IBM Research: Software Technology

X10: Concurrent Object-Oriented
Programming for Modern Architectures

Vijay Saraswat, Christoph von Praun
September, 2006
IBM Research

Programming Technologies

© 2005 IBM Corporation

IBM Research: Software Technology

il
ull]|

=% =

i
[

Tutorial outline

1) X10 Project

5) Distributed X10

— places
2) X10 Introduction — distributions and distributed
— cheat sheets arrays
— Hello world
— comparison to Java 6) X10 Array Language

— activities

Programming Technologies

3) Sequential X10

— atomic blocks
— clocks, clocked variables

7) Current Status and Future
Work

4) Concurrency in X10

© 2005 IBM Corporation

IBM Research: Software Technology

X10 Project

0p)
Q
(@)
ks
®)
c
L
O
(D]
|_
(@)
=
=
£
©
S
(@))
@]
S
o

© 2005 IBM Corporation

[l
I
I

!Ei

IBM Research: Software Technology

-l
s

Acknowledgments

= X10 Core Team Recent Publications

— Rajkishore Barik 1. "X10: An Object-Oriented Approach to Non-Uniform
- ,Ca\:nrls E_OTatwa Cluster Computing”, P. Charles, C. Donawa, K.
- an Kieistra Ebcioglu, C. Grothoff, A. Kielstra, C. von Praun, V.

— lgor Peshansky
_ Christoph von Praun Saraswat, V. Sarkar. OOPSLA conference, October

— R.Bodik, G. Gao, R. Jagadeesan, J. ypcoming tutorials
Palsberg, R. Rabbah, J. Vitek

— Several others at IBM OOPSLA 2006

— Vijay Saraswat 2005.
— Vivek Sarkar 2. "Concurrent Clustered Programming"”, V. Saraswat,
— Tong Wen R. Jagadeesan. CONCUR conference, August
= X10 Tools 2005.
4 — Philippe Charles 3. "An Experiment in Measuring the Productivity of
§> - Ju';)an DOIEV Three Parallel Programming Languages”, K.
° : Eroanekrt'l'li:u rer Ebcioglu, V. Sarkar, T. EI-Ghazawi, J. Urbanic. P-
= B MandanapVaziri PHEC workshop, February 2006.
8 = Emeritus 4. "X10: an Experimental Language for High
o — Kemal Ebcioglu Productivity Programming of Scalable Systems", K.
= — Christian Grothoff Ebcioglu, V. Sarkar, V. Saraswat. P-PHEC
é = Research colleagues workshop, February 2005.
=
©
S
(®))]
@
S
o

© 2005 IBM Corporation

[
I

IBM Research: Software Technology

A new era of mainstream parallel processing

The Challenge
Parallelism scaling replaces frequency scaling as foundation for
Increased performance =» Profound impact on future software

Multi-core chips

;

Heterogeneous Parallelism Cluster Parallelism

SPE
PU EPU PU PU PU PU PU PU
e = =
6B/cycl
| EIB (u |
PPE 16B/cycle 16B/cycle (2x
MiC BIC

Programming Technologies

Our response:
Use X10 as a new language for parallel hardware that builds on
existing tools, compilers, runtimes, virtual machines and libraries

© 2005 IBM Corporation

Programming Technologies

The X10 programming model

IBM Research: Software Technology

[l
ot
iy

s

Support for productivity

Axiom: Exploit proven OO benefits
(productivity, maintenance, portability
benefits).

Axiom: Rule out large classes of
errors by design (Type safe, Memory
safe, Pointer safe, Lock safe, Clock
safe ...)

Axiom: Support incremental
introduction of explicit place
types/remote operations.

Axiom: Integrate with static tools
(Eclipse) -- flag performance
problems, refactor code, detect
races.

Axiom: Support automatic static and
dynamic optimization (CPO).

Support for scalability

Axiom: Provide constructs to deal
with non-uniformity of access.

Axiom: Build on asynchrony. (To
support efficient overlap of
computation and communication.)

Axiom: Use scalable synchronization
constructs.

Axiom: Permit programmer to specify
aggregate operations.

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Our philosophy

il
ull]|

= = ===
=¥ ="

T
]

Be conservative strategically,
aggressive tactically.

Build on sound foundations,

but design for the

programmer.

— Not the theoretician, not the
language designer.

Use Occam’s Razor.

— Avoid a variety of linguistic
mechanisms for the same
programming idiom.

Steal.

Focus on a few things, do
them well.

Keep the language small.

Keep the language
orthogonal.

Ensure the language “grows
on you.”

Exploit structure in
concurrency.

Make easy things easy, hard
things possible.

© 2005 IBM Corporation

IBM Research: Software Technology

The X10 programming model

il
il
i

i

=1

I
]|
||I|

— Remote Heap
= Activity Local

use explicit synchronization for coherence

Partitoned
Global
Address
A Space
& Inbound [T (PGAS)
g8 g o] e Activities Activities | f—
S T Globally
§ B 1L | Asynchronous
g ' Victites | <: <: VY Kcivilies: T
o
% Place 0 Place (MaxPlaces-1)
E Place = collection of resident Locality Rule Ordering Constraints (Memory Model)
8 activities & objects Any access to a mutable Locally Synchronous:
— datum must be performed by a Guaranteed coherence for local heap =
=) Storage classes local activity =» remote data Sequential consistency
== |mmutable Data accesses can be performed by
% = PGAS creating remote activities Globally Asynchronous:
@ — Local Heap No ordering of inter-place activities =»
o
=
o

© 2005 IBM Corporation

Programming Technologies

[
Il

i
|plji
1

IBM Research: Software Technology

X10 project landscape

= Generics
. grnrgﬁage g
design = Place types regions |
V1l->V2 = Dependent " X10lib
L types
Core = Applications yP = XVM spec
concurrency
and = FP
distribution semantics
design. = Implicit
= Extern = X10DT Syri?tax " REIaxe_d
- exceptions
interface
= JVM
implementation = Annotations
= Memory
model
02/04 07/04 02/05 07/05 02/06 |07/06 =—

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

il
ull]|

=% =

i
[

Tutorial outline

1) X10 Project

2) X10 Introduction
— cheat sheets
— Hello world
— comparison to Java

3) Sequential X10

4) Concurrency in X10
— activities
— atomic blocks
— clocks, clocked variables

5) Distributed X10
— places

— distributions and distributed
arrays

6) X10 Array Language

7) Current Status and Future
Work

© 2005 IBM Corporation

IBM Research: Software Technology

X10 Cheat Sheet

)
Q
(@)
fs
®)
c
L
O
(¢b)
|_
(@)}
=
=
=
©
S
(@))
o
S
o

© 2005 IBM Corporation

Programming Technologies

|l
il
[

IBM Research: Software Technology

X10 v0.41 Cheat sheet

]|

A
i
1w

Stm: DataType:
async [(Place)] [clocked ClockList] Stm ClassName | InterfaceName | ArrayType
when (SimpleExpr) Stm nullable DataType
finish Stm future DataType
next; c.resume() c.drop() Kind :
for(i: Region) Stm value | reference

foreach (i1: Region) Stm

ateach (I : Distribution) Stm
Expr:

ArrayExpr

x10.lang has the following classes (among

ClassModifier : Kind others)

MethodModifier: atomic point, range, region, distribution, clock, array

Some of these are supported by special syntax.
Forthcoming support: closures, generics, dependent types, array literals.

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

il
il
i

]
||]

|
i

X10 v0.41 Cheat sheet: Array support

ArrayExpr:
new ArrayType (Formal) { Stm }
Distribution Expr -- Lifting
ArrayExpr [Region | -- Section
ArrayExpr | Distribution -- Restriction
ArrayExpr || ArrayExpr -- Union
ArrayExpr.overlay(ArrayExpr) -- Update

ArrayExpr. scan([fun [, ArgList])
ArrayExpr. reduce([fun [, ArgList])
ArrayExpr.lift([fun [, ArgList])

ArrayType:
Type [Kind] []
Type [Kind] [region(N) |
Type [Kind] [Region |
Type [Kind] [Distribution |

Region:

Expr : Expr --1-D region

| Range, ..., Range | -- Multidimensional Region
Region && Region -- Intersection
Region || Region -- Union
Region — Region -- Set difference

BuiltinRegion

Dist:

Region -> Place -- Constant distribution

Distribution | Place -- Restriction
Distribution | Region -- Restriction
Distribution || Distribution -- Union

Distribution — Distribution -- Set difference
Distribution.overlay (Distribution)

BuiltinDistribution

Language supports type safety, memory safety, place safety, clock safety.

© 2005 IBM Corporation

IBM Research: Software Technology ==

X10 Startup

= Translation

= Machine model
= Startup

= Hello World

Programming Technologies

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

il
il
i

I
Il'ui

[l

|
|

X10 prototype implementation

X10 source program --- must contain a class named

F00.x10 Foo with a “public static void main(String[] args)
l method
x10c Foo.x10 |x10c X10 compiler --- translates F00.x10 to Foo.java,

x10 Foo

uses javac to generate Foo.class from Foo.java

FOO_CIaSS\‘ X10 program translated into Java ---

Foo.java /I #line pseudocomment in Foo.java

l specifies source line mapping in F00.x10
X10 Virtual Machine
(JVM + J2SE libraries + |, » External DLL’S
X10 libraries + X10 extern
X10 Multithreaded Runtime) interface
l X10 Abstract Performance Metrics
X10 Program Output (event counts, distribution efficiency)

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Examples of X10 compiler error messages

[l
![:H:H
iy

||I1

Case 1: Error message
identifies source file and
line number

1) x10c TutErrorl.x1

TutErrorl. x10: 8 Could not find field or |ocal variable "evenSuni.

for (int i =2 ; 1 <=n; i +=2) evenSum += i;
N N

D

2) x10c TutError2.x10
x10c: TutError2.x10:4:27:4:27. unexpected token(s) ignored

Case 1: Carats indicate

column range

Case 2: Error message
identifies source file, line

3) x10c TutError3.x10 number, and column range

x10c: C.\vivek\eclipse\workspace\ x10\ exanpl es\ Tutorial \ Tut Error3.java: 49:
| ocal variable nis accessed fromw thin inner class; needs to be decl ared

final

Case 3: Error message reported by Java
compiler — look for #line comment in .java file to
identify X10 source location

© 2005 IBM Corporation

Programming Technologies

=1

IBM Research: Software Technology

- Runtime constant.
Sequentlal XlO Can be changed by using the

i

ull]|

NUMBER_OF LOCAL PLACES
option in x10 command line

pl ace. MAX_PLACES

.;?

pl ace. FI RST_PLACE pl ace. LAST_PLACE

. “’\\\;

public class HelloWrld { ‘00\
public static voldimain(Btring[] args) {

Systemout.printin("Hello, world!'");
}

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Parallel X10

1L
i i"

=% =

i
[

pl ace. MAX_PLACES

297

pl ace. FI RST_PLACE . pl ace. LAST_PLACE

v
. ?o©
public class Hell oWorl d2 { \od\

q public static void|main(String[] args) {

foreach |(point [p] : [1:2])

Systemout.printin("Hello fromactivity "

+p + "!");

© 2005 IBM Corporation

il
i

=% =

IBM Research: Software Technology

Distributed X10

i

pl ace. MAX_PLACES

|2 ¢

ol ace. FI RST_PLACE ol ace. LAST PLACE
\"\“\\\‘
public class Hellowrld2 { Y

00
public static void|nmain St?lng[] args) {

ateach [place p: dist.factory. unique(place. MAX PLACES))

Systemout.printin("Hello fromplace " + p + "!I'");

Current prototype simulates places within one Java virtual machine.
Distributed X10 implementation being developed at Purdue University.

Programming Technologies

© 2005 IBM Corporation

IBM Research: Software Technology

Comparison with Java

9p]
Q
(@))
9o
o
C
e
&
)
I_
(@)]
=
=
<=
©
-
(@))
@
o
o

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Comparison with Java (1/2)

X10 language builds on the Java language

Shared underlying philosophy: shared syntactic and
semantic tradition, simple, small, easy to use,
efficient to implement, machine independent

X10 does not have:
= Dynamic class loading
= Java’s concurrency features
—thread library, volatile, synchronized, wait, notify

X10 restricts:
= Class variables and static initialization

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Comparison with Java (2/2)

=1

i

i i"

X10 adds to Java:

= value types, nullable

Array language

— Multi-dimensional arrays,
aggregate operations

New concurrency features

— activities (async, future),
atomic blocks, clocks

Distribution

— places

— distributed arrays

= A formal memory model

* FP support

© 2005 IBM Corporation

Programming Technologies

il
ull]|

=% =

IBM Research: Software Technology

i
[

Tutorial outline

1) X10 Project 5) Distributed X10
— places
2) X10 Introduction — distributions and distributed
— cheat sheets arrays
— Hello world
— comparison to Java 6) X10 Array Language
3) Sequential X10 7) Current Status and Future
Work

4) Concurrency in X10
— activities
— atomic blocks
— clocks, clocked variables

© 2005 IBM Corporation

IBM Research: Software Technology ==

Sequential X10

= OQverview

= value types

= nullable types | e B
= Safety properties DS

Programming Technologies

© 2005 IBM Corporation

Programming Technologies

[l
Il
1]
{1

IBM Research: Software Technology

il

Sequential X10

v" Classes and interfaces ? Not included
v Fields, methods, ? Dynamic linking
Constructors ? User-definable class
v' Encapsulated state loaders
v Single inheritance x Changes
v" Multiple interfaces x Value types
v Nested/Inner/Anon classes X Aggregate data/operations
v' Static typing x Space: Distribution
v" Objects, GC x Time: Concurrency
v Statements X Changes planned
v Conditionals, x Generics
assignment,... X FP support

v" Exceptions (but relaxed)

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

[
Il

i
hy
i

Value types : immutable instances

value class

— Can only extend value class

or x10.lang.Object.
— All fields are implicitly final

— Can only be extended by
value classes.

— May contain fields with
reference type.

— May be implemented by
reference or copy.

Values are equal (==) if their

fields are equal, recursively.

public val ue conplex {
double im re;
publ i c conpl ex(double im
double re) {
this.im=1im
this.re = re;
}
public conpl ex add(conpl ex a)
{
return new conplex(imra.im
ret+a.re);

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

X10 safety properties

[
Il

i
hy
i

Type safety

= Every location has a static type
= Runtime invariant
A location contains only those
values whose dynamic type
satisfies the constraints imposed
by the location’s static type.

Based on type safety:
-~ Memory safety

— Pointer safety

- Clock safety

- Place safety

= Every value has a dynamic
type
= Runtime invariant
Every runtime operation
performed on the value in a
location is permitted by the
static type of the location.

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Memory safety

[l
Il
i
ILH

Runtime invariants

= An object may only access
memory within its
representation, and other

objects it has a reference to.

— X10 supports no pointer
arithmetic.

— Array access is bounds-
checked dynamically (if
necessary).

= No “ill mem ref”

— No object can have a
reference to an object who's
memory has been freed.

— X10 uses garbage collection.

= Every value read from a
location has been previously
written into the location.

— No uninitialized variables.

© 2005 IBM Corporation

il
ull]|

=% =

IBM Research: Software Technology

i
[

Pointer safety

X10 supports the nullable type constructor.

= For any datatype T, the datatype nullable T contains all the value of
T and null.

= |f a method is invoked or a field is accessed on the value null, a
NullPointerException (NPE) Is thrown.

Runtime invariant
No operation on a value of type T, which is not of the form nullable
S, can throw an NPE.

%

-

o

o

o

e

= public interface Table { May return null
i voi d put (Obj ect o);

cc:» nul I abl e Cbj ect (Object 0);

= } Cannot throw NPE.
% public class Foo {

>

2

o

bool ean check (T {
return h.get(this) !'= null;

© 2005 IBM Corporation

IBM Research: Software Technology

Safety: Static vs. dynamic checking

X10 virtual machine maintains a set of invariants
(type safety).

= Some guarantees through static type check.
= Complementary "local" dynamic checks.

= Semantic annotations and static analysis / program
fransformations reduce the frequency of dynamic checks.

Programming Technologies

© 2005 IBM Corporation

Programming Technologies

[l
]l
Ih

IBM Research: Software Technology

il

Dynamic checks

BadPlaceException |
« Local access to VO'd m (Cpject o) {

_ if (o.location == here)
remote object /1 local nmethod invocation
0. foo();
el se

/'l renote nethod i nvocation
finish async (o.!ocation) o.foo();

}
ClockUseException
= Access to clock on which current activity is not registered.
= Pass-on of clocks on which the current activity is not live.

ArraylndexOutOfBoundsException
... <and others like Java>

© 2005 IBM Corporation

IBM Research: Software Technology

X10 Standard Library

9p]
Q
(@)}
ks
@)
cC
@
O
(D)
|_
(@)}
=
=
£
©
| -
(@))
@)
S
o

© 2005 IBM Corporation

[l
Il
ill
w”'ll

!Ei

IBM Research: Software Technology

i

x10.lang standard library

Java package with “built in” classes that provide support for selected X10
constructs
= Standard types
— boolean, byte, char, double, float, int, long, short, String
= x10.lang.Object -- root class for all instances of X10 objects
= x10.lang.clock --- clock instances & clock operations
= x10.lang.dist --- distribution instances & distribution operations
= x10.lang.place --- place instances & place operations
= x10.lang.point --- point instances & point operations
= x10.lang.region --- region instances & region operations

All X10 programs implicitly import the x10.lang.* package, so the x10.lang
prefix can be omitted when referring to members of x10.lang.* classes
= e.g., place.MAX_PLACES, dist.factory.block([0:100,0:100]), ...

Similarly, all X10 programs also implicitly import the java.lang.* package
= e.g., X10 programs can use Math.min() and Math.max() from java.lang

Programming Technologies

© 2005 IBM Corporation

IBM Research: Software Technology

X10 Native Interface

0
Q2
>
o
O
=
=
O
@
I_
o)
§=
E
=
©
S
D
@)
S
o

© 2005 IBM Corporation

IBM Research: Software Technology

Interface to C / FORTRAN (1/2)

Key issues

= No memory safety in C and FORTAN

= X10 domain should be protected

= Efficient transition from X10 -~ C/FORTAN

Calling conventions

= Value types are passed by value

= Instances of reference types and arrays have to be
allocated in unsafe memory to allow access from
C/FORTAN code.

Programming Technologies

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Interface to C / FORTRAN (2/2)

X10 side:
= Keyword extern for method declaration.
= Compiler generates X10 + C stub code

C/FORTRAN side:

= Stub implements interface generated by x10c and
calls native code

= Native code attached as shared library to VM

© 2005 IBM Corporation

IBM Research: Software Technology

Example: native code (1/2)

extern static void daxpy(int n, double da, double[] dx,

I nt incx, double[] dy,int incy);

public static void daxpy(int n, double da, double[] dx,

I nt incx, double[] dy,int incy) {
/[l Call C routine passing nenory address

daxpy_C(n, da, dx.address(),incx, dy.address(),incy);

}

X10 program

trans-
late

v
%) :
Q X10 | compiler-
<t Cc | generated
o
= JNI EXPORT void JNI CALL daxpy C (X10Env* env, jobject obj,
S xint al, xdouble a2, xlong a3, xint a4, xlong a5, xint a6) { I
- daxpy_C (...); ca
=X }
-
g extern static void daxpy C(int n, double da, |ong dx, v
@© Int incx, long dy, int incy);
S o C program
= <daxpy C-code> in |ibblas.so

© 2005 IBM Corporation

IBM Research: Software Technology

Example: native code (2/2)

=1

|

b

cl ass Daxpy {

I nt

static { System | oadLi brary("blas");
extern static void daxpy(int n, double da, double[] dx,

doubl e[] dy, int

}

i ncy);

public static void main(String args[]) {

declaration

final int N = 10;
doubl e da = 2.0;
doubl e[] dx = new unsafe double [N];
doubl e[] dy = new unsafe double [N];
int incx =1, incy = 1;
for (int 1 =0; i <N i++) {
dx[i] = 4.0;
dy[i] = 3.0;
1
daxpy (n, da, dx, incx, dy, incy);

call

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

il
ull]|

=% =

i
[

Tutorial outline

1) X10 Project

2) X10 Introduction
— cheat sheets
— Hello world
— comparison to Java

3) Sequential X10

4) Concurrency in X10
— activities
— atomic blocks
— clocks, clocked variables

5) Distributed X10
— places

— distributions and distributed
arrays

6) X10 Array Language

7) Current Status and Future
Work

© 2005 IBM Corporation

IBM Research: Software Technology ==

Concurrency in X10

= async, finish
= future, force
= foreach

= Global vs. local termination
= Exception handling

= Behavioral annotations

= Possible fallacies and synchronizat
= Compilation aspects

- e i T

Programming Technologies

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

async

[
Il

i
hy
i

Stmt ::= async PlaceExpSingleListopt Stmt

async (P) S
= Creates a new child activity

at place P, that executes
statement S

* Returns immediately

= S may reference final
variables in enclosing blocks

= Activities cannot be named

= Activity cannot be aborted or
cancelled

/1 global dist. array
final double a[D = .;
final Int k = ..;

async (a.distribution[99]) {
// executed at A[99]’s
// place
atomic aJ99] = k;

cf Cilk’s spawn

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

finish

[
Il

i
|plji
1

finish S
= Execute S, but wait until all

(transitively) spawned asyncs have
terminated.

Rooted exception model

= Trap all exceptions thrown by
spawned activities.

= Throw an (aggregate) exception if
any spawned async terminates
abruptly.

= implicit finish at main activity

finish is useful for expressing
“synchronous” operations on
(local or) remote data.

Stmt ::=finish Stmt

finish ateach(point [i]:A)
Ali] =i;

finish async
(A.distribution [j])

Al =2
[/ all Ali]=I wll conplete
/] before Aj]=2;
cf Cilk’s sync

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Termination

[l

Il

In

]
i

s

Local termination:

Statement s terminates locally when activity has completed all its
computation with respect to s.

Global termination:
Local termination + activities that have been spawned by s
terminated globally (recursive definition)

— main function is root activity
— program terminates iff root activity terminates.
(implicit finish at root activity)

— ‘daemon threads’ (child outlives root activity) not
allowed in X10

© 2005 IBM Corporation

IBM Research: Software Technology

Termination (Example)

termination

start |local | global
public void main (String[] args) {-———- O

finish {

© 2005 IBM Corporation

IBM Research: Software Technology

Rooted computation X10

public void main (String[] args) {

finish {
async { spawn hierarchy
for () {
}aSynC {... root activity

k4 }
g finish async {...
o }
=
5 oL
= |
- } /1 finish
3)
=
g > ance_stor
S root-of relation relation
o

© 2005 IBM Corporation

1L
i i"

=% =

IBM Research: Software Technology

i
[

Rooted exception model

public void main (String[] args) {

Propagation along the lexical scoping:
Exceptions that are not caught inside an activity are propagated
to the nearest suspended ancestor in the root-of relation.

finish { root-of relation
sync {
for () {
sync {...
}
.)
S | N async {... N\
E . P
S }
(B) ..
'; y /1 finish exception flow along
g } ¢ ¢ root-of relation
=
:
(@)
=
o

© 2005 IBM Corporation

Programming Technologies

=% =

IBM Research: Software Technology

||I1

i

Example: rooted exception model (async)

Int result = 0O;

try {
finish {
ateach (point [i]:dist.factory.unique()) {
throw new Exception (“Exception from “+here.id)
}
result = 42;
} // Tinish

} catch (x10.lang.-MultipleExceptions me) {
System.out.print(me);
+

assert (result == 42); // always true

" no exceptions are ‘thrown on the floor’

= exceptions are propagated across activity and place
boundaries

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

future

[
Il

i
hy
i

Expr ::=future PlaceExpSingleListopt {Expr }

future (P) S

= Creates a new child activity at
place P, that executes
statement S;

= Returns immediately.

= S may reference final variables
in enclosing blocks.

future vs. async
= Return result from
asynchronous computation

= Tolerate latency of remote
access.

/1 global dist. array
final double a[D = .;
final 1Int 1dx = .. ;

future<double> fd =
future (a.distribution[idx])
{
// executed at afidx]’s
// place
af[1dx];
};

future type

= no subtype relation between T
and future<T>

© 2005 IBM Corporation

Programming Technologies

||:u:H
HH"

i

=1

IBM Research: Software Technology

future example

public class TutFuturel {
static int fib (final int n) {

if (n<=0) return O;

elseif ((n==1) return 1,

el se {
future<int>fn 1 = future { fib(n-1) };
future<int> fn 2 Zfuture { fib(n-2) };
return fn 1. fofe() + fn_2.force();

}

public statie”void main(String[] args) {
out.printin("fib(10) =" + fib(10));

Divide and conquer: recursive calls execute concurrently.

© 2005 IBM Corporation

IBM Research: Software Technology

Example: rooted exception model (future)

doubl e div (final double divisor)
future<double> t = future { return 42.0 / divisor; }
doubl e resul t;
try {
result =1f. force();
} catch (AriaihneticException e) {
resul t 0. 0;

return résult:;

= Exception is propagated when the future is forced.

Programming Technologies

© 2005 IBM Corporation

il
ull]|

=% =

IBM Research: Software Technology

i
[

foreach

foreach (FormalParam: Expr) Stmt

foreach (pointp: R) S
= Creates |R| async statements in parallel at current place.

foreach (point p:R) S for (point p: R)
async { S}

= Termination of all (recursively created) activities can be ensured
with finish.

= finish foreach is a convenient way to achieve master-slave
fork/join parallelism (OpenMP programming model)

Programming Technologies

© 2005 IBM Corporation

il
ull]|

=% =

IBM Research: Software Technology

i
[

Behavioral annotations

nonblocking

On any input store, a nonblocking method can continue execution or
terminate. (dual: blocking, default: nonblocking)

recursively nonblocking
Nonblocking, and every spawned activity is recursively nonblocking.

local
A local method guarantees that its execution will only access variables
that are local to the place of the current activity.
(dual: remote, default: local)

sequential
Method does not create concurrent activities.
In other words, method does not use async, foreach, ateach.
(dual: parallel, default: parallel)

Sequential and nonblocking imply recursively nonblocking.

Programming Technologies

© 2005 IBM Corporation

[l
]l
Ih

IBM Research: Software Technology

il

Static semantics

= Behavioral annotations are checked with a conservative
Intra-procedural data-flow analysis.

= Inheritance rule: Annotations must be preserved or
strengthened by overriding methods.

= Multiple behavioral annotations must be mutually
consistent.

Programming Technologies

Note: Checking is not currently implemented.

© 2005 IBM Corporation

1L
i i"

=% =

IBM Research: Software Technology

i
[

Data races with async / foreach

final double arr[R] = .., // global array

cl ass Reduce(p {
doubl e accu = 0.0;
doubl e sum (double[.] arr) {
finishforeach (point p: arr) {
at oni c: arr[p];

concurrent conflictin
retur n< 2

access to shared variable;
} data race

X10 guideline for avoiding data races:
= access shared variables inside an atomic block
= combine ateach and foreach with finish

= declare data to be read-only where possible (final or value type)

Programming Technologies

© 2005 IBM Corporation

ill
i

=% =

IBM Research: Software Technology

||I1

i

Futures can deadlock

nul | abl e future<int> f1=null;

nul | abl e future<int> f2=null; int al() { _
nul | abl e future<int> tnp=null;
do
void main(String[] args) { tap:fz;
f1 = future(here){al()}; } while (tnmp == null);
f2 = future(here){a2()}; return tmp.force();
fl.force(); }
}
int a2() {
cyclic wait condition nul | abl e future<int> tnp=null;
do {
t mp=f 1;

} while (tnp == null);
return tnp.force();

}

X10 guidelines to avoid deadlock:
= avoid futures as shared variables
= force called by same activity that created body of future

Programming Technologies

© 2005 IBM Corporation

IBM Research: Software Technology

Complilation aspects

Activity inlining

foreach (point[i,j] : a.region)
a[i,]] =1 (a[i,]]);

foreach (point[i] : a.region.dinm(0))
I:{> for (point[j] : a.region.din(l))
a[i,]] =1 (a[i,]]);

:{> for (point[i,j] : a.region)
a[i,]] =1 (a[i,]]);

Conditions
= pody is recursively non-blocking
= body is local

Programming Technologies

© 2005 IBM Corporation

IBM Research: Software Technology

Memory Model

)
Q
(@))
ks
®)
e
L
()
(¢b)
|_
(@)}
=
£
£
©
-
(@))
@
S
o

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Aside: Memory Model

= = ====
= —

3

X10 v 0.41 specifies
sequential consistency per
place.

— atomic blocks / finish /
force have acquire-release
semantics.

We are considering a
weaker memory model.
Built on the notion of
atomic: identify a step as
the basic building block.

— A step is a partial write
function.

Use links for non hb-reads.

A process is a pomset of
steps closed under certain
transformations:

— Composition
— Decomposition
— Augmentation
— Linking

— Propagation

There may be opportunity
for a weak notion of atomic:
decouple atomicity from
ordering.

Please see: http:/lwww.saraswat.org/rao.html

© 2005 IBM Corporation

IBM Research: Software Technology ==

Concurrency Control: Transactional Memory

= Atomic blocks :
= Conditional atomic blocks,
= Fallacies, synchronlzatlon de

= Compilation aspects

Programming Technologies

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

= = ====
= —

3

Atomic blocks simplify parallel programming

No explicit locking
— No need to worry about lock
management details: What to
lock, in what order to lock.

No underlocking/overlocking
Issues.

No need for explicit
consistency management
— No need to carry mapping
between locks and data in
your head.

System can manage locks and
consistency better than user

Enhanced performance

scalability

— X10 distinguishes intra-place
atomics from inter-place
atomics.

— Appropriate hardware design
(e.g. conflict detection) can
improve performance.

Enhanced analyzability

— First class programming
construct

Enhanced debuggability

— Easier to understand data races
with atomic blocks than with
critical sections/synchronization
blocks

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

atomic

[l
ot
iy

||I1

= Atomic blocks are conceptually
executed in a single step while
other activities are suspended:
Isolation and atomicity.

= An atomic block ...
— must be nonblocking
— must not create concurrent
activities (sequential)
— must not access remote data
(local)

Stmt ;= atomic Statement

MethodModifier ::= atomic

/|l target defined in lexically
/'l encl osi ng scope.
atom ¢ bool ean CAS(Ohj ect ol d,

hj ect new) {
i f (target.equals(old)) {
target = new
return true;

}

return fal se;

/'l push data onto concurrent
/'l |ist-stack

Node node = new Node(data);
atom c {

node. next = head;

head = node;
}

© 2005 IBM Corporation

IBM Research: Software Technology

i

Static semantics of atomic blocks

i i"

An atomic block must...be local, sequential, nonblocking:

= ...not include blocking operations
— no await, no when, no calls to blocking methods
= ... hot include access to data at remote places
— no ateach, no future, only calls to local methods
= ... hot spawn other activities
— no async, no foreach, only calls to sequential methods

Programming Technologies

© 2005 IBM Corporation

IBM Research: Software Technology

[l
ot
iy

s

— Activity suspends until a state in which
the guard E is true.

— In that state, S is executed atomically
and in isolation.

= Guard E
— boolean expression
— must be nonblocking
— must not create concurrent activities
(sequential)
— must not access remote data (local)
— must not have side-effects (const)

= await (E)
— syntactic shortcut for when (E) ;

when Stmt ::= WhenStmt
WhenStmt ::= when (Expr) Stmt |
WhenStmt or (Expr) Stmt
= when (E) S cl ass OneBuffer {

nul | abl e Object datum = nul|;
bool ean filled = fal se;

voi d send(Cbject v) {

when (! filled) {
datum = v;
} filled = true;
}
(bj ect receive() {

when (filled) {
(bj ect v = datum
datum = nul | ;
filled = fal se;
return v;

© 2005 IBM Corporation

IBM Research: Software Technology

i

Static semantics of guard for when / await

i i"

= boolean field
= boolean expression with field access or constant values

class BufferBuffer {

voi d send(Object v) {

when (size() < MAX S| ZE)
{

datum = v;

filled = true;

}

ompile-time error

© 2005 IBM Corporation

[l
|

b

.plj
s

IBM Research: Software Technology

Exceptions in atomic blocks

= Atomicity guarantee only for successful execution.
— Exceptions should be caught inside atomic block
— Explicit undo in the catch handler

bool ean nove(Col l ection s, Collection d, Cbject o) {
atom c {
I f (!s.renmove(0)) {
return false; // object not found
} else {
try {
d. add(o);
} catch (RuntinmeException e) {
s.add(o); // explicit undo

throw e, [/ exception cf. [Harris CSJP’04]

urn true; // nove succeeded

= (Uncaught) exceptions propagate across the atomic block boundary

= “The atomic statement only guarantees atomicity on successful
execution, not on faulty execution”

Programming Technologies

© 2005 IBM Corporation

[l
ot
b
II-:”'H

IBM Research: Software Technology

Transactions: Design rationale

Minimal requirements on runtime support for atomic blocks
— no rollback

— lock-based implementation possible

Weak atomicity model

— atomicity and isolation are only guaranteed with respect to other
transactions

- concurrent transactional and non-transactional access foils
transaction semantics.

— see memory model

Ordering
— Transactions issued by a thread are performed in program order.

Nesting
— atomic blocks: closed nesting as an optimization, no open nesting
— conditional atomic blocks: cannot be nested in other atomic blocks.

Programming Technologies

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Example: Loop parallelization

1A
(LU}

In

il
[

o

serial program

for (point p[i]: indexset)
{ ti;

data parallel (doall): only correct if ti have no data dependences.

finish foreach (point p[i]: indexset)

{ ti; }

task parallel: only correct if ti are commutative and associative.

finish foreach (point p[i]: indexset)
{ atomec ti; }

© 2005 IBM Corporation

Programming Technologies

1L
i i"

=% =

IBM Research: Software Technology

i
[

Example: Loop parallelization

speculative parallelization: always correct

/'l gl obal shared var
final boolean [.] ti_done = new bool ean [indexset.region];

finish foreach (point p[i]: indexset) {

| f (i==0)
atomc { ti; ti_done[i] = true; }
el se

when (ti_done[i-1]) { ti; ti_done[i] = true; }

= Transactions commit in program order.

= Implementations that are not based on speculative execution will
serialize this loop.

© 2005 IBM Corporation

IBM Research: Software Technology

Example use of atomic blocks: latching variable

class LatchVar {
bool ean avail abl e = fal se;
doubl e val ue;
atomc void set (double val) {
if (available) return fal se;
/'l these assignnents happen only once.
this.value = val;
this.avail able = true;
}
doubl e get () {
when (available) {
return this.val ue;
) }

atom c boolean ready () { return availl able; }

Programming Technologies

© 2005 IBM Corporation

IBM Research: Software Technology

Example use of atomic blocks: future

il
il i"

=% =

i
[

LatchVar v =
new Runnabl eLat ch() {
public LatchVar run() {

LatchVar | = new LatchVar();

async (P) {
doubl e X
finish X = e;
| . setValue(X);

double d = lv.get();

} . .
return |: Exception handling and
} type genericity are omitted
}.run(); for clarity.

future<double> fv = future (P) { e }
double d = fv.force();

Programming Technologies

X10 language equivalent.

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

[l
A8
syl
|i':1 ii Il

Atomic blocks: Simplifying barrier synchronization

Original Java code

/1 Main thread (see spec.jbb. Company):
// Wait for all threads to start.

synchronized (company.initThreadsStateChange) {

while (initThreadsCount !'= threadCount) {
try {
initThreadsStateChange.wait(Q);
} catch (InterruptedException e) {.}

}
} ...

// Tell everybody i1t’s time for warmups.

mode = RAMP_UP;

synchronized (initThreadsCountMonitor) {
initThreadsCountMonitor.notiftyAIl();

}

X10 atomic sections

// Main thread: ..
[/ Wait for all threads to start.

when(conpany. i ni t Thr eadsCount ==
t hreadCount) {

node = RAMP_UP;
I ni t ThreadsCount Reached = true;

// Worker thread
// (see spec.jbb.TransactionManager): ..

synchronized (company.initThreadsCountMonitor) {
synchronized (company.initThreadsStateChange) {

company. initThreadsCount++;

company. initThreadsStateChange.notifty();

}
try {

company. initThreadsCountMonitor.wait();

} catch (InterruptedException e) {.}

/1 Wbrker thread:
atomc {

conpany. i ni t ThreadsCount ++;
}

awal t (initThreadsCount Reached);
/I barrier synch.

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Compilation aspects

[l
1 RTH
syl
i

||I1

Combine atomic blocks

/1 for all lines in parallel
finish foreach (...) {

/1 for each pixel of the line
atomc for (point [x] : [O:interval.width-1]) {
Vec col = // determ ne pixel

/'l conmputes the color of the ray

int red = (int)(col.x * 255.0);

if (red > 255) red = 255;

int green = (int)(col.y * 255.0);

i f (green > 255) green = 255;

int blue = (int)(col.z * 255.0);

if (blue > 255) blue = 255;

alom c checksum += red + green + bl ue;
} /1l end for (x)

© 2005 IBM Corporation

IBM Research: Software Technology

Concurrency Control: Clocks

= clock
= Clocks safety
= Clocked variables

Programming Technologies

© 2005 IBM Corporation

[
Il

In

IBM Research: Software Technology

g

Clocks: Motivation

= Activity coordination using finish and force() is accomplished by
checking for activity termination

= However, there are many cases in which a producer-consumer
relationship exists among the activities, and a “barrier’-like coordination is
needed without waiting for activity termination

— The activities involved may be in the same place or in different places

Phase O

Phase 1

Activity O Activity 1 Activity 2

Programming Technologies

© 2005 IBM Corporation

Programming Technologies

il
ull]|

=% =

IBM Research: Software Technology

i
[

Clocks (1/2)

clock ¢ = clock.factory.clock();
= Allocate a clock, register current activity with it. Phase 0 of ¢ starts.

async(...) clocked (cl1,c2,...) S

ateach(...) clocked (cl1,c2,...) S

foreach(...) clocked (c1,c2,...) S

= Create async activities registered on clocks c1, c2, ...

c.resume();

= Nonblocking operation that signals completion of work by current
activity for this phase of clock c

next;

= Barrier --- suspend until all clocks that the current activity is registered
with can advance. c.resume() is first performed for each such clock, if
needed.

= Next can be viewed like a “finish” of all computations under way in the
current phase of the clock

© 2005 IBM Corporation

il
i

=% =

IBM Research: Software Technology

Clocks (2/2)

i

c.drop();

= Unregister with c. A terminating activity will implicitly drop all clocks
that it is registered on.

c.registered()

= Return true iff current activity is registered on clock c
= c.dropped() returns the opposite of c.registered()

ClockUseException

= Thrown if an activity attempts to transmit or operate on a clock that it is
not registered on

Programming Technologies

© 2005 IBM Corporation

[l
Il
1]
{1

il

IBM Research: Software Technology

Semantics

Static semantics
— An activity may operate only on those clocks it is registered with.
— Infinish S,S may not contain any (top-level) clocked asyncs.

Dynamic semantics

— A clock ¢ can advance only when all its registered activities have
executed c.resume().

— An activity may not pass-on clocks on which it is not live to sub-
activities.

— An activity is deregistered from a clock when it terminates

Supports over-sampling, hierarchical nesting.

No explicit operation to register a clock.

Programming Technologies

© 2005 IBM Corporation

IBM Research: Software Technology

Behavioral annotations for clocks

clocked (cO,..., ck).

= A method m that spawns an async clocked(cO,...,ck) must declare
{c0,...,ck} (or a superset) in its annotation: clocked (cO,..., ck).

= {cO0,...,ck} are fields of type clock declared in the calss that declares m.

Programming Technologies

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Example (TutClockl1.x10)

[l
I
|

i
i
i
il
1

finish async {
final clock ¢ = clock.factory. cl ock();
foreach (point[i]: [1:N]) clocked (c) {

while (true) {

parent transmits clock

int old Ai = Ali]; to child
int new Ai = Math.mn(Ai],B[i]);
if (i >1)
new Ai = Math.mn(new A i,B[i-1]);
if (i <N)
new Ai = Math.m n(new A i, B[i+1]);
Ali] = new A i;
next ;
int old Bi =B[i];
int newB i = Math.mn(B[i],Ai]);
if (i >1)
new B i = Math.mn(new B i,A1-1]);
if (i <N)
new B i = Math.m n(new B i, A[i1+1]);
B[i] = newB i;
next ;
if (old Ai == new Ai & old Bi == newB.i)
br eak; Ty :
L // while eX|t|r_19 from w_hl_le loop
} /] foreach terminates activity for
¢. drop() iteration i, and automatically

} /1 finish async

deregisters activity from clock

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Deadlock freedom

=% =

= ==

= Central theorem of X10:

— Arbitrary programs with
async, atomic, finish (and
clocks) are deadlock-free.

= Key intuition:
— atomic is deadlock-free.

— finish has a tree-like
structure.

— clocks are made to satisfy
conditions which ensure tree-
like structure.

— Hence no cycles in wait-for
graph.

= Where is this useful?

— Whenever synchronization
pattern of a program is
iIndependent of the data read
by the program

— True for a large majority of
HPC codes.

— (Usually not true of reactive
programs.)

© 2005 IBM Corporation

[l
[
i

T
]

IBM Research: Software Technology

Clocked final
= Clocks permit an elegant form of = Statically checked properties:
determinate, synchronous — Variable read and written only by
programming. activities clocked on c.
— For each activity registered on c,
= Introduce a data annotation on there are no assignments to f.
variables. — next f =e; is executed by
— clocked(c) Tf=..; evaluating e and assigning value
ks — fis thought of as being “clocked to shadow variable for f.
8 final” — it takes on a single value
2 in each phase of the clock, = When c advances, each variable
35.3 clocked on c is given the value
= = Introduce a new statement: of its shadow variable before
2 _nextf=e: activities advance.
=
§ If activities communicate only via (clocked)
g final variables, program is determinate. Not yet implemented.

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

il
ull]|

=% =

i
[

Synchronous Kahn networks are CF (and DD-free)

This idea may be generalized

to arbitrary mutable variables.

— Determinate imperative
programming.

Each variable has an implicit

clock.

Each variable has a stream of

values.

Each activity maintains its own

iIndex into stream.

An activity performs

reads/writes per its index (and

advances index).

Reads block.

cl ock ¢ = new cl ock();
clocked(c) int x =1, y=1;
async cl ocked (c)

while (true) {

next X =y; next;
}
async cl ocked (c)

while (true) {

next y = x+y; next;

}

Guaranteed determinate, though
programs may deadlock (cf.
asynchronous Kahn networks.)

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Clock safety

[l

Il

In

il

]

= An activity may be registered on one or more clocks

= Clock c can advance only when all activities registered
with the clock have executed c.resume() and all posted
activities have terminated globally.

Runtime invariant: Clock operations are guaranteed to
be deadlock-free.

© 2005 IBM Corporation

IBM Research: Software Technology

Clock example: SPECjbb

il
ill
i

[l
I

i
i
i
il
1

finish async {

final
final

cl

ock ¢ new cl ock();

Conpany conpany =

creat eConpany(...);

for (int w:

[0:wh_num) {

async clocked(c) { // a warehouse
I nt node;

atom c { node

conpany. node;

b

initialize;

next;

Il 1.

while (node !'= STOP) {

sel ect a transaction;

t hi nk;

process the transacti on;

i f (node RECORDI NG)
record dat a;

I f (node RAMP_DOVN)
next:; [/ 2.

atom c { node

conpany. node;

Y /] while

Y /]

a war ehouse

conti nued next colum -->

/'l master activity
next; // 1.

atom c { conpany. node = RAMP_UP; };
sl eep ranpupti ne;

atom c { conpany. node = RECORDI NG };
sl eep recordingti ne;

atom c { conpany. node = RAMP_DOMWN;, };
next; // 2.

/1l all clients in RAMP_DOMW

conpany. node
} // finish async
/1 simulati on conpl et ed.

STOP;

print results.
master warehouses
phasel =fF==1F—-=—-=---
RAMP_UP
phase2 = § = = 4 L]~ = _RECORDING
finish RAMP_DOWN
iNISh == = = & - ~sTGP-
\ 4

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Tutorial outline

il
ull]|

=% =

i
[

1) X10 Project

2) X10 Introduction
— cheat sheets
— Hello world
— comparison to Java

3) Sequential X10

4) Concurrency in X10
— activities
— atomic blocks
— clocks, clocked variables

5) Distributed X10
— places

— distributions and distributed

arrays

6) X10 Array Language

7) Current Status and Future

Work

© 2005 IBM Corporation

IBM Research: Software Technology ==

Distributed X10

= Places

= Locality rule
= Distributions _ Sa =
= async, futures E =

= ateach = |
= Distributed arrays

Programming Technologies

© 2005 IBM Corporation

Programming Technologies

=% — %

IBM Research: Software Technology

Places in X10

= place. MAX PLACES = total number of places (runtime constant)
= place.places = value array of all places in an X10

= place.factory.place(l) = place corresponding to index i

= here = place in which current activity is executing

= <place-expr=.toString() returns a string of the form “place(id=99)”
= <place-expr=>.id returns the id of the place

—| X10 Data Structures

X10 language defines mapping from X10
objects to X10 places, and abstract < l
performance metrics on places

\ ¥

X10 Places
Future X10 deployment system will define l

mapping from X10 places to system nodes; =<
not supported in current implementation

— System Nodes

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Locality rule

Any access to a mutable (shared heap) datum must be
performed by an activity located at the place as the
datum.

—> direct access via a remote heap reference is not
permitted.

—Inter-place data accesses can only be performed by
creating remote activities (with weaker ordering
guarantees than intra-place data accesses)

—>BadPlaceException is thrown if the locality rule is
violated.

© 2005 IBM Corporation

Programming Technologies

1L
i i"

=% =

IBM Research: Software Technology

i
[

Place safety

The X10 type system is place Runtime invariants:

sensitive.

The static type of each locationis = A reference stored in the

apair T@P, where T is a datatype location must point to an

and P is a placetype. object located at the place

— PlaceType: specified by the placetype.

here | place | activity | current | = Activity local objects are not
Place | ? shared

Currently being implemented, in collaboration with Palsberg and Grothoff.
Activity-local objects known to be not shared.

Place-local objects known to not need “fat pointer” references

Placetype system will help eliminate BadPlace checks

We believe this will lead to significant performance gains.

© 2005 IBM Corporation

Programming Technologies

||:+|:H
HH"

[l
1

IBM Research: Software Technology

async and future with explicit place specifier

async (P) S
= Creates new activity to execute statement S at place P
= async Sis equivalentto async (here) S

future (P) { E }
= Create new activity to evaluate expression E at place P
= future{ E} isequivalentto future (here){ E}

Note that here in a child activity for an async/future computation will refer to
the place P at which the child activity is executing, not the place where
the parent activity is executing

Specify the destination place for async/future activities so as to obey the
Locality rule e.g.,

async (O location) Ox = 1;
future<int> F = future (A distributionfi]) { Ai] }

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

1L
i i"

=% =

i
[

Inter-place communication using async and future

Question: how to assign A[i] = B[j], when A[i] and BJ[j]
may be in different places?

Answer #1:. Use nested async:

finish async (B.distribution[j]) {
final int bb = B[j];
async (A.distribution[i]) Ali] = bb;
}

Answer #2: Use future-force and an async:

final int b = future (B.distribution[j])

{ BlI] }.force();
finish async (Adistribution[i]) Ali]

© 2005 IBM Corporation

Programming Technologies

[
Il

In

IBM Research: Software Technology

ateach (distributed parallel iteration)

il

]

ateach (FormalParam: Expr) Stmt

ateach (point p:D) S
= Creates |D| async statements in parallel at place specified by
distribution.
ateach (point p:D) S for (point p:D.region)
async (Dip]) { S}

= Termination of all (recursively created) activities with finish.
= ateach Is a convenient construct for writing parallel matrix code
that is independent of the underlying distribution, e.g.,

ateach (point p : A distribution)
Alp] = f(B[p], dp], Dp])

= SPMD computation:

finish ateach(point[i] : dist.factory.unique()) S

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

=% =

||I1

i

Example: ateach (TutAteachl)

public class TutAteachl {

public static void main(String args[]) {
finish ateach (point p: dist.factory.unique()) {

Systemout.println("Hello from"

}
} /] main()

Console output:

Hello from 1
Hello fromO
Hello from 3
Hello from 4

here.id);

unique distribution: maps pointiin
region [0 : place. MAX_ PLACES-1]
to place place.factory.place(i).

© 2005 IBM Corporation

il
ull]|

=% =

IBM Research: Software Technology

i
[

Example: RandomAccess (1/2)

dist D = dist.factory. bl ock(TABLE_SI ZE) ;
(1) final long[.] table = new long[D] (point [i]) { return i: }
(2) final |l ong[.] RanStarts = new |ong[dist.factory. unique()]
(point [i]) { return starts(i);};
(3) final long value [.] SmallTable = new [ong val ue[TABLE_SI ZE]
(point [i]) { return i*S TABLE INIT; };

(4) finish ateach (point [i] : RanStarts) {

| ong ran = next Random{RanStarts[i]);

for (int count: 1:N UPDATES PER PLACE) {
int J = f(ran);
| ong K = Smal | Tabl e[g(ran)];
async (table.distribution[J]) atomc table[J] "= K;
ran = next Randon{ran);

}

}
assert(tabl e.sunm() == EXPECTED RESULT);

Programming Technologies

© 2005 IBM Corporation

Programming Technologies

[l
[
"H"

IBM Research: Software Technology

||I1

i

Example: RandomAccess (2/2)

(1) Allocate and initialize table as a block-distributed array.

(2) Allocate and initialize RanSt ar t s with one random number seed
for each place.

(3) Allocate a small immmutable table that can be copied to all places.

(4) Everywhere in parallel, repeatedly generate random table indices
and atomically read/modify/write table element.

© 2005 IBM Corporation

IBM Research: Software Technology

Example: converting foreach to ateach (TutAteach2)

Case 1: All loop iterations are independent.

foreach version:
finish foreach (point[i,]] : a.region)
a[i,]] =1 (a[i,]]);

= ateach version #1.:
finish ateach (point[i,]] : a.distribution)

al1,)] =1 (a[t,)]);

= ateach version #2 (create only one activity per place):
finish ateach (point p : dist.factory.unique())
for (point[i,j] : a.distribution | here)

ali,)] =ft(a[i,]]);

Programming Technologies

© 2005 IBM Corporation

IBM Research: Software Technology

Example: converting foreach to ateach (TutAteach2)

Case 2: Iteration across rows are independent
(only outer loop can execute in parallel)

= foreach version:
finish foreach (point [i]: [1:N)
for (point[j]l: [2:N)
al1,]] = f(a[i,]-1])

= ateach version:
[/ Assunme that Nis a nultiple of place. MAX PLACES

finish ateach (point[i] : dist.factory.block([1:N))
for (point[j]: [2: N)
a[1,]] =ft(a[i,]-1])

Programming Technologies

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

=% — %

JGF Monte Carlo benchmark -- Sequential

doubl e[] expectedReturnRate =

new doubl e[nRunsM] ;

final TolnitAll Tasks t =

for

(Tolnit All Tasks) initAl Il Tasks;

(point [i]: expectedReturnRate) {
PriceStock ps = new PriceStock();
ps.setlnitAll Tasks(t);
ps. set Task(tasks[i]);
ps.run();
ToResult r =

(ToResult) ps.getResult();
expect edReturnRate[i] =

r.get expectedReturnRate();
volatility[i] =

r.get volatility();

A task array (of size
NRunsM) is initialized
with ToTask instances at
each index.

Task:

= Simulate stock
trajectory,

= Compute expected rate
of return and volatility,

= Report average
expected rate of return
and volatility.

© 2005 IBM Corporation

||:+|:H
HH"

i

=1

IBM Research: Software Technology

JGF Monte Carlo benchmark -- Parallel

doubl e[] expectedReturnRate =
new doubl e[nRunsM] ;

final TolnitAlTasks t =
(Tol nit Al l Tasks) initAl Il Tasks;
finish|foreach
(point [r]:expectedReturnRate) {
PriceStock ps = new PriceStock();
ps.setlnitAll Tasks(t);
ps. set Task(tasks[i]);
ps.run();
ToResult r =
(ToResult) ps.getResult();
expect edReturnRate[i] =
r.get expectedReturnRate();
volatility[i] =
r.get volatility();

Programming Technologies

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

JGF Monte Carlo benchmark -- Distributed

||:+|:H
I
Hi!"

i

=1

dist D= dist.factory.block([O0:(nRunsMC-1)1]);
doubl e[.] expectedReturnRate = new double[D]; ...

final TolnitAlTasks t =
(Tolnit Al l Tasks) initAl Il Tasks;
finish|ateach
(pornt [r]:expectedReturnRate) {
PriceStock ps = new PriceStock();
ps.setlnitAll Tasks(t);
ps. set Task(tasks[i]);
ps.run();
ToResult r =
(ToResult) ps.getResult();
expect edReturnRate[i] =
r.get expectedReturnRate();
volatility[i] =
r.get volatility();

© 2005 IBM Corporation

Programming Technologies

il
ull]|

=% =

IBM Research: Software Technology

i
[

Tutorial outline

1) X10 Project 5) Distributed X10
— places
2) X10 Introduction — distributions and distributed
— cheat sheets arrays
— Hello world
— comparison to Java 6) X10 Array Language
3) Sequential X10 7) Current Status and Future
Work

4) Concurrency in X10
— activities
— atomic blocks
— clocks, clocked variables

© 2005 IBM Corporation

IBM Research: Software Technology ==

X10 Array Language

= point, region, distributior ;
= Syntax extensions |
= Initialization

= Multi-dimensional arrays
= Aggregate operations

Programming Technologies

© 2005 IBM Corporation

il
ull]|

[l
[
i

T
]

IBM Research: Software Technology

point

A point is an element of an n-dimensional Cartesian

space (n>=1) with integer-valued coordinates e.g., [5], [1, 2], ...
— Dimensions are numbered from O to n-1
— n s also referred to as the rank of the point

A point variable can hold values of different ranks e.g.,
— pointp; p=1[1]; ... p=[2,3]; ...

Operations

— pl.rank
 returns rank of point p1
— pl.get()
* returns element (i mod pl.rank) if i <0 or i >= pl.rank
— pL.lt(p2), pl.le(p2), p1.9t(p2), pl.ge(p2)
 returns true iff plis lexicographically <, <=, >, or >= p2
« only defined when pl.rank and pl.rank are equal

Programming Technologies

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

i

Syntax extensions for points

i i“

= Implicit syntax for points:
point p=1[1,2] = point p = point.factory(1l, 2)

= Exploded variable declarations for points:
point p [i,]] [l final int i,]

= Typical uses :

—for (point p i, J1)y { ...}
—for (point [1, J] - r) { ... }
—int sum (point [1,]], point [k, [])
{ return [i+k, j+I]; }
—int [] tarr = newint [2] (point [i,]]) { returni; }

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Example: point (TutPointl)

=1

i

ull]|

public class TutPoint {
public static void main(String[] args) {

point pl =11,2,3,4,5];
point p2 =11, 2];
point p3 =12,1];
Systemout.printin("pl =" + pl +
", pl.rank =" + pl.rank +
, pl.get(2) =" + pl.get(2));
Systemout.printin("p2 =" + p2 +
", p3 =" + p3 + p2.1t(p3) =" +
p2.1t(p3));
}
} Console output:
pl =11,2,3,4,5] ; pl.rank =5 ; pl.get(2)
p2 =[1,2] ; p3 =1[2,1] ; p2.1t(p3) = true

© 2005 IBM Corporation

Programming Technologies

S == ==t
i

IBM Research: Software Technology

Rectangular regions

A rectangular region is the set of points contained in a rectangular subspace

A region variable can hold values of different ranks e.g.,
— region R; R =[0:10]; ... R =[-100:100, -100:100]; ... R =[0:-1]; ...

Operations
— R.rank ::= # dimensions in region;
— R.size() ::= # points in region
— R.contains(P) ::= predicate if region R contains point P
— R.contains(S) ::= predicate if region R contains region S
— R.equal(S) ::=true if region R equals region S
— R.rank(i) ::= projection of region R on dimension i (a one-dimensional region)
— R.rank(i).low() ::= lower bound of it" dimension of region R
— R.rank(i).high() ::= upper bound of i"" dimension of region R
— R.ordinal(P) ::= ordinal value of point P in region R
— R.coord(N) ::= point in region R with ordinal value = N
— R1 && R2 ::=region intersection (will be rectangular if R1 and R2 are rectangular)
— R1 || R2 ::= union of regions R1 and R2 (may not be rectangular)
— R1 - R2 ::=region difference (may not be rectangular)

© 2005 IBM Corporation

=1

A
i
it

IBM Research: Software Technology

Example: region (TutRegionl)

public class TutRegion {

public static void main(String[] args) {

region Rl

-100: 100] ;
+ R1 +

[1:10,
R1. rank

Systemout. println("RlL
Rl.rank + " ; Rl.size()
R1. ordi nal ([10, 100])

region R2

" + Rl.size() + "
+ R1.ordinal ([10, 100]));
[1:10, 90: 100] ;

+ R + " R1. cont ai ns(R2)

Systemout.println("R2
" + Rl.contains(R2) + "
R2.rank(1).low) + "

}

Console output:

R2.rank(1).1ow)

R2. coor d(0) " + R2.coord(0));

R1. rank

Rl = {1:10,-100: 100} ;
R1. ordi nal ([10, 100])
R2 = {1:10, 90: 100}
R2.rank(1).l ow)

Programming Technologies

= 2009

R1. cont ai ns(
R2. coor d(

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Syntax extensions for regions

i

i i"

Region constructors

int hi, |o;
region r = hi;

= region r = region.factory.region(0, hi)
region r = [|ow hi]

= region r = region.factory.region(lo, hi)

region rl, r2; [/ 1-dimregions
regionr = [rl, r2]
= regionr =region.factory.region(rl, r2);
/[l 2-di mregion

© 2005 IBM Corporation

Programming Technologies

[l
[
i

T
]

IBM Research: Software Technology

X10 arrays

= Java arrays are one-dimensional and local
— e.g., array args in main(String[] args)
— Multi-dimensional arrays are represented as “arrays of arrays” in
Java

= X10 has true multi-dimensional arrays (as Fortran) that can be
distributed (as in UPC, Co-Array Fortran, ZPL, Chapel, etc.)

Array declaration

— T[.] A declares an X10 array with element type T

— An array variable can refer to arrays with different rank
Array allocation

— new T [R | creates a local rectangular X10 array with
rectangular region R as the index domain and T as the element
(range) type

— e.g., int[.] A = new int[[O:N+1, O:N+1] |;

Array initialization
— elaborate on a slide that follows...

© 2005 IBM Corporation

IBM Research: Software Technology

Array declaration syntax: [] vs [.]

General arrays: <Type>[.]
— one or multidimensional arrays
— can be distributed
— arbitrary region

Special case (“rail”): <Type>[]
— 1 dimensional
— 0-based, rectangular array
— not distributed
— can be used in place of general arrays
— supports compile-time optimization

Array of arrays (“jagged array”): <Type>[.][.]

Programming Technologies

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Simple array operations

=1

i

i i"

= A.rank ::=# dimensions in array
A.region ::=index region (domain) of array
A.distribution ::= distribution of array A
A[P] ::= element at point P, where P belongs to A.region
A | R ::=restriction of array onto region R

— Useful for extracting subarrays

© 2005 IBM Corporation

Programming Technologies

[
Il

i
|plji
1

IBM Research: Software Technology

Aggregate array operations

A.sum(), A.max() ::= sum/max of elements in array
Al <op> A2

— returns result of applying a pointwise op on array

elements, when Al.region = A2. region

— <op> caninclude +, -, *, and/
Al || A2 ::=disjoint union of arrays Al and A2
(Al.region and A2.region must be disjoint)
Al.overlay(A2)

— returns an array with region, Al.region || A2.region, with
element value A2[P] for all points P in A2.region and A1[P]
otherwise.

Future work: framework for array operators

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Example: arrays (TutArrayl)

il
ull]|

=% =

i
[

public class TutArrayl {

public static void main(String[] args) {
int[.] A=newint[[1:10,1:10]]

(point [i,]]) {

Systemout.printin("A rank ="

, A.region ="
int[.] B=A] [1:5,1:5];
System out . pri "B.max() ="
}
} array copy

return i+j;}
+ A.rank +
+ A.region);

+ B.max());

Console output:

A.rank = 2 ;
B. max() = 10

A.region = {1:10,1: 10}

© 2005 IBM Corporation

Programming Technologies

il
ill
i

[l
l
|

IBM Research: Software Technology

|

i
1w

Initialization of mutable arrays

Mutable array with nullable references to mutable’ objects:

Ref Type nullable [] farr = new Ref Type[N]; // init with null value

Mutable array with references to mutable objects:

Ref Type [] farr = new RefType [N|; // conpile-tinme error, init required

dist d = dist.factory. bl ock(N);
Ref Type [.] farr = new Ref Type [d] (point[i]) { return RefType(here, i1); }

Execution of initializer is implicitly parallel / distributed
(pointwise operation):

That hold ‘reference to value objects’ (value object can be inlined)

int [] iarr = newint[N ; // init with default value, 0
int [] tarr =newint[] {1, 2, 3, 4}; [/ Java style
int [] tarr = new int[N (point[i])

{returni}; // explicit init

© 2005 IBM Corporation

Programming Technologies

il
ull]|

=% =

IBM Research: Software Technology

i
[

Initialization of value arrays

Initialization of value arrays requires an initializer.

Value array of reference to mutable objects:

Ref Type value [] farr = new val ue RefType [N;
/[l conpile-tinme error, init required

Ref Type value [] farr = new value RefType [N] (point[i])
{ return new Foo();

Value array of ‘reference to value objects’ (value object can be inlined)

'nt value [] tarr = new value int[] {1, 2, 3, 4},
/1l Java style I nit

'nt value [] tarr = new value int[N (point[i])
{ returni };
[l explicit init

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Distributions in X10

A distribution maps every point in a region to a place.

Creating distributions (x10.lang.dist):

— dist D1 = dist.factory.constant(R, here); // local distribution
— maps region R to here

— dist D2 = dist.factory.block(R); // blocked distribution

— dist D3 = dist.factory.cyclic(R); // cyclic distribution

— dist D4 = dist.factory.unique(); // identity map on
[0:MAX_PLACES-1]

© 2005 IBM Corporation

Programming Technologies

=% — %

IBM Research: Software Technology

Using distributions

D[P] = place to which point P is mapped by distribution D
= if point pisin D.region
= otherwise ArrayOutOfBoundException

Allocate a distributed array e.g., T[.JA=new T[D |;

= Allocates an array with index set = D.region, such that element
A[P] is located at place DI[P] for each point P in D.region

= NOTE: “new T[R]” for region R is equivalent to “new T[R->here]’

Iterating over a distribution — generalization of foreach to ateach

© 2005 IBM Corporation

Programming Technologies

= = ====
= —

3

IBM Research: Software Technology

Operations on distributions

D.region ::= source region of distribution
D.rank ::=rank of D.region

D | R ;= region restriction for distribution D and region R (returns
a restricted distribution)

D | P ::= place restriction for distribution D and place P (returns
region mapped by D to place P)

D1 || D2 ::= union of distributions D1 and D2 (assumes that
D1.region and D2.region are disjoint)

D1l.overlay(D2) ::= asymmetric union of D2 over D1
D.contains(p) ::= true iff D.region contains point p
D1 — D2 ::= distribution difference: D1 | (D1.region — D2.region)

© 2005 IBM Corporation

IBM Research: Software Technology

Syntax extensions for distributions

Constant distributions
regionr = [0:N;
dist d = r->here
- dist d = dist.factory.constant(r, here);
dist d = 1000->here

- dist d = dist.factory.constant ([0, 1000],
here),;

Distributions are implicitly converted to regions
for (point [i,j]: d) {...}
- for (point [1,]]: d.region) {...}

Programming Technologies

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Multidimensional arrays

doubl e[.] darr = new double[|O: N, O: M -=>here];
for (point [1,]]: darr.region)

darr[i,]J] = ..; y
= initial values in darr are 0.0 &=
= |teration schema N —°
— ‘lexicographical order’ (standard, fix) © o0 O

- [0,0], [0,1], [0, 2],
= Storage layout
— row major (fix)
— spatial access locality with standard iteration schema

© 2005 IBM Corporation

il
il i"

=% =

IBM Research: Software Technology

i
[

Distributed multidimensional arrays

dist cyclic = dist.factory.cyclic([0:4, 0:6])
di st blockcyclic = dist.factory.blockCyclic([0:4, 0:6], 6)
doubl e[.] darr = new doubl e[XXX] ;

// \Summg 4 places

ks cyclic block cyclic tiled A
(@)

ke! ©® @0 ©0 00 ©oc ee

2 ©® @0 o0 @0 ®©o oo

= ©® @0 o0 00 ©6 ee

s ©@ @0 eo 0o ®® OO

= ©@ @0 @@ OO0 ®e® OO

% @@ @0 00 0O ®©e® OO

% for 1D arrays: cf. UPC Future work:

= hierarchically tiled
O .

£ N regions y

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Optimization of rank independent code

for (point p: darr.region)
darr[p] = ...;

Information about darr.region:
— number of dimensions
— shape of region (rectanqgular, triangular, ...)
— bounds and step

Determined by
— context sensitive data-flow analysis
— dependent types can provide this information

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Optimization of rank independent code

for (point p: darr.region)
darr[p] = ...;

Optimized for dim=2
darr.region is rectangular and dense

for (int I = darr.region.rank(0).low);

| < darr.region.rank(0).high(); ++i)

for (int | = darr.region.rank(1l).low);
] < darr.region.rank(1).high();
darrf[i,]] = ...;

++j)

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Optimization of rank independent code

for (point p: darr.region) {

__place_check(here, darr.distribution[p]);

darr[p] = ...;

Optimized: darr.distribution
IS constant distribution

| f (!darr.distribution.isLocal())
t hrow new BadPl aceExcepti on();
for (point p: darr.region) {
darr[p] = ...;
}

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Distributed arraycopy (first version)

=1

i

i i"

static void arraycopy(double[.] src,

doubl e[.] dst)

t hrows Regi onM smat chExcepti on {

'f (src.distribution.region !=

dst.distribution.region)
t hrow new Regi onM smat chException (src,

ateach (point i : dst.distribution)
dst[i] = future(src[i]){src[i]}.force();

Spawn activity for every index point.
Code is independent of the rank of the array

dst);

© 2005 IBM Corporation

Programming Technologies

il
ull]|

=% =

IBM Research: Software Technology

i
[

Distributed arraycopy (second version)

static void arraycopy(double[.] src, double[.] dst)
t hrows Regi onM smat chExcepti on {
't (src.distribution.region !=
dst.distribution.region)
t hrow new Regi onM smat chException (src, dst);

ateach (distribution.unique(dst.distribution.places))
for (1 : dst.distribution | here)
dst[i] = future(src[i]){src[i]}.Torce();
}

= Spawn one activity in each place that hosts a part of the destination
array.

© 2005 IBM Corporation

il
ull]|

[l
Il
"H|
{1

IBM Research: Software Technology

Distributed arraycopy (third version)

static void arraycopy(double[.] src, double[.] dst)
t hrows Regi onM smat chExcepti on {
't (src.distribution.region !=
dst.distribution.region)
t hrow new Regi onM smat chException (src, dst);

ateach (point _ : dist.unique(dst.places)) {

region local = (dst.distribution | here).region;

foreach (place p : (src.distribution | local).places) {
region renote = (src.distribution | p).region;
regi on common = | ocal && renote;
a[common] = future (p){src[comon]}.force();

}

} local array copy

= Spawn one activity per dst-place and

= Create one future per place p to which src maps an index in
(dest.distribution | here).

Programming Technologies

© 2005 IBM Corporation

IBM Research: Software Technology

Examples of Array Kernels

= Jacobi
= Edminston
= NAS CG

Programming Technologies

© 2005 IBM Corporation

Programming Technologies

[l
il
il

IBM Research: Software Technology

Jacobi 1d

i

cl ass Jacobi { Single threaded main loop,
public static final int N=100; performing aggregate operations.
public static final double epsilon=0.002;

initializer

public static void main(String args[]) { Subsequent code
region R = [0..N+1]; does not assume
distribution D = distribution.blocked(R); Built-indistribution D is blocked.
region Rinner =[1..N;
distribution Dinner = D | R Inner; Restriction to a region
di stribution D boundary = D-D i nner; Distribution difference

int iters = 0;
double[D] a = (D _boundary 0.0) || new doubl e[D_i nner] Lifting of <op> on base
_ { return Math. Randon(); }; type to array type
while (true) {
final double[D_inner] tenp = new doubl e[D_inner] (i)
f ut ur e<doubl e>l ow = future (a[i-1])
future<doubl e>l ow = future { ali +1] }
return(lowforce() .force())/2.0;};

Array

g
I rror reduce (Math. abs((a D i nner)-
Reduction doubl e erro ((((l - \
operation . . Restriction of array to

tenp)).operator '+ ()))]
(error < epsilon)

br eak: a subdistribution

_ Updating one array
a = a. overlay(tenp); with another.
| ters++;

}

Systemout. println("Nunber of iterations="+iters);

© 2005 IBM Corporation

Programming Technologies

[l
IE:u:H
iy

T
]

IBM Research: Software Technology

Edmiston

wavefront
Algorithm for gene sequence comparison computation

> string c2

0 J'/ N

0
//
//\{, |
i ;/ _ [V
M
v
string cl result array e

efi, j] = min (e[i-1,j]] + iGapPen,
ell,j-1] + iGapPen,
e[i-1,j-1] + (c1[i] == c2[j] ? iMatch : iIMisMatch));

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

T

Edmiston - Parallelization

[l
]l
i

s

column-blocked
place-0 place-1 place-2 distribution

Y st asacaeac:

Computation in every place:
step (1): compute “warmup” in a place-local result array

step (2): compute results based on initial condition for steplin
result array

© 2005 IBM Corporation

Programming Technologies

[l
|

b

IBM Research: Software Technology

|

||I1

Edmiston

final RandCharStr cl, c2;

final int N=cl.s.length-1, int M= c2.s.|ength-1;
final dist D = columBl ocked([0:N,[0:M);

final int[.] e = newint[D;

/1 SPND conputation at each pl ace
finish ateach (point [p]:dist.factory.unique(D.places())) {
/1l get sub-distribution for this place
final dist nyD = D| here;
final int nyLow = nyD.region.rank(1).1ow);
final int nyH gh = nyD.region.rank(1). high();
final int overlapStart = Mth. max(0, nyLow overl ap);
final dist warmupD = [0: N, overlapStart: myLow] ->here;
/'l create a | ocal warnup array
final int [.] W= new int[warnupD];
/'l conmpute colums overlapStart+1 .. nyLow using colum overl apStart
computeMatri x(W cl, c2, overlapStart+1l, nyLow); (1)
/1 copy colum, e[0:N, nmyLow] = WO: N, nyLow ;
finish foreach (point [i] : [O:N) e[i,nyLow] = Wi, nyLow ;
computehMatrix(e, cl, c2, nyLowt+l, nyHi gh); (2)
}

voi d conmputeMatrix(int[.] a, final RandCharStr cl,
final RandCharStr c2, int firstCol, int lastCol) {
for (point[i,j] : [1:NfirstCol:lastCol])
a[i,j] = mn4(0, a[i-1,j]+i GapPen, ali,]-1]+i GapPen,
a[i-1,j-1] + (cl.s[i]==c2.s[j] ? iMatch : i MsMatch));

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

NPB — CG in X10

il
il
i

[l

|
|

i

Sparse matrix-vector multiplication: g = Ap

A

value array,
copy in every place

= sguare matrix: na x na
" non-zero elements: nz

place-0

place-1

= sparse representation in column compressed format

= A [nZ]
= A_colidx [nZ]
= A_rowstr [na]

block
distribution

© 2005 IBM Corporation

IBM Research: Software Technology

NPB — CG in X10

il
il
i

[l
|r:|I

(1}
il

Programming Technologies

di st THREADS = dist.factory. bl ock([O: np-1]);
dist D = dist.factory. bl ock([1:na]);

double[.] p = new doubl e[D];
double[.] g = new doubl e[D];
double[.] r = new doubl e[D];
double[.] x = new double[D] (point [p]) { return 1.0; };
double[.] z = new double[D]; %
2,
final double value [.] Awval = new value double[nz+1] {...}; \9@
final int value [.] A_colidx_val = new value int [nz+1] {...};)
final int value [.] Arowstr_val = new value int [na+2] {...}; 9}})
for (point iter: [Ll:niter]) { *
finish ateach (point[p]: THREADS)
{ zero q, z, r and p, update rhomaster with square sum of x }
doubl e rho = rhomaster. sun();
for (point it: [0:cgitmax]){
Il 9 = Ap submatrix vector nultiply
finish ateach (point [it]: THREADS) {
mvmult (g, p);
dmaster[here.id]=(p[Dl here]). mul (q[D| here]).sum);
}
final double rhoO = rho;
final double al pha = rho / dmaster.sun();
finish ateach (point [it]: THREADS)
{ z += alpha *p r -= al pha*q; update rhonmaster with square sum of x }

rho = rhomaster. sun();
final double beta = rho/rho0;
finish ateach (point [it]: THREADS) { p = r+beta*p }

continues on next slide =

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

NPB — CG in X10

il
il
i

]
||]

|
i

< continuation from previous slide

/[l r = Az submatrix vector nmultiply
finish ateach (point [it]: THREADS) ({

mvul t (r, z);

rnormraster[here. i dl =(x[D] here]).sub(r[D| here]).pow2).sunm();

}

/] conmpute residual norm ||r]|]| =||x-Az|]|
rnorm = Math.sqrt(rnormmaster.sun());
tnorml = x. mul (z).sun();

tnorn2 = z.mul (z).sun();

tnorn2 = 1.0 / Math.sqrt(tnornR);

zeta = shift + 1.0 / tnormil;

final double tnorn2ff = tnorng;

finish ateach (point[jj]: D) x[jj]l = tnornm2ff*z[jj];
}

Il 9 = Ap submatrix vector nmultiply
void nviul t (doubl e[.] g, double[.] p) {
region Diocal = (D | here).region;
for (point [j] : Docal) { sparse matrix access
doubl e sum = 0. 0;
for (point [k] : [Arowstr_val[j]:A rowstr_val[]+1]-1]){
int idx = A colidx_val[K];
future<double> tnp = future (p.distribution(p[idx]) {p[idx]};
sum += A val[k] * tnp.force();
}
alj] = sum

© 2005 IBM Corporation

IBM Research: Software Technology ==

X10 in Comparison

= MPI| + OpenMP

= UPC F Ssod

& = Exemplary stencil computatiot
S CIMPI
= — Titanium

- —~UPC

= —X10

= —C++/htalib

S

o

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

X10, in comparison with MP1+OpenMP ...

[l
![:H:H
iy

||I1

MPI / OpenMP

= Processes

= Programmer-managed global data
structures

= Message passing w/ programmer-
managed marshalling

— Includes reductions

= Low-level message envelopes
— <source, destination, tag,

communicator>

= Barriers

= OpenMP threads

= Locks, critical sections

= Affinity directives

= INDEPENDENT directive

X10

Places
Partitioned Global Address Space

Asynchronous activities w/ objects
and futures

— Includes reductions

Strongly-typed invocations and return
values (futures)

Clocks

Asynchronous activities
Atomic sections

Placetype system (@-clauses)
foreach, ateach statements

© 2005 IBM Corporation

[l
Il
ill
w”'ll

!Ei

IBM Research: Software Technology

i

X10 in comparison with UPC

= Simple syntax for remote memory accesses: = Samein X10
Read is rval, write is lval
= Block cyclic distribution of 1D arrays = More general distributions in X10
= SPMD model with standard synchronizations = X10 supports both fork-join and SPMD
(barriers, locks), inquiry functions, etc. models

= split barriers w/ notify & wait = Clock now & next ops

= Work sharing supported by upc_forall = X10 has foreach and ateach
) = Type system identifies private vs. shared data. * (X10 may have @activity annotations.)
= Four classes of pointers (SP & SS pointer X10 has type-safe object references, not
8’ operations are expensive): pointers
o — PP: Private space pointed by Private pointer
= e.g., int*pl
% — SP: Shared space pointed by Private pointer
a5} e.g., shared int *p2
- — PS: Private space pointed by Shared pointer
(@) e.g., int *shared p3 (not recommended!)
= — SS: Shared space pointed by Shared pointer
g e.g., shared int *shared p4;
&£ = Memory consistency can be controlled by user * X10 has two different memory
(@) (relaxed vs. strict) consistency models: within and across
) places
o

= Portable (to the extent that ANSI C is portable) = X10 has stronger portability (like Java)

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

2D-stencil in C / MPI

code works only with 4 procs and 12x12 mesh

#i ncl ude "npi.h"
int main(argc, argv)

int argc;
char **argv;
{
i nt rank, value, size, errcnt, toterr, i, j,
itcent;
i nt i_first, i_last;
MPI _St at us st at us;
doubl e xl ocal [(12/4)+2][12];
doubl e xnew (12/3)+2][12];

MPI _Init(&argc, &argv);

MPI _Comm rank(MPI _COVMM WORLD, &rank);

MPl _Comm si ze(MPI _COVMM WORLD, &size);

if (size !'=4) Ml _Abort(MPI_COVW WORLD, 1);
/* xlocal[][0] is |Iower ghostpoints,

xl ocal [][maxn+2] is upper */

/* Note that top and bottom processes have one | ess
row of interior

points */
i first = 1;
i _last = maxn/size;
if (rank == 0) i _first++
if (rank == size - 1) i_last--;
/* Fill the data as specified */

for (i=1; i<=nmaxn/size; i++)
for (j=0; j<maxn; j++)

xlocal [i][]j] = rank;
for (j=0; j<maxn; j++) {

xlocal [i _first-1][j] = -1,
xlocal [i_last+1][j] = -1;
}
data declaration initialization

}

/* Send leftunless | ams |I'mat the top, then
recei ve from bel ow */
/* Note the use of xlocal[i] for &local [i][0] */
if (rank < size - 1)
MPI _Send(x| ocal [maxn/si ze], maxn, MPI _DOUBLE,
rank + 1, O,
VPl _COMM WORLD) ;
if (rank > 0)
MPI _Recv(xlocal[0], maxn, MPI _DOUBLE, rank - 1,
0,
MPI _COMM WORLD, &status);

/* Send down unless |I'mat the bottom */
if (rank > 0)
MPI _Send(xlocal[1], maxn, MPI _DOUBLE, rank - 1,
1,
MPI _COVMM WORLD) ;
if (rank < size - 1)
MPI _Recv(x| ocal [maxn/si ze+1], maxn, MPl _DOUBLE,
rank + 1, 1,
MPI _COVM WORLD, &status):

itent ++;
for (i=i_first; i<=i_last; i++)
for (j=1; j<maxn-1; j++) {
xnew[i][j] = (xlocal [i][j+1] + xlocal [i][j-1] +
xlocal [i+1][j] + xlocal[i-
1]%]]) / 4.0;

MPl _Finalize();
return O;

communication computation

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

2D-stenclil in Titanium

final static int DIM2; //space dimension
final static Point<Dl M> start Poi nt =Poi nt <Dl M>. al | (0);

final static Point<Dl M> endPoi nt =Poi nt <Dl M>. al | (1) +Poi nt <Dl M>. direction(DIM 1); .

public static single void main (String single [] single args){ COde |S rank'
final int single nunrhreads=Ti.nunProcs();
final int threadl D=Ti.thisProc(); 1
final Rect Donai n<DI M> probl enDomai n=[st art Poi nt : endPoi nt] ; Independent

final int size=endPoint[D M-startPoint[D M +1;
if (nunThreads>size) Systemexit(-1);
final int |ocal Si ze=si ze/ nunThr eads;
final Point<D M> startPoint 0=start Poi nt-Point <Dl M>.direction(DIM startPoint[D M);
final Point<D M> endPoi nt 0=endPoi nt - Poi nt <Dl M>. direction(DI M endPoint[DIM);
Rect Dormei n<DlI M> | ocal Donai n;
[/ construct |ocal domain
i f (threadl D==nuniThr eads- 1) { .
| ocal Domai n=[st art Poi nt 0+Poi nt <DI M>. di recti on(DI M | ocal Si ze*t hr eadl D) : endPoi nt] ; d ata d eCIara'“ on
} el sef
| ocal Donai n=[st art Poi nt 0+Poi nt <Dl M>. di recti on(Dl M | ocal Si ze*t hreadl D) :
endPoi nt 0+Poi nt <Dl M>. di recti on(Dl M | ocal Si ze*(threadl D+1)-1)];

//construct a distributed array
double [1d] single local [DIMd] distArrayA=new double [O: nuniThreads- 1] [DMd];
double [DIM d] |ocal |ocal ArrayA = new doubl e [l ocal Domai n.accrete(1)]; //construct |ocal subarray
di st ArrayA. exchange(l ocal ArrayA); //exchange references to |ocal subarray
double [1d] single local [DIMd] distArrayB=new double [O:nuniThreads- 1] [DMd];
double [DIM d] | ocal |ocal ArrayB = new doubl e [l ocal Donain]; //construct |ocal subarray
di st ArrayB. exchange(l ocal ArrayB); //exchange references to | ocal subarray
/linitialize the array
foreach(p in | ocal Domai n) = as - -
| ocal ArrayA[p] =1; initialization
/I exchange ghost values for distArrayA. The boundary val ues are zeroes by default.
Rect Donai n<Dl M> t enpDonai n;
i f (threadl D>0){
t enpDonai n=di st ArrayA[t hreadl D-1] . domai n() . shrink(1);
| ocal ArrayA. copy(di stArrayAlthreadl D-1].restrict(tenmpDomain));

} . .

i f (threadl D<nuniThr eads- 1) { CommunlCatlon
t enpDomai n=di st ArrayA[t hr eadl D+1] . domai n() . shrink(1);
| ocal ArrayA. copy(distArrayAlthreadl D+1].restrict(tenpDonain));

}
Ti.barrier();
//local stencil operation

Poi nt <DI M> di sp=Poi nt <Dl M>. direction(DI'M 1); Computatlon

foreach (p in | ocal Domain) |ocal ArrayB[p] =(| ocal ArrayA[p-di sp] +l ocal ArrayAl p+di sp])*0. 5;

© 2005 IBM Corporation

IBM Research: Software Technology

2D-stencil in UPC

har ed doubl : :
zhgigd H:l]q dSﬂbli E{mkﬂu data declaration

int main() {
int i, j;

[l initialize a
upc_forall (i = 0;
upcforaII(J =
an

ali][j] =
}

i < M i++; continue)
8()J DR RA initialization

upc_barrier();

/'l exchange ghosts

upc _forall (i =0; 1 <M i++ &b[i][0]) {
b[i 1[0 = af (i-1)9[N-1]; o
b[i][N = a[(i+1)Y¥M[1]; communication

}

upc_barrier();

/1l conpute b

upc_forall (i =0; i < M 1i++; continue) _
upc_ forall(=1,] < N1 j++ &[i][j]) { computation

b[i1[j] = (alillj+1] + alil[j-1])*0.5;

Programming Technologies

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

2D-stencil in X10 (similar to NAS-MG)

public static void main(String[] args) {

region R=[0:M O0:N; :
region Rinner = [1: M1, 1.N1]; data declaration

double[.] a = new double[R] (point p) { a[p] = Math.random(); };
double[.] b = new doubl e[R];
initialization

finish foreach(point p[i] : Rinner.rank(0))

b[i,0] = a[(i-1)% N1]; L

b[i,N = a[(i+l)yM 1]; communication
finish foreach(point p[i,j] : RInner) .

bli,j] = (a[i,j+1] + a[i,j-1])*0.5; computation

© 2005 IBM Corporation

IBM Research: Software Technology

2D stencil with C++ / htalib

#incl ude "htalib. h" data declaration

t ypedef HTA<double, 2, 0> H;
typedef Triplet R

int main() {

Tupl e<2> tiling [] = {Tupl e<2>(NPROC, 1), Tupl e<2>(N NPRCC, M};
Ha=H:alloc(tiling);
Hb =H:alloc(tiling);

/1l initialize a initialization
a.map (Operator::rand(), a);

/'l exchange ghosts

b()[0, RO, M]
b() [NPROT/ N, R(0, M]

a(R((0: NPROC) %1), 0) [N NPROC-1, R(0, M];
a(R((0: NPROC) % 1), 0)[1, R(0, M]:

communication

/1l conpute b
b() [R (1, NNPRCC-1), R(0,M] =
0.5 * (a() [R(0, N NPROCC- 2), Ig(o,a\/)

+ computation
a() [R(2, N NPROC), R(

Programming Technologies

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

il
ull]|

=% =

i
[

Tutorial outline

1) X10 Project

2) X10 Introduction
— cheat sheets
— Hello world
— comparison to Java

3) Sequential X10

4) Concurrency in X10
— activities
— atomic blocks
— clocks, clocked variables

5) Distributed X10
— places

— distributions and distributed
arrays

6) X10 Array Language

7) Current Status and Future
Work

© 2005 IBM Corporation

IBM Research: Software Technology

Current Status

)
Q
(@)]
ks
®)
i
e
O
@
|_
(@)}
=
=
=
©
-
(@))
O
-
o

© 2005 IBM Corporation

Il
L]

[l

IBM Research: Software Technology

|
i

Single Node SMP X10 Implementation

[e e e e e e e e e e e e -
N T T T T TIToTATITITITITITITITITITITIT .
v 1 Code !
P X10 DOMO ! Generation ! X10
Pl Static i Templat i Front
P! Grammar Analyzer i emplates ' End
. 1 .
[A ! !
R i 1
: i ; Anr;ost_arted Target .
X10 P AST ! Java !
_—— 1 - . o .
source T X10 Parser [~ | Analysis passes [#=—| Java code emitter > Java compiler !
1 . 1 I
. ! ; 1
: ! Common components w/ SAFARI i |
LD D D D L D L D T D D D L T L L D T D T L e e e e mimimimim e L2 i
X10 classfiles
Place Atomic sections do (J ava classfiles with
. not have blocking . .
d ¢ special annotations for
n attivities Actites Ao /7 somanics IOx1o analysis info)
Outbound T
G) |::> |:> activities e +
- m— lq'- -- 1
o) e [' X10
\ - | ! nnnnnnnnn A Actwvities Activities . .
= B Ao L HER | Runtime
@) (f:m_P_le_ted ,EctoiSit(iees mutable data, or global [R B P . . !
c ctivities immutable data N AN I RN s Az LI I
= ¢ (o —} o P W =) !
(&) Outbound U Inbound ' Place 0 Place 1 X10 libraries :
l,e replies % replies : .
o 1 [Java Concurrency Utilities (JCU) STM library |!
1 1
C U -
— e S S D S S I S S I S S S iy
. 1
E ! § High Performance JRE | | Portable Standard |; Java
Fortran, I = (IBMJ9 VM Java5Runtime |i Runtime
% JCU thread pool C/C++ ‘_IP £ + Testarossa JIT Environment i
s ’ DLL’s Dl e Compiler (Runs on !
[@)) ; o modified for X10 multiple !
8 | D on PPC/AIX) Platforms) !
. 1
a e S o - - - - - - - - ———-

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Current Status 07/2006

[l
il
v i“

||HL||

|
i

09/03

PERCS

Operational X10 implementation (since 02/2005)

Kickoff

02/04
—

X10
Kickoff

07/04

X10
0.32
Spec
Draft

02/05

X10
Prototype
#1

07/05
X10

Parser: ~45/14K*
*Translator: ~112/9K

» Translator based on
Polyglot (Java compiler

Productivity framework)

S : *RTS: ~190/10K —revised for JUC
12/05 » X10 extensions are

%10 modular. *Polyglot base: ~517/80K
Prottypez Uses Jikes parser *Approx 280 test cases.

09/06 generator. (* classes+interfaces/LOC)

Open Source Release

Code
X10
o Templates Multithreaded
Annotated Target RTS Native
AST AST Java code
—P> Parser —»| Analysis passes ——| Code emitter |———] IVM D
X10
source l
: Program
Structure Code metrics output

New features

* Dependent types
(places, arrays)

» Better codegen.
e Implicit syntax support.

* More functionality for
points, arrays.

© 2005 IBM Corporation

IBM Research: Software Technology

X10DT: Enhancing productivity

X10 Launch {SEGrvn enchSizeA. x10 - Eclipse SDK CEX Source editor W/ Syntax
. . File Edit Source Davigate Search Praject ¥10 Run Window Help
Configuration e e e L : highlighting, auto indenting,

FT— e L L 5= e 51 some content assist
4| B% Y| imeort. igtutil.®; A | = ® ssFaypBenchsizes
=1 © bodlean run)
fiz Test 9 :
o g10Test public class JGFCryptBenchSized { @ woid main(String[Ty
b =G boxedsoolean
= 1 (default package) public hoolean run(] { 2 val: bookean
i 1) Arayt java
- [1] JGFCryptBenchsizef java JGFInstrumentor.printHeader (2,0) 7
1] sparseMatmulAlyvsluesClean.j.
] Test.java JGFCryptBench cb = new JGFCryptBenchi):
[41 TestClent.java b JGFrun (0] ¢
& 1] Tester.java return true:

(5] value1 java

IGFCryptBenchsizeAx10 s
SparseMatmutAllassClsan, <10 & ks methad
Test.xl b
TestClient. x10
Tester.x10 i
Valuel.x10 public static void maini(String(] args) { . .
=4 RS sen by et 51 Tanal poxedzonisan e bosediasiosn() Outline View populated w/
&) ECLIPSE_HOME plugins c10.runtime_t try { .
asoptih finish async b.val= (new JGFCryptBenchSized()).run(); XlO b 1
B o) oaten (epvebie s ! 7 s, members, loops

5 inTest2 e.princStackTrace(]:
b.val=false:
)
System.out.println{"++++++ "+(b.val?"Test succeeded.':"Test failed.")):
%10, Lang. Runtime, setExitCods (B, val?0:1) ;

)
static class boxedBoolean {
boolean val=false;

-

Froblems £ Javadoc Decaration | Error Log Phigrin Regstry | Cansole | JkesPG Cansole ® 57 -0
0 errors, 13 warnings, O infos (Filter matched 13 of 19 kems)

| Description | Resource | 1n Folder | Location |4
& The import x10.Jang s never used G CryptBenchsizen. jave R10Testjsrc Ine 1 .
& The locel varisble d_riz s never resd SparseMletmutalialuesClean jsva K10Testisrc e 242 X10 Incremental Builder:
) The local variable d_nthread is never read SparseblatmutAlvaluesClean java X10Testisrc ezt cremental u er;
& The lacsl variable iis never resd SparseMatmultallvaluesClean java ¥10Testisrc line 262 P bl V I t d
8 T e veriin 5 evor o v ANobesClan o HOTodise oo L roolems view populate
& Thelocal variable s never read SparseblatmutallaluesClean java X10Testisrc ne 302 / X10 I
& The local variabe i never read Sparsetlamutallicheslemn fova KL0Testisre ne é27 w compiler messages
@ The import x10.lang is never used Test.java K10Testisrc line 1

|| & The local variable 115 niever read Test java 10Testisrc —
| | Witable | SmartInsert | 22:1 |

= Code editing Data visualization

* Refactoring

Debugging
= Code visualization

Static performance analysis
Vision: State-of-the-art IDE for a modern OO language for HPC

Programming Technologies

© 2005 IBM Corporation

IBM Research: Software Technology

X10 Applications/Benchmarks

= Java Grande Forum = NAS PB
— OOPSLA Onwards! 2005 — CG, MG (IBM)
— Showed substantial (SLOC) - CG, FT, EP (Padua et al,

UIUC)

benefit in serial > parallel 2> _
— Cannon, LU variant (UIUC)

distributed transition for X10
vs Java (qua C-like
language).
= SSCA
— SSCA#1 (PSC study)
— SSCA#2 (Bader et al,
UNM/GT)
— SSCA#3 (Rabbah, MIT)
= Sweep3d

— Jim Browne (UT Austin)
Measures: SLOC as a “stand in” + process measures.

= AMR (port from Titanium)
— In progress, IBM

= SpecJBB
— In progress, Purdue

Programming Technologies

© 2005 IBM Corporation

IBM Research: Software Technology

Advanced Topics

)
Q
(@)
ks
@)
a8
L
O
(0]
|_
(@)}
£
=
£
©
S
(@))
@
S
o

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Dependent types

[l
il
il
[

A
i
.plj

s

= Class or interface that is a
function of values.

= Programmer specifies
properties of a type — public
final instance fields.

= Programmer may specify

refinement types as

predicates on properties

— T(Vq...,V, 1 C)

— all instances of t with the
values f==v, satisfying c.

— C Is a boolean expression
over predefined predicates.

public class List(int(: n >=0)

this(:n>0) oject

val ue;

this(:n>0) List(n-1) tail
List(t.n+1l) (Object o, List t)

n) A{

{

n=t.n+l; tail=t;val ue=o0;}
List(0) () { n=20; }
this(0) List(l.n) a(List 1) {

return |; }

this(:n>0) List(n+l.n) a(List |I) {

return new List(value, tai

}

List(n+l.n) append(List I) {

return n==07?

this(0).a(l) :

t hi s(: n>0)

-append(1));

ca(l);

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Place types

[l
ot
iy

||I1

= Every X10 reference inherits
the property (place loc) from
X10RefClass.

= The following types are
permitted:

— Foo@? = Foo
— Foo =» Foo(: loc == here)
— Foo@x = Foo(: loc == x.loc)

= Place types are checked by
place-shifting operators
(async, future).

class Tree (boolean I1) {
nul | abl e<Tree>(:this. Il =>
(I'l& I oc==here)) @ Ileft;
nul | abl e<Tree> ri ght;
i nt node;
Tree(l) (final boolean I,
nul | abl e<Tree>(:1 =>
(I'l & oc==here)) @ |eft,
nul | abl e<Tree> right,
int s) {
Il1=l; this.left=left; this.right=right;
node=s;

}

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Region and distribution types (1/2)

il
il
i

[l

|
|

i

abstract value class point (nat rank) {

t ype nat
abstract

=int(: self >=0) ;
static value class factory {

abstract point(val.length) point(final int[] val);
abstract point(l) point(int vl);
abstract point(2) point(int vl, int v2),;

)

point(rank) (nat rank) { this.rank = rank; }

abstract
abstract

abstract
abstract

abstract
abstract

int get(nat(: I <=n) n);

bool ean onUpper Boundary(region r,
nat(:i <= r.rank) i);

publ i ¢ bool ean onLower Boundary(region r,
nat(:i <= r.rank) i);

bool ean gt (point(rank) p);

bool ean It (point(rank) p);

poi nt (rank) mul (point(rank) p);

Dependent types statically express many important relationships between data.

© 2005 IBM Corporation

I
il
[

IBM Research: Software Technology

]|

A
i
1w

Region and distribution types (2/2)

class point (nat rank) { ... }
cl ass region (nat rank, boolean rect, boolean IowZero) { ... }

cl ass dist(nat rank, bool ean rect, bool ean | owZer o,
region(rank, rect,| owZero) region,
bool ean | ocal, boolean safe) { ... }

cl ass Array<T>(nat rank, bool ean rect,
bool ean | owZer o,
region(rank, rect, | owZero) region,
bool ean | ocal, bool ean safe,
bool ean(: sel f==(thi s. rank==1) & ect & owZer o& ocal) rail,
di st (rank, rect, |owZero, region,local,safe) dist) { ... }

Programming Technologies

Dependent types statically express many important relationships between data.

© 2005 IBM Corporation

il
il
i

[l
T

IBM Research: Software Technology

1]
]
]|

Implicit syntax

= Use conventional syntax for = Invoke a method
operations on values of synchronously on values of
remote type: remote type

x.f =e //wite x.f of type T = & mel, ..en);

=» final Tv = e; -?inal .
finish async(x.loc) { tinal TL vl = ei'
X. f=v; ,
} final Tn vn = en;
= .= .x.f .[/read x.f of type T flcli?visyn$n§y.loc) {
9 } 1 T 1

future<T>(x.loc){x.f}.force()

Similarly for array reads and
writes.

= Similarly for methods
returning values.

Programming Technologies

© 2005 IBM Corporation

Programming Technologies

IBM Research: Software Technology

Tiled regions

= = ====
= —

3

= Tiled region (TR) is a
region or an array (indexed
by aregion) of tiled
regions.

region(2) R =[1:NK];
region(l:rect)[] S =
new region[[1: K]]

(point [P]){[(i-1)*N+1:1*N};

region[] S1 = new region[]
{[1:N], [N+1: 2N };
= Examples:
— Blocked, cyclic, block
cyclic
— Arbitrary, irregular cutsets

= Tiled region is a tree with

leaves labeled with regions.
— TR depth = depth of tree

— TR uniform = all leaves at
same depth

— Tile = region labeling a leaf
— Orthogonal TR = tiles do not
overlap

— Convex TR = each tile is
convex.

= A tiled region provides

natural structure for
distribution.

User defined distributions

© 2005 IBM Corporation

IBM Research: Software Technology

Open Issues and Future Work

v
Q
(@)
ks
®)
-
@
O
(¢b)
|_
(@)}
=
=
£
©
S
(@))
o
S
o

© 2005 IBM Corporation

= = ====
= —

3

IBM Research: Software Technology

Future Plans

= X10 APlin C, Java = Annotations
— X10 Core Library — Externalized AST
- asyncs, future, finish, representation for source to
atomic, clocks, remote source transformations.
references
_ — Meta-language for
— X10 Global Structures lerary programmers to Specify their
3 - Arrays, points, regions, own annotations and
ki distributions transformations
o
i
é = Optimized SMP imp = SAFARI
= — Locality-aware — Support for annotations.
i= — Good single-thread pert. — Support for refactorings
g — Efficient inter-language calls
£ = Application development
(@
o

© 2005 IBM Corporation

IBM Research: Software Technology

il
ill
i

[
I

I
L]
[t

[l

HPC Landscape: 20K view our VleW!

MPI + C/Fortran | C.OMP | ZPL | CAF | UPC | Ti | X10 | HPL

20107?

- Convenient? X+ v V? | V= | V= | V= V2 VH
‘S | Global view? X X V| VvV V| v
© | Object-oriented? X X X X X | v | Vv | v+
g Strong-typing? V? X v? | V? X v | v+ | V+

. g Exceptions? X X X X X vV | v+ | v+
-% Managed Runtime? X X X X X | V= | v+ | 4+
'§ - Perf Transparency v v v v v vV | V? | J+
§ D | Perf Portability v X Vv | v | v2 | V| V2| v+
; Perf Scalability v X Vv Vv Vo V2| V2| v+
g _| Data-structures? X Vv X X Vv vV | v+ | J+
g ;l Explicit parallelism? 4 v X v v vV | v+ | J+
=2l LLI | Task parallelism? X Vv X X | X | v+ | v+
o8 Fork-join parallelism? v v+ | V+

© 2005 IBM Corporation

