
IBM Research: Software Technology

© 2005 IBM Corporation1

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

X10: Concurrent Object-Oriented
Programming for Modern Architectures

Vijay Saraswat, Christoph von Praun
September, 2006
IBM Research

IBM Research: Software Technology

© 2005 IBM Corporation2

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Tutorial outline

1) X10 Project

2) X10 Introduction
– cheat sheets
– Hello world
– comparison to Java

3) Sequential X10

4) Concurrency in X10
– activities
– atomic blocks
– clocks, clocked variables

5) Distributed X10
– places
– distributions and distributed

arrays

6) X10 Array Language

7) Current Status and Future
Work

IBM Research: Software Technology

© 2005 IBM Corporation3

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

X10 Project

IBM Research: Software Technology

© 2005 IBM Corporation4

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Acknowledgments

Recent Publications
1. "X10: An Object-Oriented Approach to Non-Uniform

Cluster Computing", P. Charles, C. Donawa, K.
Ebcioglu, C. Grothoff, A. Kielstra, C. von Praun, V.
Saraswat, V. Sarkar. OOPSLA conference, October
2005.

2. "Concurrent Clustered Programming", V. Saraswat,
R. Jagadeesan. CONCUR conference, August
2005.

3. "An Experiment in Measuring the Productivity of
Three Parallel Programming Languages”, K.
Ebcioglu, V. Sarkar, T. El-Ghazawi, J. Urbanic. P-
PHEC workshop, February 2006.

4. "X10: an Experimental Language for High
Productivity Programming of Scalable Systems", K.
Ebcioglu, V. Sarkar, V. Saraswat. P-PHEC
workshop, February 2005.

Upcoming tutorials
� OOPSLA 2006

� X10 Core Team
– Rajkishore Barik
– Chris Donawa
– Allan Kielstra
– Igor Peshansky
– Christoph von Praun
– Vijay Saraswat
– Vivek Sarkar
– Tong Wen

� X10 Tools
– Philippe Charles
– Julian Dolby
– Robert Fuhrer
– Frank Tip
– Mandana Vaziri

� Emeritus
– Kemal Ebcioglu
– Christian Grothoff

� Research colleagues
– R. Bodik, G. Gao, R. Jagadeesan, J.

Palsberg, R. Rabbah, J. Vitek
– Several others at IBM

IBM Research: Software Technology

© 2005 IBM Corporation5

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

A new era of mainstream parallel processing

The Challenge
Parallelism scaling replaces frequency scaling as foundation for
increased performance � Profound impact on future software

Multi-core chips Cluster ParallelismHeterogeneous Parallelism

16B/cycle (2x)16B/cycle

BIC

FlexIOTM

MIC

Dual
XDRTM

16B/cycle

EIB (up to 96B/cycle)

16B/cycle

64-bit Power Architecture with VMX

PPE

SPE

LS

SXU
SPU

SMF

PXUL1

PPU

16B/cycle

L2
32B/cycle

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

16B/cycle (2x)16B/cycle

BIC

FlexIOTM

MIC

Dual
XDRTM

16B/cycle

EIB (up to 96B/cycle)

16B/cycle

64-bit Power Architecture with VMX

PPE

SPE

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

PXUL1

PPU

16B/cycle
PXUL1

PPU

16B/cycle

L2
32B/cycle

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF
. . .

L2 Cache

PEs,
L1 $

PEs,
L1 $

. . .

. . .
. . .

L2 Cache

PEs,
L1 $

PEs,
L1 $

. . .

Memory

PEs,

SMP Node
PEs,

.

Memory

PEs,

SMP Node
PEs,

Interconnect

Our response:
Use X10 as a new language for parallel hardware that builds on
existing tools, compilers, runtimes, virtual machines and libraries

IBM Research: Software Technology

© 2005 IBM Corporation6

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Support for scalability

� Axiom: Provide constructs to deal
with non-uniformity of access.

� Axiom: Build on asynchrony. (To
support efficient overlap of
computation and communication.)

� Axiom: Use scalable synchronization
constructs.

� Axiom: Permit programmer to specify
aggregate operations.

The X10 programming model

Support for productivity

� Axiom: Exploit proven OO benefits
(productivity, maintenance, portability
benefits).

� Axiom: Rule out large classes of
errors by design (Type safe, Memory
safe, Pointer safe, Lock safe, Clock
safe …)

� Axiom: Support incremental
introduction of explicit place
types/remote operations.

� Axiom: Integrate with static tools
(Eclipse) -- flag performance
problems, refactor code, detect
races.

� Axiom: Support automatic static and
dynamic optimization (CPO).

IBM Research: Software Technology

© 2005 IBM Corporation7

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Our philosophy

� Be conservative strategically,
aggressive tactically.

� Build on sound foundations,
but design for the
programmer.
– Not the theoretician, not the

language designer.

� Use Occam’s Razor.
– Avoid a variety of linguistic

mechanisms for the same
programming idiom.

� Steal.

� Focus on a few things, do
them well.

� Keep the language small.
� Keep the language

orthogonal.

� Ensure the language “grows
on you.”

� Exploit structure in
concurrency.

� Make easy things easy, hard
things possible.

IBM Research: Software Technology

© 2005 IBM Corporation8

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

The X10 programming model

Place = collection of resident
activities & objects

Storage classes
� Immutable Data
� PGAS

– Local Heap
– Remote Heap

� Activity Local

Locality Rule
Any access to a mutable
datum must be performed by a
local activity � remote data
accesses can be performed by
creating remote activities

Ordering Constraints (Memory Model)
Locally Synchronous:
Guaranteed coherence for local heap �
Sequential consistency

Globally Asynchronous:
No ordering of inter-place activities �
use explicit synchronization for coherence

IBM Research: Software Technology

© 2005 IBM Corporation9

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

X10 project landscape

� Core
concurrency
and
distribution
design.

� Array
language
design

V1 � V2

� X10DT

� Dependent
types

� Generics

� X10lib

� JVM
implementation

� XVM spec

� Annotations� Memory
model

� FP
semantics

� Relaxed
exceptions

� Place types

� Extern
interface

� Implicit
syntax

02/04 07/04 02/05 07/05 02/06 07/06

� Applications

� Tiled
regions

IBM Research: Software Technology

© 2005 IBM Corporation10

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Tutorial outline

1) X10 Project

2) X10 Introduction
– cheat sheets
– Hello world
– comparison to Java

3) Sequential X10

4) Concurrency in X10
– activities
– atomic blocks
– clocks, clocked variables

5) Distributed X10
– places
– distributions and distributed

arrays

6) X10 Array Language

7) Current Status and Future
Work

IBM Research: Software Technology

© 2005 IBM Corporation11

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

X10 Cheat Sheet

IBM Research: Software Technology

© 2005 IBM Corporation12

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

X10 v0.41 Cheat sheet

Stm:

async [(Place)] [clocked ClockList] Stm

when (SimpleExpr) Stm

finish Stm

next; c.resume() c.drop()

for(i : Region) Stm

foreach (i : Region) Stm

ateach (I : Distribution) Stm

Expr:

ArrayExpr

ClassModifier : Kind

MethodModifier: atomic

DataType:

ClassName | InterfaceName | ArrayType

nullable DataType

future DataType

Kind :

value | reference

x10.lang has the following classes (among
others)

point, range, region, distribution, clock, array

Some of these are supported by special syntax.

Forthcoming support: closures, generics, dependent types, array literals.

IBM Research: Software Technology

© 2005 IBM Corporation13

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

X10 v0.41 Cheat sheet: Array support
ArrayExpr:

new ArrayType (Formal) { Stm }

Distribution Expr -- Lifting

ArrayExpr [Region] -- Section

ArrayExpr | Distribution -- Restriction

ArrayExpr || ArrayExpr -- Union

ArrayExpr.overlay(ArrayExpr) -- Update

ArrayExpr. scan([fun [, ArgList])

ArrayExpr. reduce([fun [, ArgList])

ArrayExpr.lift([fun [, ArgList])

ArrayType:

Type [Kind] []

Type [Kind] [region(N)]

Type [Kind] [Region]

Type [Kind] [Distribution]

Region:

Expr : Expr -- 1-D region

[Range, …, Range] -- Multidimensional Region

Region && Region -- Intersection

Region || Region -- Union

Region – Region -- Set difference

BuiltinRegion

Dist:

Region -> Place -- Constant distribution

Distribution | Place -- Restriction

Distribution | Region -- Restriction

Distribution || Distribution -- Union

Distribution – Distribution -- Set difference

Distribution.overlay (Distribution)

BuiltinDistribution

Language supports type safety, memory safety, place safety, clock safety.

IBM Research: Software Technology

© 2005 IBM Corporation14

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

X10 Startup

� Translation
� Machine model
� Startup
� Hello World

IBM Research: Software Technology

© 2005 IBM Corporation15

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

X10 prototype implementation

Foo.x10

x10c X10 compiler --- translates Foo.x10 to Foo.java,
uses javac to generate Foo.class from Foo.java

Foo.class

X10 source program --- must contain a class named
Foo with a “public static void main(String[] args)
method

X10 Virtual Machine
(JVM + J2SE libraries +

X10 libraries +
X10 Multithreaded Runtime)

External DLL’s
X10 extern
interface

X10 Abstract Performance Metrics
(event counts, distribution efficiency)X10 Program Output

X10 program translated into Java ---
// #line pseudocomment in Foo.java
specifies source line mapping in Foo.x10

Foo.java

x10c Foo.x10

x10 Foo

IBM Research: Software Technology

© 2005 IBM Corporation16

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Examples of X10 compiler error messages

1) x10c TutError1.x10
TutError1.x10:8: Could not find field or local variable "evenSum".

for (int i = 2 ; i <= n ; i += 2) evenSum += i;
^----^

2) x10c TutError2.x10
x10c: TutError2.x10:4:27:4:27: unexpected token(s) ignored

3) x10c TutError3.x10
x10c: C:\vivek\eclipse\workspace\x10\examples\Tutorial\TutError3.java:49:

local variable n is accessed from within inner class; needs to be declared

final

Case 1: Error message
identifies source file and

line number

Case 2: Error message
identifies source file, line

number, and column range

Case 1: Carats indicate
column range

Case 3: Error message reported by Java
compiler – look for #line comment in .java file to

identify X10 source location

IBM Research: Software Technology

© 2005 IBM Corporation17

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Sequential X10

place.FIRST_PLACE place.LAST_PLACE...

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello, world!");

}

}

root activity

place.MAX_PLACES

Runtime constant.
Can be changed by using the
NUMBER_OF_LOCAL_PLACES
option in x10 command line

IBM Research: Software Technology

© 2005 IBM Corporation18

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Parallel X10

place.FIRST_PLACE place.LAST_PLACE...

public class HelloWorld2 {

public static void main(String[] args) {

foreach (point [p] : [1:2])

System.out.println("Hello from activity " + p + "!");

}

}

place.MAX_PLACES

root activity

IBM Research: Software Technology

© 2005 IBM Corporation19

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Distributed X10

place.FIRST_PLACE place.LAST_PLACE...

public class HelloWorld2 {

public static void main(String[] args) {

ateach (place p: dist.factory.unique(place.MAX_PLACES))

System.out.println("Hello from place " + p + "!");

}

}
Current prototype simulates places within one Java virtual machine.
Distributed X10 implementation being developed at Purdue University.

place.MAX_PLACES

root activity

IBM Research: Software Technology

© 2005 IBM Corporation20

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Comparison with Java

IBM Research: Software Technology

© 2005 IBM Corporation21

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Comparison with Java (1/2)

X10 language builds on the Java language

Shared underlying philosophy: shared syntactic and
semantic tradition, simple, small, easy to use,
efficient to implement, machine independent

X10 does not have:
� Dynamic class loading
� Java’s concurrency features

– thread library, volatile, synchronized, wait, notify

X10 restricts:
� Class variables and static initialization

IBM Research: Software Technology

© 2005 IBM Corporation22

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Comparison with Java (2/2)

X10 adds to Java:
� value types, nullable
� Array language

– Multi-dimensional arrays,
aggregate operations

� New concurrency features
– activities (async, future),

atomic blocks, clocks
� Distribution

– places
– distributed arrays
� A formal memory model
� FP support

Future work

IBM Research: Software Technology

© 2005 IBM Corporation23

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Tutorial outline

1) X10 Project

2) X10 Introduction
– cheat sheets
– Hello world
– comparison to Java

3) Sequential X10

4) Concurrency in X10
– activities
– atomic blocks
– clocks, clocked variables

5) Distributed X10
– places
– distributions and distributed

arrays

6) X10 Array Language

7) Current Status and Future
Work

IBM Research: Software Technology

© 2005 IBM Corporation24

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Sequential X10

� Overview
� value types
� nullable types
� Safety properties

IBM Research: Software Technology

© 2005 IBM Corporation25

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Sequential X10

� Classes and interfaces
� Fields, methods,

Constructors
� Encapsulated state
� Single inheritance
� Multiple interfaces
� Nested/Inner/Anon classes

� Static typing
� Objects, GC
� Statements
� Conditionals,

assignment,…
� Exceptions (but relaxed)

? Not included
? Dynamic linking
? User-definable class

loaders
x Changes

x Value types
x Aggregate data/operations
x Space: Distribution
x Time: Concurrency

x Changes planned
x Generics
x FP support

IBM Research: Software Technology

© 2005 IBM Corporation26

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Value types : immutable instances

value class
– Can only extend value class

or x10.lang.Object.
– All fields are implicitly final
– Can only be extended by

value classes.
– May contain fields with

reference type.
– May be implemented by

reference or copy.

Values are equal (==) if their
fields are equal, recursively.

public value complex {
double im, re;
public complex(double im,

double re) {
this.im = im;
this.re = re;

}
public complex add(complex a)
{
return new complex(im+a.im,

re+a.re);
} …
}

IBM Research: Software Technology

© 2005 IBM Corporation27

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

X10 safety properties

Type safety

Based on type safety:
� Memory safety
� Pointer safety
� Clock safety
� Place safety

� Every location has a static type
� Runtime invariant

A location contains only those
values whose dynamic type
satisfies the constraints imposed
by the location’s static type.

� Every value has a dynamic
type

� Runtime invariant
Every runtime operation
performed on the value in a
location is permitted by the
static type of the location.

IBM Research: Software Technology

© 2005 IBM Corporation28

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Memory safety

� No “ill mem ref”
– No object can have a

reference to an object who’s
memory has been freed.

– X10 uses garbage collection.
� Every value read from a

location has been previously
written into the location.
– No uninitialized variables.

� An object may only access
memory within its
representation, and other
objects it has a reference to.
– X10 supports no pointer

arithmetic.
– Array access is bounds-

checked dynamically (if
necessary).

Runtime invariants

IBM Research: Software Technology

© 2005 IBM Corporation29

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Pointer safety

X10 supports the nullable type constructor.
� For any datatype T, the datatype nullable T contains all the value of

T and null.
� If a method is invoked or a field is accessed on the value null, a

NullPointerException (NPE) is thrown.

Runtime invariant
No operation on a value of type T, which is not of the form nullable
S, can throw an NPE.

public interface Table {

void put(Object o);

nullable Object get(Object o);
}

public class Foo {
boolean check (Table h) {

return h.get(this) != null;
}

}

May return null

Cannot throw NPE.

IBM Research: Software Technology

© 2005 IBM Corporation30

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Safety: Static vs. dynamic checking

X10 virtual machine maintains a set of invariants
(type safety).

� Some guarantees through static type check.
� Complementary "local" dynamic checks.
� Semantic annotations and static analysis / program

transformations reduce the frequency of dynamic checks.

IBM Research: Software Technology

© 2005 IBM Corporation31

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Dynamic checks

BadPlaceException
� Local access to

remote object

ClockUseException
� Access to clock on which current activity is not registered.
� Pass-on of clocks on which the current activity is not live.

ArrayIndexOutOfBoundsException
... <and others like Java>

void m (Object o) {
if (o.location == here)

// local method invocation
o.foo();

else
// remote method invocation
finish async (o.location) o.foo();

}

IBM Research: Software Technology

© 2005 IBM Corporation32

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

X10 Standard Library

IBM Research: Software Technology

© 2005 IBM Corporation33

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

x10.lang standard library

Java package with “built in” classes that provide support for selected X10
constructs

� Standard types
– boolean, byte, char, double, float, int, long, short, String

� x10.lang.Object -- root class for all instances of X10 objects
� x10.lang.clock --- clock instances & clock operations
� x10.lang.dist --- distribution instances & distribution operations
� x10.lang.place --- place instances & place operations
� x10.lang.point --- point instances & point operations
� x10.lang.region --- region instances & region operations

All X10 programs implicitly import the x10.lang.* package, so the x10.lang
prefix can be omitted when referring to members of x10.lang.* classes

� e.g., place.MAX_PLACES, dist.factory.block([0:100,0:100]), …

Similarly, all X10 programs also implicitly import the java.lang.* package
� e.g., X10 programs can use Math.min() and Math.max() from java.lang

IBM Research: Software Technology

© 2005 IBM Corporation34

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

X10 Native Interface

IBM Research: Software Technology

© 2005 IBM Corporation35

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Interface to C / FORTRAN (1/2)

Key issues
� No memory safety in C and FORTAN
� X10 domain should be protected
� Efficient transition from X10 ↔ C/FORTAN

Calling conventions
� Value types are passed by value
� Instances of reference types and arrays have to be

allocated in unsafe memory to allow access from
C/FORTAN code.

IBM Research: Software Technology

© 2005 IBM Corporation36

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Interface to C / FORTRAN (2/2)

X10 side:
� Keyword extern for method declaration.
� Compiler generates X10 + C stub code

C/FORTRAN side:
� Stub implements interface generated by x10c and

calls native code
� Native code attached as shared library to VM

IBM Research: Software Technology

© 2005 IBM Corporation37

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Example: native code (1/2)

extern static void daxpy(int n, double da, double[] dx,
int incx, double[] dy,int incy);

public static void daxpy(int n, double da, double[] dx,
int incx, double[] dy,int incy) {

// Call C routine passing memory address
daxpy_C(n, da, dx.address(),incx, dy.address(),incy);

}

JNIEXPORT void JNICALL daxpy_C (X10Env* env, jobject obj,
xint a1, xdouble a2, xlong a3, xint a4, xlong a5, xint a6) {

daxpy_C (...);
}

extern static void daxpy_C(int n, double da, long dx,
int incx, long dy, int incy);

<daxpy C-code> in libblas.so

X10 program

C program

call

trans-

late

C

X10 compiler-
generated

IBM Research: Software Technology

© 2005 IBM Corporation38

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Example: native code (2/2)

class Daxpy {

static { System.loadLibrary("blas"); }
extern static void daxpy(int n, double da, double[] dx,

int incx, double[] dy, int incy);

public static void main(String args[]) {
final int N = 10;
double da = 2.0;
double[] dx = new unsafe double [N];
double[] dy = new unsafe double [N];
int incx = 1, incy = 1;

for (int i = 0; i < N; i++) {
dx[i] = 4.0;
dy[i] = 3.0;

}
daxpy (n, da, dx, incx, dy, incy);

}
}

call

declaration

IBM Research: Software Technology

© 2005 IBM Corporation39

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Tutorial outline

1) X10 Project

2) X10 Introduction
– cheat sheets
– Hello world
– comparison to Java

3) Sequential X10

4) Concurrency in X10
– activities
– atomic blocks
– clocks, clocked variables

5) Distributed X10
– places
– distributions and distributed

arrays

6) X10 Array Language

7) Current Status and Future
Work

IBM Research: Software Technology

© 2005 IBM Corporation40

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Concurrency in X10

� async, finish
� future, force
� foreach
� Global vs. local termination
� Exception handling
� Behavioral annotations
� Possible fallacies and synchronization defects
� Compilation aspects

IBM Research: Software Technology

© 2005 IBM Corporation41

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

async

async (P) S
� Creates a new child activity

at place P, that executes
statement S
� Returns immediately
� S may reference final

variables in enclosing blocks
� Activities cannot be named
� Activity cannot be aborted or

cancelled

// global dist. array
final double a[D] = …;
final int k = …;

async (a.distribution[99]) {
// executed at A[99]’s
// place
atomic a[99] = k;

}

Stmt ::= async PlaceExpSingleListopt Stmt

cf Cilk’s spawn

IBM Research: Software Technology

© 2005 IBM Corporation42

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

finish

finish S
� Execute S, but wait until all

(transitively) spawned asyncs have
terminated.

Rooted exception model
� Trap all exceptions thrown by

spawned activities.
� Throw an (aggregate) exception if

any spawned async terminates
abruptly.
� implicit finish at main activity

finish is useful for expressing
“synchronous” operations on
(local or) remote data.

finish ateach(point [i]:A)
A[i] = i;

finish async
(A.distribution [j])
A[j] = 2;

// all A[i]=i will complete
// before A[j]=2;

Stmt ::= finish Stmt

cf Cilk’s sync

IBM Research: Software Technology

© 2005 IBM Corporation43

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Termination

Local termination:
Statement s terminates locally when activity has completed all its
computation with respect to s.

Global termination:
Local termination + activities that have been spawned by s
terminated globally (recursive definition)

� main function is root activity
� program terminates iff root activity terminates.

(implicit finish at root activity)
� ‘daemon threads’ (child outlives root activity) not

allowed in X10

IBM Research: Software Technology

© 2005 IBM Corporation44

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Termination (Example)

public void main (String[] args) {
...
finish {
async {
for () {
async {...
}

}
finish async {...
}
...

}
} // finish

}

termination

local globalstart

IBM Research: Software Technology

© 2005 IBM Corporation45

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Rooted computation X10

root activity

public void main (String[] args) {
...
finish {
async {
for () {
async {...
}

}
finish async {...
}
...

}
} // finish

}

...

ancestor
relation

spawn hierarchy

root-of relation

IBM Research: Software Technology

© 2005 IBM Corporation46

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Rooted exception model

public void main (String[] args) {
...
finish {
async {
for () {
async {...
}

}
finish async {...
}
...

}
} // finish

}

...

root-of relation

exception flow along
root-of relation

Propagation along the lexical scoping:
Exceptions that are not caught inside an activity are propagated
to the nearest suspended ancestor in the root-of relation.

IBM Research: Software Technology

© 2005 IBM Corporation47

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Example: rooted exception model (async)

int result = 0;
try {

finish {
ateach (point [i]:dist.factory.unique()) {
throw new Exception (“Exception from “+here.id)

}
result = 42;

} // finish
} catch (x10.lang.MultipleExceptions me) {

System.out.print(me);
}
assert (result == 42); // always true

� no exceptions are ‘thrown on the floor’
� exceptions are propagated across activity and place

boundaries

IBM Research: Software Technology

© 2005 IBM Corporation48

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

future

future (P) S
� Creates a new child activity at

place P, that executes
statement S;
� Returns immediately.
� S may reference final variables

in enclosing blocks.

future vs. async
� Return result from

asynchronous computation
� Tolerate latency of remote

access.

// global dist. array
final double a[D] = …;
final int idx = …;

future<double> fd =
future (a.distribution[idx])
{
// executed at a[idx]’s
// place
a[idx];

};

Expr ::= future PlaceExpSingleListopt {Expr }

future type
� no subtype relation between T

and future<T>

IBM Research: Software Technology

© 2005 IBM Corporation49

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

future example

public class TutFuture1 {
static int fib (final int n) {

if (n <= 0) return 0;
else if (n == 1) return 1;
else {

future<int> fn_1 = future { fib(n-1) };
future<int> fn_2 = future { fib(n-2) };
return fn_1.force() + fn_2.force();

}
}

public static void main(String[] args) {
System.out.println("fib(10) = " + fib(10));

}
}

� Divide and conquer: recursive calls execute concurrently.

IBM Research: Software Technology

© 2005 IBM Corporation50

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Example: rooted exception model (future)

double div (final double divisor)
future<double> f = future { return 42.0 / divisor; }
double result;
try {
result = f.force();

} catch (ArithmeticException e) {
result = 0.0;

}
return result;

}

� Exception is propagated when the future is forced.

IBM Research: Software Technology

© 2005 IBM Corporation51

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

foreach

foreach (point p: R) S
� Creates |R| async statements in parallel at current place.

� Termination of all (recursively created) activities can be ensured
with finish.

� finish foreach is a convenient way to achieve master-slave
fork/join parallelism (OpenMP programming model)

foreach (FormalParam: Expr) Stmt

for (point p: R)
async { S }

foreach (point p:R) S

IBM Research: Software Technology

© 2005 IBM Corporation52

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Behavioral annotations

nonblocking
On any input store, a nonblocking method can continue execution or
terminate. (dual: blocking, default: nonblocking)

recursively nonblocking
Nonblocking, and every spawned activity is recursively nonblocking.

local
A local method guarantees that its execution will only access variables
that are local to the place of the current activity.
(dual: remote, default: local)

sequential
Method does not create concurrent activities.
In other words, method does not use async, foreach, ateach.
(dual: parallel, default: parallel)

Sequential and nonblocking imply recursively nonblocking.

IBM Research: Software Technology

© 2005 IBM Corporation53

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Static semantics

� Behavioral annotations are checked with a conservative
intra-procedural data-flow analysis.

� Inheritance rule: Annotations must be preserved or
strengthened by overriding methods.

� Multiple behavioral annotations must be mutually
consistent.

Note: Checking is not currently implemented.

IBM Research: Software Technology

© 2005 IBM Corporation54

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Data races with async / foreach

final double arr[R] = …; // global array

class ReduceOp {
double accu = 0.0;
double sum (double[.] arr) {

foreach (point p: arr) {
atomic accu += arr[p];

}
return accu;

}

concurrent conflicting
access to shared variable:
data race

X10 guideline for avoiding data races:
� access shared variables inside an atomic block
� combine ateach and foreach with finish
� declare data to be read-only where possible (final or value type)

finish

IBM Research: Software Technology

© 2005 IBM Corporation55

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Futures can deadlock

nullable future<int> f1=null;

nullable future<int> f2=null;

void main(String[] args) {

f1 = future(here){a1()};

f2 = future(here){a2()};

f1.force();

}

int a1() {
nullable future<int> tmp=null;
do {

tmp=f2;
} while (tmp == null);
return tmp.force();

}

int a2() {
nullable future<int> tmp=null;
do {

tmp=f1;
} while (tmp == null);
return tmp.force();

}

X10 guidelines to avoid deadlock:
� avoid futures as shared variables
� force called by same activity that created body of future

cyclic wait condition

IBM Research: Software Technology

© 2005 IBM Corporation56

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Compilation aspects

Activity inlining

Conditions
� body is recursively non-blocking
� body is local

foreach (point[i] : a.region.dim(0))
for (point[j] : a.region.dim(1))

a[i,j] = f (a[i,j]);

foreach (point[i,j] : a.region)
a[i,j] = f (a[i,j]);

for (point[i,j] : a.region)
a[i,j] = f (a[i,j]);

IBM Research: Software Technology

© 2005 IBM Corporation57

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Memory Model

IBM Research: Software Technology

© 2005 IBM Corporation58

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Aside: Memory Model

� X10 v 0.41 specifies
sequential consistency per
place.
– atomic blocks / finish /

force have acquire-release
semantics.

� We are considering a
weaker memory model.

� Built on the notion of
atomic: identify a step as
the basic building block.
– A step is a partial write

function.
� Use links for non hb-reads.

� A process is a pomset of
steps closed under certain
transformations:
– Composition
– Decomposition
– Augmentation
– Linking
– Propagation

� There may be opportunity
for a weak notion of atomic:
decouple atomicity from
ordering.

Please see: http://www.saraswat.org/rao.html

IBM Research: Software Technology

© 2005 IBM Corporation59

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Concurrency Control: Transactional Memory

� Atomic blocks
� Conditional atomic blocks, when, await
� Fallacies, synchronization defects
� Compilation aspects

IBM Research: Software Technology

© 2005 IBM Corporation60

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Atomic blocks simplify parallel programming

� No explicit locking
– No need to worry about lock

management details: What to
lock, in what order to lock.

� No underlocking/overlocking
issues.

� No need for explicit
consistency management
– No need to carry mapping

between locks and data in
your head.

� System can manage locks and
consistency better than user

� Enhanced performance
scalability
– X10 distinguishes intra-place

atomics from inter-place
atomics.

– Appropriate hardware design
(e.g. conflict detection) can
improve performance.

� Enhanced analyzability
– First class programming

construct
� Enhanced debuggability

– Easier to understand data races
with atomic blocks than with
critical sections/synchronization
blocks

IBM Research: Software Technology

© 2005 IBM Corporation61

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

atomic

� Atomic blocks are conceptually
executed in a single step while
other activities are suspended:
isolation and atomicity.

� An atomic block ...
– must be nonblocking
– must not create concurrent

activities (sequential)
– must not access remote data

(local) // push data onto concurrent
// list-stack
Node node = new Node(data);
atomic {

node.next = head;
head = node;

}

// target defined in lexically
// enclosing scope.
atomic boolean CAS(Object old,

Object new) {
if (target.equals(old)) {
target = new;
return true;

}
return false;

}

Stmt ::= atomic Statement
MethodModifier ::= atomic

IBM Research: Software Technology

© 2005 IBM Corporation62

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Static semantics of atomic blocks

An atomic block must...be local, sequential, nonblocking:

� ...not include blocking operations
– no await, no when, no calls to blocking methods
� ... not include access to data at remote places

– no ateach, no future, only calls to local methods
� ... not spawn other activities

– no async, no foreach, only calls to sequential methods

IBM Research: Software Technology

© 2005 IBM Corporation63

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

when

� when (E) S
– Activity suspends until a state in which

the guard E is true.
– In that state, S is executed atomically

and in isolation.

� Guard E
– boolean expression
– must be nonblocking
– must not create concurrent activities

(sequential)
– must not access remote data (local)
– must not have side-effects (const)

� await (E)
– syntactic shortcut for when (E) ;

Stmt ::= WhenStmt
WhenStmt ::= when (Expr) Stmt |

WhenStmt or (Expr) Stmt

class OneBuffer {
nullable Object datum = null;
boolean filled = false;

void send(Object v) {
when (! filled) {

datum = v;
filled = true;

}
}

Object receive() {
when (filled) {

Object v = datum;
datum = null;
filled = false;
return v;

}
}

}

IBM Research: Software Technology

© 2005 IBM Corporation64

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Static semantics of guard for when / await

� boolean field
� boolean expression with field access or constant values

class BufferBuffer {
..
void send(Object v) {

when (size() < MAX_SIZE)
{
datum = v;
filled = true;

}
}
...

}

compile-time error

IBM Research: Software Technology

© 2005 IBM Corporation65

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Exceptions in atomic blocks
� Atomicity guarantee only for successful execution.

– Exceptions should be caught inside atomic block
– Explicit undo in the catch handler

� (Uncaught) exceptions propagate across the atomic block boundary
� “The atomic statement only guarantees atomicity on successful

execution, not on faulty execution”

boolean move(Collection s, Collection d, Object o) {
atomic {
if (!s.remove(o)) {
return false; // object not found

} else {
try {
d.add(o);

} catch (RuntimeException e) {
s.add(o); // explicit undo
throw e; // exception

}
return true; // move succeeded

}
}

}

cf. [Harris CSJP’04]

IBM Research: Software Technology

© 2005 IBM Corporation66

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Transactions: Design rationale

Minimal requirements on runtime support for atomic blocks
– no rollback
– lock-based implementation possible

Weak atomicity model
– atomicity and isolation are only guaranteed with respect to other

transactions
� concurrent transactional and non-transactional access foils

transaction semantics.
� see memory model

Ordering
– Transactions issued by a thread are performed in program order.

Nesting
– atomic blocks: closed nesting as an optimization, no open nesting
– conditional atomic blocks: cannot be nested in other atomic blocks.

IBM Research: Software Technology

© 2005 IBM Corporation67

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Example: Loop parallelization

for (point p[i]: indexset)
{ ti; }

serial program

finish foreach (point p[i]: indexset)
{ ti; }

finish foreach (point p[i]: indexset)
{ atomic ti; }

data parallel (doall): only correct if ti have no data dependences.

task parallel: only correct if ti are commutative and associative.

IBM Research: Software Technology

© 2005 IBM Corporation68

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Example: Loop parallelization

// global shared var

final boolean [.] ti_done = new boolean [indexset.region];

finish foreach (point p[i]: indexset) {
if (i==0)
atomic { ti; ti_done[i] = true; }

else
when (ti_done[i-1]) { ti; ti_done[i] = true; }

}

speculative parallelization: always correct

� Transactions commit in program order.

� Implementations that are not based on speculative execution will
serialize this loop.

IBM Research: Software Technology

© 2005 IBM Corporation69

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Example use of atomic blocks: latching variable

class LatchVar {
boolean available = false;
double value;
atomic void set (double val) {

if (available) return false;
// these assignments happen only once.
this.value = val;
this.available = true;

}
double get () {

when (available) {
return this.value;

}
}
atomic boolean ready () { return available; }

}

IBM Research: Software Technology

© 2005 IBM Corporation70

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Example use of atomic blocks: future
LatchVar lv =
new RunnableLatch() {

public LatchVar run() {
LatchVar l = new LatchVar();
async (P) {

double X;
finish X = e;
l.setValue(X);

}
return l;

}
}.run();

double d = lv.get();

future<double> fv = future (P) { e }

double d = fv.force();

Exception handling and

type genericity are omitted

for clarity.

X10 language equivalent.

IBM Research: Software Technology

© 2005 IBM Corporation71

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Original Java code
// Main thread (see spec.jbb.Company): …

// Wait for all threads to start.

synchronized (company.initThreadsStateChange) {

while (initThreadsCount != threadCount) {

try {

initThreadsStateChange.wait();

} catch (InterruptedException e) {…}

}

} ...

// Tell everybody it’s time for warmups.

mode = RAMP_UP;

synchronized (initThreadsCountMonitor) {

initThreadsCountMonitor.notifyAll();

}

// Worker thread

// (see spec.jbb.TransactionManager): …

synchronized (company.initThreadsCountMonitor) {

synchronized (company.initThreadsStateChange) {

company.initThreadsCount++;

company.initThreadsStateChange.notify();

}

try {

company.initThreadsCountMonitor.wait();

} catch (InterruptedException e) {…}

} ...

X10 atomic sections
// Main thread: …
// Wait for all threads to start.
when(company.initThreadsCount==

threadCount) {
mode = RAMP_UP;
initThreadsCountReached = true;

} …

// Worker thread: …
atomic {

company.initThreadsCount++;
}

await (initThreadsCountReached);
//barrier synch.

…

Atomic blocks: Simplifying barrier synchronization

IBM Research: Software Technology

© 2005 IBM Corporation72

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Compilation aspects

Combine atomic blocks

// for all lines in parallel
finish foreach (...) {

// for each pixel of the line
for (point [x] : [0:interval.width-1]) {

Vec col = // determine pixel

// computes the color of the ray
int red = (int)(col.x * 255.0);
if (red > 255) red = 255;
int green = (int)(col.y * 255.0);
if (green > 255) green = 255;
int blue = (int)(col.z * 255.0);
if (blue > 255) blue = 255;
atomic checksum += red + green + blue;

} // end for (x)
}

atomic

IBM Research: Software Technology

© 2005 IBM Corporation73

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Concurrency Control: Clocks

� clock
� Clocks safety
� Clocked variables

IBM Research: Software Technology

© 2005 IBM Corporation74

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Clocks: Motivation

� Activity coordination using finish and force() is accomplished by
checking for activity termination

� However, there are many cases in which a producer-consumer
relationship exists among the activities, and a “barrier”-like coordination is
needed without waiting for activity termination
– The activities involved may be in the same place or in different places

Activity 0 Activity 1 Activity 2 . . .

Phase 0

Phase 1

. . .

IBM Research: Software Technology

© 2005 IBM Corporation75

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Clocks (1/2)

clock c = clock.factory.clock();
� Allocate a clock, register current activity with it. Phase 0 of c starts.

async(…) clocked (c1,c2,…) S
ateach(…) clocked (c1,c2,…) S
foreach(…) clocked (c1,c2,…) S
� Create async activities registered on clocks c1, c2, …

c.resume();
� Nonblocking operation that signals completion of work by current

activity for this phase of clock c

next;
� Barrier --- suspend until all clocks that the current activity is registered

with can advance. c.resume() is first performed for each such clock, if
needed.

� Next can be viewed like a “finish” of all computations under way in the
current phase of the clock

IBM Research: Software Technology

© 2005 IBM Corporation76

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Clocks (2/2)

c.drop();
� Unregister with c. A terminating activity will implicitly drop all clocks

that it is registered on.

c.registered()
� Return true iff current activity is registered on clock c
� c.dropped() returns the opposite of c.registered()

ClockUseException
� Thrown if an activity attempts to transmit or operate on a clock that it is

not registered on

IBM Research: Software Technology

© 2005 IBM Corporation77

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Semantics

Static semantics
– An activity may operate only on those clocks it is registered with.
– In finish S,S may not contain any (top-level) clocked asyncs.

Dynamic semantics
– A clock c can advance only when all its registered activities have

executed c.resume().
– An activity may not pass-on clocks on which it is not live to sub-

activities.
– An activity is deregistered from a clock when it terminates

Supports over-sampling, hierarchical nesting.

No explicit operation to register a clock.

IBM Research: Software Technology

© 2005 IBM Corporation78

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Behavioral annotations for clocks

clocked (c0,..., ck).

� A method m that spawns an async clocked(c0,...,ck) must declare
{c0,...,ck} (or a superset) in its annotation: clocked (c0,..., ck).
� {c0,...,ck} are fields of type clock declared in the calss that declares m.

IBM Research: Software Technology

© 2005 IBM Corporation79

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Example (TutClock1.x10)
finish async {
final clock c = clock.factory.clock();
foreach (point[i]: [1:N]) clocked (c) {

while (true) {
int old_A_i = A[i];
int new_A_i = Math.min(A[i],B[i]);
if (i > 1)

new_A_i = Math.min(new_A_i,B[i-1]);
if (i < N)

new_A_i = Math.min(new_A_i,B[i+1]);
A[i] = new_A_i;
next;
int old_B_i = B[i];
int new_B_i = Math.min(B[i],A[i]);
if (i > 1)

new_B_i = Math.min(new_B_i,A[i-1]);
if (i < N)

new_B_i = Math.min(new_B_i,A[i+1]);
B[i] = new_B_i;
next;
if (old_A_i == new_A_i && old_B_i == new_B_i)

break;
} // while

} // foreach
c.drop();

} // finish async

parent transmits clock
to child

exiting from while loop
terminates activity for
iteration i, and automatically
deregisters activity from clock

IBM Research: Software Technology

© 2005 IBM Corporation80

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Deadlock freedom

� Where is this useful?
– Whenever synchronization

pattern of a program is
independent of the data read
by the program

– True for a large majority of
HPC codes.

– (Usually not true of reactive
programs.)

� Central theorem of X10:
– Arbitrary programs with

async, atomic, finish (and
clocks) are deadlock-free.

� Key intuition:
– atomic is deadlock-free.
– finish has a tree-like

structure.
– clocks are made to satisfy

conditions which ensure tree-
like structure.

– Hence no cycles in wait-for
graph.

IBM Research: Software Technology

© 2005 IBM Corporation81

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Clocked final

� Clocks permit an elegant form of
determinate, synchronous
programming.

� Introduce a data annotation on
variables.
– clocked(c) T f = …;
– f is thought of as being “clocked

final” – it takes on a single value
in each phase of the clock,

� Introduce a new statement:
– next f = e;

� Statically checked properties:
– Variable read and written only by

activities clocked on c.
– For each activity registered on c,

there are no assignments to f.
– next f = e; is executed by

evaluating e and assigning value
to shadow variable for f.

� When c advances, each variable
clocked on c is given the value
of its shadow variable before
activities advance.

If activities communicate only via (clocked)
final variables, program is determinate.

Not yet implemented.

IBM Research: Software Technology

© 2005 IBM Corporation82

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Synchronous Kahn networks are CF (and DD-free)

� This idea may be generalized
to arbitrary mutable variables.
– Determinate imperative

programming.
� Each variable has an implicit

clock.
� Each variable has a stream of

values.
� Each activity maintains its own

index into stream.
� An activity performs

reads/writes per its index (and
advances index).
� Reads block.

clock c = new clock();

clocked(c) int x = 1, y=1;

async clocked (c)

while (true) {

next x = y; next;

}

async clocked (c)

while (true) {

next y = x+y; next;

}

Guaranteed determinate, though
programs may deadlock (cf.
asynchronous Kahn networks.)

IBM Research: Software Technology

© 2005 IBM Corporation83

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Clock safety

� An activity may be registered on one or more clocks
� Clock c can advance only when all activities registered

with the clock have executed c.resume() and all posted
activities have terminated globally.

Runtime invariant: Clock operations are guaranteed to
be deadlock-free.

IBM Research: Software Technology

© 2005 IBM Corporation84

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

...

warehousesmaster

RAMP_UP
RECORDING
RAMP_DOWN
STOP

phase 1

phase 2

finish

Clock example: SPECjbb
finish async {
final clock c = new clock();
final Company company =
createCompany(...);
for (int w : [0:wh_num]) {

async clocked(c) { // a warehouse
int mode;
atomic { mode = company.mode; };
initialize;
next; // 1.
while (mode != STOP) {
select a transaction;
think;
process the transaction;
if (mode == RECORDING)
record data;

if (mode == RAMP_DOWN)
next; // 2.

atomic { mode = company.mode; };
} // while

} // a warehouse
} // for
// ------ continued next column -->

// master activity
next; // 1.
atomic { company.mode = RAMP_UP; };
sleep rampuptime;
atomic { company.mode = RECORDING; };
sleep recordingtime;
atomic { company.mode = RAMP_DOWN; };
next; // 2.
// all clients in RAMP_DOWN
company.mode = STOP;

} // finish async
// simulation completed.
print results.

IBM Research: Software Technology

© 2005 IBM Corporation85

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Tutorial outline

1) X10 Project

2) X10 Introduction
– cheat sheets
– Hello world
– comparison to Java

3) Sequential X10

4) Concurrency in X10
– activities
– atomic blocks
– clocks, clocked variables

5) Distributed X10
– places
– distributions and distributed

arrays

6) X10 Array Language

7) Current Status and Future
Work

IBM Research: Software Technology

© 2005 IBM Corporation86

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Distributed X10

� Places
� Locality rule
� Distributions
� async, futures
� ateach
� Distributed arrays

IBM Research: Software Technology

© 2005 IBM Corporation87

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Places in X10

� place.MAX_PLACES = total number of places (runtime constant)
� place.places = value array of all places in an X10
� place.factory.place(i) = place corresponding to index i
� here = place in which current activity is executing
� <place-expr>.toString() returns a string of the form “place(id=99)”
� <place-expr>.id returns the id of the place

X10 Places

System Nodes

X10 language defines mapping from X10
objects to X10 places, and abstract

performance metrics on places

X10 Data Structures

Future X10 deployment system will define
mapping from X10 places to system nodes;

not supported in current implementation

IBM Research: Software Technology

© 2005 IBM Corporation88

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Locality rule

Any access to a mutable (shared heap) datum must be
performed by an activity located at the place as the
datum.

� direct access via a remote heap reference is not
permitted.

�Inter-place data accesses can only be performed by
creating remote activities (with weaker ordering
guarantees than intra-place data accesses)

�BadPlaceException is thrown if the locality rule is
violated.

IBM Research: Software Technology

© 2005 IBM Corporation89

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Place safety

� The X10 type system is place
sensitive.

� The static type of each location is
a pair T@P, where T is a datatype
and P is a placetype.
– PlaceType:

here | place | activity | current |

Place | ?

Runtime invariants:

� A reference stored in the
location must point to an
object located at the place
specified by the placetype.

� Activity local objects are not
shared

Currently being implemented, in collaboration with Palsberg and Grothoff.

Activity-local objects known to be not shared.

Place-local objects known to not need “fat pointer” references

Placetype system will help eliminate BadPlace checks

We believe this will lead to significant performance gains.

IBM Research: Software Technology

© 2005 IBM Corporation90

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

async and future with explicit place specifier

async (P) S
� Creates new activity to execute statement S at place P
� async S is equivalent to async (here) S

future (P) { E }
� Create new activity to evaluate expression E at place P
� future { E } is equivalent to future (here) { E }

Note that here in a child activity for an async/future computation will refer to
the place P at which the child activity is executing, not the place where
the parent activity is executing

Specify the destination place for async/future activities so as to obey the
Locality rule e.g.,

async (O.location) O.x = 1;
future<int> F = future (A.distribution[i]) { A[i] } ;

IBM Research: Software Technology

© 2005 IBM Corporation91

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Inter-place communication using async and future

Question: how to assign A[i] = B[j], when A[i] and B[j]
may be in different places?

Answer #1: Use nested async:

finish async (B.distribution[j]) {
final int bb = B[j];
async (A.distribution[i]) A[i] = bb;

}

Answer #2: Use future-force and an async:

final int b = future (B.distribution[j])
{ B[j] }.force();

finish async (A.distribution[i]) A[i] = b;

IBM Research: Software Technology

© 2005 IBM Corporation92

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

ateach (distributed parallel iteration)

ateach (point p:D) S
� Creates |D| async statements in parallel at place specified by

distribution.

� Termination of all (recursively created) activities with finish.
� ateach is a convenient construct for writing parallel matrix code

that is independent of the underlying distribution, e.g.,

� SPMD computation:

ateach (FormalParam: Expr) Stmt

for (point p:D.region)
async (D[p]) { S }

ateach (point p:D) S

ateach (point p : A.distribution)
A[p] = f(B[p], C[p], D[p]) ;

finish ateach(point[i] : dist.factory.unique()) S

IBM Research: Software Technology

© 2005 IBM Corporation93

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Example: ateach (TutAteach1)

public class TutAteach1 {

public static void main(String args[]) {

finish ateach (point p: dist.factory.unique()) {

System.out.println("Hello from " + here.id);

}

} // main()

}

unique distribution: maps point i in
region [0 : place.MAX_PLACES-1]
to place place.factory.place(i).Console output:

Hello from 1
Hello from 0
Hello from 3
Hello from 4

IBM Research: Software Technology

© 2005 IBM Corporation94

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Example: RandomAccess (1/2)

dist D = dist.factory.block(TABLE_SIZE);

final long[.] table = new long[D] (point [i]) { return i; }

final long[.] RanStarts = new long[dist.factory.unique()]

(point [i]) { return starts(i);};

final long value [.] SmallTable = new long value[TABLE_SIZE]

(point [i]) { return i*S_TABLE_INIT; };

finish ateach (point [i] : RanStarts) {

long ran = nextRandom(RanStarts[i]);

for (int count: 1:N_UPDATES_PER_PLACE) {

int J = f(ran);

long K = SmallTable[g(ran)];

async (table.distribution[J]) atomic table[J] ^= K;

ran = nextRandom(ran);

}

}

assert(table.sum() == EXPECTED_RESULT);

(1)
(2)

(3)

(4)

IBM Research: Software Technology

© 2005 IBM Corporation95

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Example: RandomAccess (2/2)

(1) Allocate and initialize table as a block-distributed array.

(2) Allocate and initialize RanStarts with one random number seed
for each place.

(3) Allocate a small immutable table that can be copied to all places.

(4) Everywhere in parallel, repeatedly generate random table indices
and atomically read/modify/write table element.

IBM Research: Software Technology

© 2005 IBM Corporation96

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Example: converting foreach to ateach (TutAteach2)

Case 1: All loop iterations are independent.

� foreach version:
finish foreach (point[i,j] : a.region)

a[i,j] = f (a[i,j]);

� ateach version #1:
finish ateach (point[i,j] : a.distribution)

a[i,j] = f (a[i,j]);

� ateach version #2 (create only one activity per place):
finish ateach (point p : dist.factory.unique())

for (point[i,j] : a.distribution | here)
a[i,j] = f(a[i,j]);

IBM Research: Software Technology

© 2005 IBM Corporation97

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Example: converting foreach to ateach (TutAteach2)

Case 2: Iteration across rows are independent
(only outer loop can execute in parallel)

� foreach version:
finish foreach (point [i]: [1:N])

for (point[j]: [2:N])
a[i,j] = f(a[i,j-1])

� ateach version:
// Assume that N is a multiple of place.MAX_PLACES

finish ateach (point[i] : dist.factory.block([1:N]))

for (point[j]: [2:N])

a[i,j] = f(a[i,j-1])

IBM Research: Software Technology

© 2005 IBM Corporation98

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

JGF Monte Carlo benchmark -- Sequential

double[] expectedReturnRate =
new double[nRunsMC];

...
final ToInitAllTasks t =

(ToInitAllTasks) initAllTasks;
for

(point [i]: expectedReturnRate) {
PriceStock ps = new PriceStock();
ps.setInitAllTasks(t);
ps.setTask(tasks[i]);
ps.run();
ToResult r =

(ToResult) ps.getResult();
expectedReturnRate[i] =

r.get_expectedReturnRate();
volatility[i] =

r.get_volatility();
}

A task array (of size
nRunsMC) is initialized
with ToTask instances at
each index.

Task:

� Simulate stock
trajectory,

� Compute expected rate
of return and volatility,

� Report average
expected rate of return
and volatility.

IBM Research: Software Technology

© 2005 IBM Corporation99

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

JGF Monte Carlo benchmark -- Parallel

double[] expectedReturnRate =
new double[nRunsMC];

...
final ToInitAllTasks t =

(ToInitAllTasks) initAllTasks;
finish foreach

(point [i]:expectedReturnRate) {
PriceStock ps = new PriceStock();
ps.setInitAllTasks(t);
ps.setTask(tasks[i]);
ps.run();
ToResult r =

(ToResult) ps.getResult();
expectedReturnRate[i] =

r.get_expectedReturnRate();
volatility[i] =

r.get_volatility();
}

IBM Research: Software Technology

© 2005 IBM Corporation100

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

JGF Monte Carlo benchmark -- Distributed

dist D = dist.factory.block([0:(nRunsMC-1)]);
double[.] expectedReturnRate = new double[D];...

final ToInitAllTasks t =
(ToInitAllTasks) initAllTasks;

finish ateach
(point [i]:expectedReturnRate) {
PriceStock ps = new PriceStock();
ps.setInitAllTasks(t);
ps.setTask(tasks[i]);
ps.run();
ToResult r =

(ToResult) ps.getResult();
expectedReturnRate[i] =

r.get_expectedReturnRate();
volatility[i] =

r.get_volatility();
}

IBM Research: Software Technology

© 2005 IBM Corporation101

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Tutorial outline

1) X10 Project

2) X10 Introduction
– cheat sheets
– Hello world
– comparison to Java

3) Sequential X10

4) Concurrency in X10
– activities
– atomic blocks
– clocks, clocked variables

5) Distributed X10
– places
– distributions and distributed

arrays

6) X10 Array Language

7) Current Status and Future
Work

IBM Research: Software Technology

© 2005 IBM Corporation102

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

X10 Array Language

� point, region, distribution
� Syntax extensions
� Initialization
� Multi-dimensional arrays
� Aggregate operations

IBM Research: Software Technology

© 2005 IBM Corporation103

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

point

A point is an element of an n-dimensional Cartesian
space (n>=1) with integer-valued coordinates e.g., [5], [1, 2], …

– Dimensions are numbered from 0 to n-1
– n is also referred to as the rank of the point

A point variable can hold values of different ranks e.g.,
– point p; p = [1]; … p = [2,3]; …

Operations
– p1.rank

• returns rank of point p1
– p1.get(i)

• returns element (i mod p1.rank) if i < 0 or i >= p1.rank
– p1.lt(p2), p1.le(p2), p1.gt(p2), p1.ge(p2)

• returns true iff p1 is lexicographically <, <=, >, or >= p2
• only defined when p1.rank and p1.rank are equal

IBM Research: Software Technology

© 2005 IBM Corporation104

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Syntax extensions for points

� Implicit syntax for points:
point p = [1,2] � point p = point.factory(1,2)

� Exploded variable declarations for points:
point p [i,j] // final int i,j

� Typical uses :

– for (point p [i, j] : r) { ... }

– for (point [i, j] : r) { ... }

– int sum (point [i,j], point [k, l])
{ return [i+k, j+l]; }

– int [] iarr = new int [2] (point [i,j]) { return i; }

IBM Research: Software Technology

© 2005 IBM Corporation105

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Example: point (TutPoint1)

public class TutPoint {

public static void main(String[] args) {

point p1 = [1,2,3,4,5];

point p2 = [1,2];

point p3 = [2,1];

System.out.println("p1 = " + p1 +

" ; p1.rank = " + p1.rank +

" ; p1.get(2) = " + p1.get(2));

System.out.println("p2 = " + p2 +

" ; p3 = " + p3 + " ; p2.lt(p3) = " +

p2.lt(p3));

}
}

Console output:

p1 = [1,2,3,4,5] ; p1.rank = 5 ; p1.get(2) = 3
p2 = [1,2] ; p3 = [2,1] ; p2.lt(p3) = true

IBM Research: Software Technology

© 2005 IBM Corporation106

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Rectangular regions
A rectangular region is the set of points contained in a rectangular subspace

A region variable can hold values of different ranks e.g.,
– region R; R = [0:10]; … R = [-100:100, -100:100]; … R = [0:-1]; …

Operations
– R.rank ::= # dimensions in region;
– R.size() ::= # points in region
– R.contains(P) ::= predicate if region R contains point P
– R.contains(S) ::= predicate if region R contains region S
– R.equal(S) ::= true if region R equals region S
– R.rank(i) ::= projection of region R on dimension i (a one-dimensional region)
– R.rank(i).low() ::= lower bound of ith dimension of region R
– R.rank(i).high() ::= upper bound of ith dimension of region R
– R.ordinal(P) ::= ordinal value of point P in region R
– R.coord(N) ::= point in region R with ordinal value = N
– R1 && R2 ::= region intersection (will be rectangular if R1 and R2 are rectangular)
– R1 || R2 ::= union of regions R1 and R2 (may not be rectangular)
– R1 – R2 ::= region difference (may not be rectangular)

IBM Research: Software Technology

© 2005 IBM Corporation107

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Example: region (TutRegion1)

public class TutRegion {

public static void main(String[] args) {

region R1 = [1:10, -100:100];

System.out.println("R1 = " + R1 + " ; R1.rank = " +
R1.rank + " ; R1.size() = " + R1.size() + " ;
R1.ordinal([10,100]) = " + R1.ordinal([10,100]));

region R2 = [1:10,90:100];

System.out.println("R2 = " + R2 + " ; R1.contains(R2) =
" + R1.contains(R2) + " ; R2.rank(1).low() = " +
R2.rank(1).low() + " ; R2.coord(0) = " + R2.coord(0));

}

}

Console output:

R1 = {1:10,-100:100} ; R1.rank = 2 ; R1.size() = 2010 ;
R1.ordinal([10,100]) = 2009

R2 = {1:10,90:100} ; R1.contains(R2) = true ;
R2.rank(1).low() = 90 ; R2.coord(0) = [1,90]

IBM Research: Software Technology

© 2005 IBM Corporation108

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Syntax extensions for regions

Region constructors

int hi, lo;

region r = hi;

� region r = region.factory.region(0, hi)
region r = [low:hi]

� region r = region.factory.region(lo, hi)

region r1, r2; // 1-dim regions

region r = [r1, r2]

� region r = region.factory.region(r1, r2);
// 2-dim region

IBM Research: Software Technology

© 2005 IBM Corporation109

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

X10 arrays

� Java arrays are one-dimensional and local
– e.g., array args in main(String[] args)
– Multi-dimensional arrays are represented as “arrays of arrays” in

Java
� X10 has true multi-dimensional arrays (as Fortran) that can be

distributed (as in UPC, Co-Array Fortran, ZPL, Chapel, etc.)

Array declaration
– T [.] A declares an X10 array with element type T
– An array variable can refer to arrays with different rank

Array allocation
– new T [R] creates a local rectangular X10 array with

rectangular region R as the index domain and T as the element
(range) type

– e.g., int[.] A = new int[[0:N+1, 0:N+1]];
Array initialization

– elaborate on a slide that follows...

IBM Research: Software Technology

© 2005 IBM Corporation110

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Array declaration syntax: [] vs [.]

General arrays: <Type>[.]
– one or multidimensional arrays
– can be distributed
– arbitrary region

Special case (“rail”): <Type>[]
– 1 dimensional
– 0-based, rectangular array
– not distributed
– can be used in place of general arrays
– supports compile-time optimization

Array of arrays (“jagged array”): <Type>[.][.]

IBM Research: Software Technology

© 2005 IBM Corporation111

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Simple array operations

� A.rank ::= # dimensions in array
� A.region ::= index region (domain) of array
� A.distribution ::= distribution of array A
� A[P] ::= element at point P, where P belongs to A.region
� A | R ::= restriction of array onto region R

– Useful for extracting subarrays

IBM Research: Software Technology

© 2005 IBM Corporation112

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Aggregate array operations

� A.sum(), A.max() ::= sum/max of elements in array
� A1 <op> A2

– returns result of applying a pointwise op on array
elements, when A1.region = A2. region

– <op> can include +, -, *, and /
� A1 || A2 ::= disjoint union of arrays A1 and A2

(A1.region and A2.region must be disjoint)
� A1.overlay(A2)

– returns an array with region, A1.region || A2.region, with
element value A2[P] for all points P in A2.region and A1[P]
otherwise.

Future work: framework for array operators

IBM Research: Software Technology

© 2005 IBM Corporation113

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Example: arrays (TutArray1)

public class TutArray1 {

public static void main(String[] args) {

int[.] A = new int[[1:10,1:10]]

(point [i,j]) { return i+j;} ;

System.out.println("A.rank = " + A.rank +

" ; A.region = " + A.region);

int[.] B = A | [1:5,1:5];

System.out.println("B.max() = " + B.max());

}

}

Console output:

A.rank = 2 ; A.region = {1:10,1:10}
B.max() = 10

array copy

IBM Research: Software Technology

© 2005 IBM Corporation114

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Initialization of mutable arrays

Mutable array with nullable references to mutable’ objects:

RefType nullable [] farr = new RefType[N]; // init with null value

Mutable array with references to mutable objects:

RefType [] farr = new RefType [N]; // compile-time error, init required

dist d = dist.factory.block(N);
RefType [.] farr = new RefType [d] (point[i]) { return RefType(here, i); }

Execution of initializer is implicitly parallel / distributed
(pointwise operation):

That hold ‘reference to value objects’ (value object can be inlined)

int [] iarr = new int[N] ; // init with default value, 0
int [] iarr = new int[] {1, 2, 3, 4}; // Java style
int [] iarr = new int[N] (point[i])

{return i}; // explicit init

IBM Research: Software Technology

© 2005 IBM Corporation115

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Initialization of value arrays

Initialization of value arrays requires an initializer.

Value array of reference to mutable objects:
RefType value [] farr = new value RefType [N];

// compile-time error, init required

RefType value [] farr = new value RefType [N] (point[i])
{ return new Foo(); }

Value array of ‘reference to value objects’ (value object can be inlined)

int value [] iarr = new value int[] {1, 2, 3, 4};
// Java style init

int value [] iarr = new value int[N] (point[i])
{ return i };
// explicit init

IBM Research: Software Technology

© 2005 IBM Corporation116

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Distributions in X10

A distribution maps every point in a region to a place.

Creating distributions (x10.lang.dist):
– dist D1 = dist.factory.constant(R, here); // local distribution

– maps region R to here
– dist D2 = dist.factory.block(R); // blocked distribution
– dist D3 = dist.factory.cyclic(R); // cyclic distribution
– dist D4 = dist.factory.unique(); // identity map on

[0:MAX_PLACES-1]

IBM Research: Software Technology

© 2005 IBM Corporation117

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Using distributions

D[P] = place to which point P is mapped by distribution D
� if point p is in D.region
� otherwise ArrayOutOfBoundException

Allocate a distributed array e.g., T[.] A = new T[D];
� Allocates an array with index set = D.region, such that element

A[P] is located at place D[P] for each point P in D.region
� NOTE: “new T[R]” for region R is equivalent to “new T[R->here]”

Iterating over a distribution – generalization of foreach to ateach

IBM Research: Software Technology

© 2005 IBM Corporation118

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Operations on distributions

� D.region ::= source region of distribution

� D.rank ::= rank of D.region

� D | R ::= region restriction for distribution D and region R (returns
a restricted distribution)

� D | P ::= place restriction for distribution D and place P (returns
region mapped by D to place P)

� D1 || D2 ::= union of distributions D1 and D2 (assumes that
D1.region and D2.region are disjoint)

� D1.overlay(D2) ::= asymmetric union of D2 over D1

� D.contains(p) ::= true iff D.region contains point p

� D1 – D2 ::= distribution difference: D1 | (D1.region – D2.region)

IBM Research: Software Technology

© 2005 IBM Corporation119

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Syntax extensions for distributions

Constant distributions
region r = [0:N];
dist d = r->here

� dist d = dist.factory.constant(r, here);

dist d = 1000->here
� dist d = dist.factory.constant([0,1000],

here);

Distributions are implicitly converted to regions
for (point [i,j]: d) {...}

� for (point [i,j]: d.region) {...}

IBM Research: Software Technology

© 2005 IBM Corporation120

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Multidimensional arrays

double[.] darr = new double[[0:N, 0:M]->here];

for (point [i,j]: darr.region)

darr[i,j] = ..;

� initial values in darr are 0.0

� Iteration schema
– ‘lexicographical order’ (standard, fix)
– [0,0], [0,1], [0,2], ...

� Storage layout
– row major (fix)
– spatial access locality with standard iteration schema

N

M

IBM Research: Software Technology

© 2005 IBM Corporation121

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Distributed multidimensional arrays

dist cyclic = dist.factory.cyclic([0:4, 0:6])

dist blockcyclic = dist.factory.blockCyclic([0:4, 0:6], 6)

double[.] darr = new double[XXX];

block cycliccyclic tiled

for 1D arrays: cf. UPC

assuming 4 places

Future work:
hierarchically tiled

regions

IBM Research: Software Technology

© 2005 IBM Corporation122

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Optimization of rank independent code

for (point p: darr.region)

darr[p] = ...;

Information about darr.region:
– number of dimensions
– shape of region (rectangular, triangular, ...)
– bounds and step

Determined by
– context sensitive data-flow analysis
– dependent types can provide this information

IBM Research: Software Technology

© 2005 IBM Corporation123

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Optimization of rank independent code

for (point p: darr.region)

darr[p] = ...;

Optimized for dim=2
darr.region is rectangular and dense

for (int i = darr.region.rank(0).low();

i < darr.region.rank(0).high(); ++i)

for (int j = darr.region.rank(1).low();
j < darr.region.rank(1).high(); ++j)

darr[i,j] = ...;

IBM Research: Software Technology

© 2005 IBM Corporation124

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Optimization of rank independent code

for (point p: darr.region) {
__place_check(here, darr.distribution[p]);
darr[p] = ...;

}

Optimized: darr.distribution
is constant distribution

if (!darr.distribution.isLocal())
throw new BadPlaceException();

for (point p: darr.region) {
darr[p] = ...;

}

IBM Research: Software Technology

© 2005 IBM Corporation125

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Distributed arraycopy (first version)

static void arraycopy(double[.] src, double[.] dst)
throws RegionMismatchException {

if (src.distribution.region !=
dst.distribution.region)
throw new RegionMismatchException (src, dst);

ateach (point i : dst.distribution)
dst[i] = future(src[i]){src[i]}.force();

}

� Spawn activity for every index point.
� Code is independent of the rank of the array

IBM Research: Software Technology

© 2005 IBM Corporation126

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Distributed arraycopy (second version)

static void arraycopy(double[.] src, double[.] dst)
throws RegionMismatchException {

if (src.distribution.region !=
dst.distribution.region)
throw new RegionMismatchException (src, dst);

ateach (distribution.unique(dst.distribution.places))
for (i : dst.distribution | here)

dst[i] = future(src[i]){src[i]}.force();
}

� Spawn one activity in each place that hosts a part of the destination
array.

IBM Research: Software Technology

© 2005 IBM Corporation127

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Distributed arraycopy (third version)
static void arraycopy(double[.] src, double[.] dst)

throws RegionMismatchException {
if (src.distribution.region !=

dst.distribution.region)
throw new RegionMismatchException (src, dst);

ateach (point _ : dist.unique(dst.places)) {
region local = (dst.distribution | here).region;
foreach (place p : (src.distribution | local).places) {

region remote = (src.distribution | p).region;
region common = local && remote;
a[common] = future (p){src[common]}.force();

}
}

}

� Spawn one activity per dst-place and
� Create one future per place p to which src maps an index in

(dest.distribution | here).

local array copy

IBM Research: Software Technology

© 2005 IBM Corporation128

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Examples of Array Kernels

� Jacobi
� Edminston
� NAS CG

IBM Research: Software Technology

© 2005 IBM Corporation129

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Jacobi 1d
class Jacobi {
public static final int N=100;
public static final double epsilon=0.002;

public static void main(String args[]) {
region R = [0..N+1];
distribution D = distribution.blocked(R);

region R_inner = [1..N];
distribution D_inner = D | R_inner;
distribution D_boundary = D-D_inner;
int iters = 0;
double[D] a = (D_boundary 0.0) || new double[D_inner]

{ return Math.Random(); };
while (true) {
final double[D_inner] temp = new double[D_inner] (i) {

future<double>low = future (a[i-1]) { a[i-1] };
future<double>low = future (a[i+]) { a[i+1] };
return (low.force()] + high.force())/2.0;};

double error = (reduce (Math.abs((a | D_inner)-
temp)).operator_'+'());

if (error < epsilon)
break;

a = a.overlay(temp);
iters++;

}
System.out.println("Number of iterations="+iters);

}
}

Single threaded main loop,
performing aggregate operations.

Subsequent code
does not assume
D is blocked.

Array
initializer

Restriction to a region
Distribution difference

Built-in distribution

Restriction of array to
a subdistribution

Lifting of <op> on base
type to array type

Reduction
operation

Updating one array
with another.

IBM Research: Software Technology

© 2005 IBM Corporation130

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Edmiston

Algorithm for gene sequence comparison

string c2

string c1

0 N

M
...

0

result array e

e[i, j] = min (e[i-1,j] + iGapPen,
e[i,j-1] + iGapPen,
e[i-1,j-1] + (c1[i] == c2[j] ? iMatch : iMisMatch));

i

j

wavefront
computation

IBM Research: Software Technology

© 2005 IBM Corporation131

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Edmiston - Parallelization

column-blocked
distribution

...

place-0 place-1 place-2

Computation in every place:
step (1): compute “warmup” in a place-local result array
step (2): compute results based on initial condition for step1 in

result array

(2)(1)

IBM Research: Software Technology

© 2005 IBM Corporation132

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Edmiston
final RandCharStr c1, c2;
final int N = c1.s.length-1, int M = c2.s.length-1;
final dist D = columnBlocked([0:N],[0:M]);
final int[.] e = new int[D];

// SPMD computation at each place
finish ateach (point [p]:dist.factory.unique(D.places())) {

// get sub-distribution for this place
final dist myD = D|here;
final int myLow = myD.region.rank(1).low();
final int myHigh = myD.region.rank(1).high();
final int overlapStart = Math.max(0,myLow-overlap);
final dist warmupD = [0:N, overlapStart:myLow]->here;
// create a local warmup array
final int [.] W = new int[warmupD];
// compute columns overlapStart+1 .. myLow using column overlapStart
computeMatrix(W, c1, c2, overlapStart+1, myLow);
// copy column, e[0:N,myLow] = W[0:N,myLow];
finish foreach (point [i] : [0:N]) e[i,myLow] = W[i,myLow];
computeMatrix(e, c1, c2, myLow+1, myHigh);

}

void computeMatrix(int[.] a, final RandCharStr c1,
final RandCharStr c2, int firstCol, int lastCol) {

for (point[i,j] : [1:N,firstCol:lastCol])
a[i,j] = min4(0, a[i-1,j]+iGapPen, a[i,j-1]+iGapPen,

a[i-1,j-1] + (c1.s[i]==c2.s[j] ? iMatch : iMisMatch));
}

(1)

(2)

IBM Research: Software Technology

© 2005 IBM Corporation133

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

NPB – CG in X10

Sparse matrix-vector multiplication: q = Ap

� square matrix: na x na
� non-zero elements: nz
� sparse representation in column compressed format
� A [nz]
� A_colidx [nz]
� A_rowstr [na]

A q p

value array,
copy in every place

place-0

place-1

block
distribution

...

IBM Research: Software Technology

© 2005 IBM Corporation134

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

dist THREADS = dist.factory.block([0:np-1]);
dist D = dist.factory.block([1:na]);
double[.] p = new double[D];
double[.] q = new double[D];
double[.] r = new double[D];
double[.] x = new double[D] (point [p]) { return 1.0; };
double[.] z = new double[D];

final double value [.] A_val = new value double[nz+1] {...};
final int value [.] A_colidx_val = new value int [nz+1] {...};
final int value [.] A_rowstr_val = new value int [na+2] {...};

for (point iter: [1:niter]) {
finish ateach (point[p]: THREADS)

{ zero q, z, r and p, update rhomaster with square sum of x }
double rho = rhomaster.sum();
for (point it: [0:cgitmax]){

// q = Ap submatrix vector multiply
finish ateach (point [it]: THREADS) {

mvmult (q, p);
dmaster[here.id]=(p[D|here]).mul(q[D|here]).sum();

}
final double rho0 = rho;
final double alpha = rho / dmaster.sum();
finish ateach (point [it]: THREADS)
{ z += alpha *p r -= alpha*q; update rhomaster with square sum of x }
rho = rhomaster.sum();
final double beta = rho/rho0;
finish ateach (point [it]:THREADS) { p = r+beta*p }

}

NPB – CG in X10

sparse m
atrix

continues on next slide ����

IBM Research: Software Technology

© 2005 IBM Corporation135

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

// r = Az submatrix vector multiply
finish ateach (point [it]:THREADS) {

mvmult (r, z);
rnormmaster[here.id]=(x[D|here]).sub(r[D|here]).pow(2).sum();

}
// compute residual norm ||r|| = ||x-Az||
rnorm = Math.sqrt(rnormmaster.sum());
tnorm1 = x.mul(z).sum();
tnorm2 = z.mul(z).sum();
tnorm2 = 1.0 / Math.sqrt(tnorm2);
zeta = shift + 1.0 / tnorm1;
final double tnorm2ff = tnorm2;
finish ateach (point[jj]: D) x[jj] = tnorm2ff*z[jj];

}

// q = Ap submatrix vector multiply
void mvmult(double[.] q, double[.] p) {

region Dlocal = (D | here).region;
for (point [j] : Dlocal) {

double sum = 0.0;
for (point [k] : [A_rowstr_val[j]:A_rowstr_val[j+1]-1]){

int idx = A_colidx_val[k];
future<double> tmp = future (p.distribution(p[idx]) {p[idx]};
sum += A_val[k] * tmp.force();

}
q[j] = sum;

}
}

NPB – CG in X10

sparse matrix access

���� continuation from previous slide

IBM Research: Software Technology

© 2005 IBM Corporation136

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

X10 in Comparison

� MPI + OpenMP
� UPC
� Exemplary stencil computations in

– C/MPI
– Titanium
– UPC
– X10
– C++ / htalib

IBM Research: Software Technology

© 2005 IBM Corporation137

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

X10, in comparison with MPI+OpenMP …

MPI / OpenMP

� Processes
� Programmer-managed global data

structures
� Message passing w/ programmer-

managed marshalling
– Includes reductions

� Low-level message envelopes
– <source, destination, tag,

communicator>
� Barriers
� OpenMP threads
� Locks, critical sections
� Affinity directives
� INDEPENDENT directive

X10

� Places
� Partitioned Global Address Space

� Asynchronous activities w/ objects
and futures

– Includes reductions
� Strongly-typed invocations and return

values (futures)

� Clocks
� Asynchronous activities
� Atomic sections
� Placetype system (@-clauses)
� foreach, ateach statements

IBM Research: Software Technology

© 2005 IBM Corporation138

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

X10 in comparison with UPC
� Simple syntax for remote memory accesses:

Read is rval, write is lval

� Block cyclic distribution of 1D arrays

� SPMD model with standard synchronizations
(barriers, locks), inquiry functions, etc.

� split barriers w/ notify & wait

� Work sharing supported by upc_forall

� Type system identifies private vs. shared data.
Four classes of pointers (SP & SS pointer
operations are expensive):

– PP: Private space pointed by Private pointer
e.g., int *p1

– SP: Shared space pointed by Private pointer
e.g., shared int *p2

– PS: Private space pointed by Shared pointer
e.g., int *shared p3 (not recommended!)

– SS: Shared space pointed by Shared pointer
e.g., shared int *shared p4;

� Memory consistency can be controlled by user
(relaxed vs. strict)

� Portable (to the extent that ANSI C is portable)

� Same in X10

� More general distributions in X10

� X10 supports both fork-join and SPMD
models

� Clock now & next ops

� X10 has foreach and ateach

� (X10 may have @activity annotations.)
X10 has type-safe object references, not
pointers

� X10 has two different memory
consistency models: within and across
places

� X10 has stronger portability (like Java)

IBM Research: Software Technology

© 2005 IBM Corporation139

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

2D-stencil in C / MPI

#include "mpi.h"
int main(argc, argv)
int argc;
char **argv;
{

int rank, value, size, errcnt, toterr, i, j,
itcnt;
int i_first, i_last;
MPI_Status status;
double xlocal[(12/4)+2][12];
double xnew[(12/3)+2][12];
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
if (size != 4) MPI_Abort(MPI_COMM_WORLD, 1);
/* xlocal[][0] is lower ghostpoints,
xlocal[][maxn+2] is upper */

/* Note that top and bottom processes have one less
row of interior

points */
i_first = 1;
i_last = maxn/size;
if (rank == 0) i_first++;
if (rank == size - 1) i_last--;

/* Fill the data as specified */
for (i=1; i<=maxn/size; i++)
for (j=0; j<maxn; j++)

xlocal[i][j] = rank;
for (j=0; j<maxn; j++) {
xlocal[i_first-1][j] = -1;
xlocal[i_last+1][j] = -1;
}

/* Send leftunless I am s I'm at the top, then
receive from below */
/* Note the use of xlocal[i] for &xlocal[i][0] */
if (rank < size - 1)

MPI_Send(xlocal[maxn/size], maxn, MPI_DOUBLE,
rank + 1, 0,

MPI_COMM_WORLD);
if (rank > 0)

MPI_Recv(xlocal[0], maxn, MPI_DOUBLE, rank - 1,
0,

MPI_COMM_WORLD, &status);

/* Send down unless I'm at the bottom */
if (rank > 0)

MPI_Send(xlocal[1], maxn, MPI_DOUBLE, rank - 1,
1,

MPI_COMM_WORLD);
if (rank < size - 1)

MPI_Recv(xlocal[maxn/size+1], maxn, MPI_DOUBLE,
rank + 1, 1,

MPI_COMM_WORLD, &status);

itcnt ++;
for (i=i_first; i<=i_last; i++)

for (j=1; j<maxn-1; j++) {
xnew[i][j] = (xlocal[i][j+1] + xlocal[i][j-1] +

xlocal[i+1][j] + xlocal[i-
1][j]) / 4.0;
}

MPI_Finalize();
return 0;

}

code works only with 4 procs and 12x12 mesh

communication computationinitializationdata declaration

IBM Research: Software Technology

© 2005 IBM Corporation140

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

2D-stencil in Titanium
final static int DIM=2; //space dimension
final static Point<DIM> startPoint=Point<DIM>.all(0);
final static Point<DIM> endPoint=Point<DIM>.all(1)+Point<DIM>.direction(DIM,1);
public static single void main (String single [] single args){
final int single numThreads=Ti.numProcs();
final int threadID=Ti.thisProc();
final RectDomain<DIM> problemDomain=[startPoint:endPoint];
final int size=endPoint[DIM]-startPoint[DIM]+1;
if (numThreads>size) System.exit(-1);
final int localSize=size/numThreads;
final Point<DIM> startPoint0=startPoint-Point<DIM>.direction(DIM,startPoint[DIM]);
final Point<DIM> endPoint0=endPoint-Point<DIM>.direction(DIM,endPoint[DIM]);
RectDomain<DIM> localDomain;
//construct local domain
if (threadID==numThreads-1){
localDomain=[startPoint0+Point<DIM>.direction(DIM,localSize*threadID):endPoint];

} else{
localDomain=[startPoint0+Point<DIM>.direction(DIM,localSize*threadID):

endPoint0+Point<DIM>.direction(DIM,localSize*(threadID+1)-1)];
}
//construct a distributed array
double [1d] single local [DIM d] distArrayA=new double [0:numThreads-1] [DIM d];
double [DIM d] local localArrayA = new double [localDomain.accrete(1)]; //construct local subarray
distArrayA.exchange(localArrayA); //exchange references to local subarray
double [1d] single local [DIM d] distArrayB=new double [0:numThreads-1] [DIM d];
double [DIM d] local localArrayB = new double [localDomain]; //construct local subarray
distArrayB.exchange(localArrayB); //exchange references to local subarray
//initialize the array
foreach(p in localDomain)

localArrayA[p]=1;
//exchange ghost values for distArrayA. The boundary values are zeroes by default.
RectDomain<DIM> tempDomain;
if (threadID>0){
tempDomain=distArrayA[threadID-1].domain().shrink(1);
localArrayA.copy(distArrayA[threadID-1].restrict(tempDomain));

}
if (threadID<numThreads-1){
tempDomain=distArrayA[threadID+1].domain().shrink(1);
localArrayA.copy(distArrayA[threadID+1].restrict(tempDomain));

}
Ti.barrier();
//local stencil operation
Point<DIM> disp=Point<DIM>.direction(DIM,1);
foreach (p in localDomain) localArrayB[p]=(localArrayA[p-disp]+localArrayA[p+disp])*0.5;

}

code is rank-
independent

communication

computation

initialization

data declaration

IBM Research: Software Technology

© 2005 IBM Corporation141

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

2D-stencil in UPC
shared [N] double a[M][N];
shared [N] double b[M][N];

int main() {
int i, j;

// initialize a
upc_forall(i = 0; i < M; i++; continue)
upc_forall(j = 0; j < N; j++; &a[i][j]) {
a[i][j] = rand();

}
}
upc_barrier();
// exchange ghosts
upc_forall(i = 0; i < M; i++; &b[i][0]) {
b[i][0] = a[(i-1)%M][N-1];
b[i][N] = a[(i+1)%M][1];

}
upc_barrier();
// compute b
upc_forall(i = 0; i < M; i++; continue)
upc_forall(j = 1; j < N-1; j++; &b[i][j]) {
b[i][j] = (a[i][j+1] + a[i][j-1])*0.5;

}
}

}

communication

computation

initialization

data declaration

IBM Research: Software Technology

© 2005 IBM Corporation142

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

2D-stencil in X10 (similar to NAS-MG)

public static void main(String[] args) {

region R = [0:M, 0:N];
region RInner = [1:M-1, 1:N-1];
double[.] a = new double[R] (point p) { a[p] = Math.random(); };
double[.] b = new double[R];

finish foreach(point p[i] : RInner.rank(0))
b[i,0] = a[(i-1)%M, N-1];
b[i,N] = a[(i+1)%M, 1];

finish foreach(point p[i,j] : RInner)
b[i,j] = (a[i,j+1] + a[i,j-1])*0.5;

}

communication

computation

initialization

data declaration

IBM Research: Software Technology

© 2005 IBM Corporation143

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

2D stencil with C++ / htalib

#include "htalib.h"

typedef HTA<double, 2, 0> H;
typedef Triplet R;

int main() {

Tuple<2> tiling [] = {Tuple<2>(NPROC, 1), Tuple<2>(N/NPROC, M)};
H a = H::alloc(tiling);
H b = H::alloc(tiling);

// initialize a
a.map (Operator::rand(), a);

// exchange ghosts
b()[0,R(0, M)] = a(R((0:NPROC)%+1),0)[N/NPROC-1, R(0, M)];
b()[NPROC/N,R(0, M)] = a(R((0:NPROC)%-1),0)[1, R(0, M)];

// compute b
b() [R (1,N/NPROC-1), R (0,M)] =
0.5 * (a() [R(0,N/NPROC-2), R(0,M)] +

a() [R(2,N/NPROC), R(0,M)]);

}

communication

computation

initialization

data declaration

IBM Research: Software Technology

© 2005 IBM Corporation144

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Tutorial outline

1) X10 Project

2) X10 Introduction
– cheat sheets
– Hello world
– comparison to Java

3) Sequential X10

4) Concurrency in X10
– activities
– atomic blocks
– clocks, clocked variables

5) Distributed X10
– places
– distributions and distributed

arrays

6) X10 Array Language

7) Current Status and Future
Work

IBM Research: Software Technology

© 2005 IBM Corporation145

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Current Status

IBM Research: Software Technology

© 2005 IBM Corporation146

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Single Node SMP X10 Implementation

Analysis passes
X10

source

AST

X10 Parser

Code
Generation
Templates

Java code emitter

Annotated
AST

X10
Grammar

Target
Java

DOMO
Static

Analyzer

Java compiler

X10
Front
End

Outbound
activities

Inbound
activities

Outbound
replies Inbound

replies

Place

Ready
Activities

Completed
Activities

Blocked
Activities

Clock

Future

Executing
Activities

. . .

Atomic sections do
not have blocking

semantics

Activity can only access
its stack, place-local

mutable data, or global
immutable data

X10 classfiles
(Java classfiles with

special annotations for
X10 analysis info)

Java Concurrency Utilities (JCU)

Ready
Activities

Completed
Activities

Blocked
Activities

Clock

Future

Executing
Activities

. . .

Ready
Activities

Completed
Activities

Blocked
Activities

Clock

Future

Executing
Activities

. . .

Place 0 Place 1

. . .

E
xt

er
n

in
te

rf
ac

e

Fortran,
C/C++
DLL’s

X10
Runtime

JCU thread pool

High Performance JRE
(IBM J9 VM

+ Testarossa JIT
Compiler

modified for X10
on PPC/AIX)

Portable Standard
Java 5 Runtime

Environment
(Runs on
multiple

Platforms)

Java
Runtime

Common components w/ SAFARI

STM library

X10 libraries

IBM Research: Software Technology

© 2005 IBM Corporation147

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Operational X10 implementation (since 02/2005)

Analysis passes

X10
source

AST

Parser

Code
Templates

Code emitter

Annotated
AST

X10
Grammar

Target
Java

JVM

X10
Multithreaded

RTS
Native
code

Program
outputStructure

• Translator based on
Polyglot (Java compiler
framework)

• X10 extensions are
modular.

• Uses Jikes parser
generator.

Code metrics

•Parser: ~45/14K*

•Translator: ~112/9K

•RTS: ~190/10K – revised for JUC

•Polyglot base: ~517/80K

•Approx 280 test cases.

(* classes+interfaces/LOC)

New features

• Dependent types
(places, arrays)

• Better codegen.

• Implicit syntax support.

• More functionality for
points, arrays.

09/03

02/04

07/04

02/05

07/05

12/05

09/06

PERCS
Kickoff

X10
Kickoff

X10
0.32
Spec
Draft

X10
Prototype
#1

X10
Productivity
Study

X10
Prototype #2

Open Source Release

Current Status 07/2006

IBM Research: Software Technology

© 2005 IBM Corporation148

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

X10DT: Enhancing productivity

� Code editing

� Refactoring

� Code visualization

� Data visualization

� Debugging

� Static performance analysis

Vision: State-of-the-art IDE for a modern OO language for HPC

X10 Incremental Builder;
Problems View populated
w/ X10 compiler messages

Source editor w/ syntax
highlighting, auto indenting,
some content assist

Outline View populated w/
X10 types, members, loops

X10 Launch
Configuration

IBM Research: Software Technology

© 2005 IBM Corporation149

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

X10 Applications/Benchmarks

� Java Grande Forum
– OOPSLA Onwards! 2005
– Showed substantial (SLOC)

benefit in serial � parallel �
distributed transition for X10
vs Java (qua C-like
language).

� SSCA
– SSCA#1 (PSC study)
– SSCA#2 (Bader et al,

UNM/GT)
– SSCA#3 (Rabbah, MIT)
� Sweep3d

– Jim Browne (UT Austin)

� NAS PB
– CG, MG (IBM)
– CG, FT, EP (Padua et al,

UIUC)
– Cannon, LU variant (UIUC)

� AMR (port from Titanium)
– In progress, IBM
� SpecJBB

– In progress, Purdue

Measures: SLOC as a “stand in” + process measures.

IBM Research: Software Technology

© 2005 IBM Corporation150

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Advanced Topics

IBM Research: Software Technology

© 2005 IBM Corporation151

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Dependent types

� Class or interface that is a
function of values.

� Programmer specifies
properties of a type – public
final instance fields.

� Programmer may specify
refinement types as
predicates on properties
– T(v1,… ,vn : c)
– all instances of t with the

values fi==vi satisfying c.
– c is a boolean expression

over predefined predicates.

public class List(int(: n >=0) n) {

this(:n>0) Object value;

this(:n>0) List(n-1) tail;

List(t.n+1) (Object o, List t) {

n=t.n+1; tail=t;value=o;}

List(0) () { n = 0; }

this(0) List(l.n) a(List l) {

return l; }

this(:n>0) List(n+l.n) a(List l) {

return new List(value, tail.append(l));

}

List(n+l.n) append(List l) {

return n==0?

this(0).a(l) : this(:n>0) .a(l);

}

….

IBM Research: Software Technology

© 2005 IBM Corporation152

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Place types

� Every X10 reference inherits
the property (place loc) from
X10RefClass.

� The following types are
permitted:
– Foo@? � Foo
– Foo � Foo(: loc == here)
– Foo@x� Foo(: loc == x.loc)

� Place types are checked by
place-shifting operators
(async, future).

class Tree (boolean ll) {

nullable<Tree>(:this.ll =>

(ll& loc==here))@? left;

nullable<Tree> right;

int node;

Tree(l) (final boolean l,

nullable<Tree>(:l =>

(ll&loc==here))@? left,

nullable<Tree> right,

int s) {

ll=l; this.left=left; this.right=right;

node=s;

}

…

}

IBM Research: Software Technology

© 2005 IBM Corporation153

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Region and distribution types (1/2)

abstract value class point (nat rank) {
type nat = int(: self >= 0) ;

abstract static value class factory {
abstract point(val.length) point(final int[] val);
abstract point(1) point(int v1);
abstract point(2) point(int v1, int v2);

… }
…
point(rank) (nat rank) { this.rank = rank; }
abstract int get(nat(: i <= n) n);

abstract boolean onUpperBoundary(region r,
nat(:i <= r.rank) i);

abstract public boolean onLowerBoundary(region r,
nat(:i <= r.rank) i);

abstract boolean gt(point(rank) p);
abstract boolean lt(point(rank) p);
abstract point(rank) mul(point(rank) p);

…

Dependent types statically express many important relationships between data.

IBM Research: Software Technology

© 2005 IBM Corporation154

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Region and distribution types (2/2)

class point (nat rank) { ... }

class region (nat rank, boolean rect, boolean lowZero) { ... }

class dist(nat rank, boolean rect, boolean lowZero,
region(rank,rect,lowZero) region,
boolean local, boolean safe) { ... }

class Array<T>(nat rank, boolean rect,
boolean lowZero,

region(rank,rect,lowZero) region,
boolean local, boolean safe,
boolean(:self==(this.rank==1)&rect&lowZero&local) rail,
dist(rank, rect, lowZero, region,local,safe) dist) { ... }

...

Dependent types statically express many important relationships between data.

IBM Research: Software Technology

© 2005 IBM Corporation155

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Implicit syntax

� Use conventional syntax for
operations on values of
remote type:

� x.f = e //write x.f of type T

� final T v = e;

finish async(x.loc) {

x.f=v;

}

� … = …x.f …//read x.f of type T

�
future<T>(x.loc){x.f}.force()

� Similarly for array reads and
writes.

� Invoke a method
synchronously on values of
remote type

� e.m(e1,…,en);

����
final T v = e;

final T1 v1 = e1;

…

final Tn vn = en;

finish async (v.loc) {

v.m(v1,…,vn);

}

� Similarly for methods
returning values.

IBM Research: Software Technology

© 2005 IBM Corporation156

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Tiled regions

� Tiled region (TR) is a
region or an array (indexed
by a region) of tiled
regions.

� Tiled region is a tree with
leaves labeled with regions.
– TR depth = depth of tree
– TR uniform = all leaves at

same depth
– Tile = region labeling a leaf
– Orthogonal TR = tiles do not

overlap
– Convex TR = each tile is

convex.

� A tiled region provides
natural structure for
distribution.

region(2) R = [1:N*K];

region(1:rect)[] S =

new region[[1:K]]

(point [i]){[(i-1)*N+1:I*N]};

region[] S1 = new region[]

{[1:N],[N+1:2*N]};

User defined distributions

� Examples:
– Blocked, cyclic, block

cyclic
– Arbitrary, irregular cutsets

IBM Research: Software Technology

© 2005 IBM Corporation157

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Open Issues and Future Work

IBM Research: Software Technology

© 2005 IBM Corporation158

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Future Plans

� X10 API in C, Java
– X10 Core Library

• asyncs, future, finish,
atomic, clocks, remote
references

– X10 Global Structures Library
• Arrays, points, regions,

distributions

� Optimized SMP imp
– Locality-aware
– Good single-thread perf.
– Efficient inter-language calls

� Annotations
– Externalized AST

representation for source to
source transformations.

– Meta-language for
programmers to specify their
own annotations and
transformations

� SAFARI
– Support for annotations.
– Support for refactorings

� Application development

IBM Research: Software Technology

© 2005 IBM Corporation159

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

HPC Landscape: 20K view

√√√√????

√√√√????

√√√√????

√√√√++++√√√√√√√√????√√√√√√√√X√√√√Perf Portability

√√√√++++√√√√????√√√√√√√√√√√√X√√√√Perf Scalability

√√√√++++√√√√√√√√√√√√√√√√√√√√√√√√Perf Transparency

√√√√++++

√√√√++++

√√√√++++

√√√√

√√√√

√√√√????

√√√√++++√√√√XXXXXExceptions?

√√√√++++√√√√X√√√√????√√√√????X√√√√????Strong-typing?

√√√√++++√√√√XXXXXObject-oriented?

√√√√++++√√√√√√√√√√√√√√√√XXGlobal view?

√√√√++++√√√√−−−−XXXXXManaged Runtime?

√√√√++++√√√√−−−−√√√√−−−−√√√√−−−−√√√√?√√√√X+Convenient?

√√√√++++

√√√√++++

√√√√++++

√√√√++++

√√√√++++XXX√√√√XTask parallelism?

√√√√++++√√√√√√√√√√√√X√√√√√√√√Explicit parallelism?

√√√√++++√√√√Fork-join parallelism?

√√√√++++√√√√√√√√XX√√√√XData-structures?

X10 HPL
2010?

TiUPCCAFZPLC.OMPMPI + C/Fortran

P
ro

du
ct

iv
ity

P
er

f
E

xp
r.

Our view!

