
{ zero q, z, r and p, update rhomaster with square sum of x }
doubl e rho = rhomaster. sun();
for (point it: [0:cgitmax]){
Il 9 = Ap submatrix vector nultiply
finish ateach (point [it]: THREADS) {
mvmult (g, p);
dmaster[here.id]=(p[Dl here]). mul (q[D| here]).sum);
}
final double rhoO = rho;
final double al pha = rho / dmaster.sun();
finish ateach (point [it]: THREADS)
{ z += alpha *p r -= al pha*q; update rhonmaster with square sum of x }

rho = rhomaster. sun();
final double beta = rho/rho0;
finish ateach (point [it]: THREADS) { p = r+beta*p }

continues on next slide =

© 2006 IBM Corporation

Programming Technologies

IBM Research: Software Technology

NPB — CG in X10

il
il
i

]
||]

|
i

< continuation from previous slide

/[l r = Az submatrix vector nmultiply
finish ateach (point [it]: THREADS) ({

mvul t (r, z);

rnormraster[here. i dl =(x[D] here]).sub(r[D| here]).pow2).sunm();

}

/] conmpute residual norm ||r]|]| =||x-Az|]|
rnorm = Math.sqrt(rnormmaster.sun());
tnorml = x. mul (z).sun();

tnorn2 = z.mul (z).sun();

tnorn2 = 1.0 / Math.sqrt(tnornR);

zeta = shift + 1.0 / tnormil;

final double tnorn2ff = tnorng;

finish ateach (point[jj]: D) x[jj]l = tnornm2ff*z[jj];
}

Il 9 = Ap submatrix vector nmultiply
void nviul t (doubl e[.] g, double[.] p) {
region Diocal = (D | here).region;
for (point [j] : Docal) { sparse matrix access
doubl e sum = 0. 0;
for (point [k] : [Arowstr_val[j]:A rowstr_val[]+1]-1]){
int idx = A colidx_val[K];
future<double> tnp = future (p.distribution(p[idx]) {p[idx]};
sum += A val[k] * tnp.force();
}
alj] = sum

© 2006 IBM Corporation

