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Tutorial outline

1) X10 in a Nutshell

2) Sequential X10 
– Type system
– Standard library
– extern

3) Concurrency in X10
– activities
– atomic blocks
– clocks, clocked variables

4) X10 Arrays
– Points
– Regions

5) Distributed X10
– places
– distributions and distributed 

arrays

6) Comparison with other 
Concurrent Languages
– Java
– OpenMP
– MPI
– UPC

7) Current Status and Future 
Work
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X10 in a Nutshell
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A new era of mainstream parallel processing

The Challenge 
Parallelism scaling replaces frequency scaling as foundation for
increased performance � Profound impact on future software

Multi-core chips Cluster ParallelismHeterogeneous Parallelism
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Our response: 
Use X10 as a new language for parallel hardware that builds on
existing tools, compilers, runtimes, virtual machines and libraries
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Server Trends: Concurrency, Distribution, Heterogeneity at 
all levels
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Support for scalability

� Axiom: Provide constructs to deal 
with non-uniformity of access.

� Axiom: Build on asynchrony. (To 
support efficient overlap of 
computation and communication.)

� Axiom: Use scalable synchronization 
constructs. 

� Axiom: Permit programmer to specify 
aggregate operations.

The X10 programming model

Support for productivity

� Axiom: Exploit proven OO benefits 
(productivity, maintenance, portability 
benefits).

� Axiom: Rule out large classes of 
errors by design (Type safe, Memory 
safe, Pointer safe, Lock safe, Clock 
safe …)

� Axiom: Support  incremental 
introduction of explicit place 
types/remote operations.

� Axiom: Integrate with static tools 
(Eclipse) -- flag performance 
problems, refactor code, detect 
races.

� Axiom: Support automatic static and 
dynamic optimization (CPO).
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Our philosophy

� Be conservative strategically, 
aggressive tactically.

� Build on sound foundations, 
but design for the 
programmer.
– Not the theoretician, not the 

language designer.

� Use Occam’s Razor.
– Avoid a variety of linguistic 

mechanisms for the same 
programming idiom.

� Steal.

� Focus on a few things, do 
them well.

� Keep the language small.
� Keep the language 

orthogonal.

� Ensure the language “grows 
on you.”

� Exploit structure in 
concurrency.

� Make easy things easy, hard 
things possible. 
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X10 Programming Model

• Dynamic parallelism with a Partitioned Global Address Space
• Places encapsulate binding of activities and globally addressable data

• Number of places currently fixed at launch time
• All concurrency is expressed as asynchronous activities – subsumes 
threads, structured parallelism, messaging, DMA transfers, etc.
• Atomic sections enforce mutual exclusion of co-located data

• No place-remote accesses permitted in atomic section
• Immutable data offers opportunity for single-assignment parallelism

Storage classes:
� Activity-local
� Place-local
� Partitioned 

global 
� Immutable 
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X10 v0.41 Cheat sheet

Stm:

async [ ( Place ) ] [clocked ClockList ] Stm  

when ( SimpleExpr  ) Stm 

finish Stm

next;        c.resume()                  c.drop()

for( i : Region ) Stm

foreach ( i : Region ) Stm

ateach ( I : Distribution ) Stm

Expr:

ArrayExpr

ClassModifier :  Kind

MethodModifier: atomic

DataType:

ClassName | InterfaceName | ArrayType

nullable DataType

future DataType

Kind :

value | reference

x10.lang has the following classes (among 
others)

point, range, region, distribution, clock, array

Some of these are supported by special syntax.
Forthcoming support: closures, generics, dependent types, place types, 
implicit syntax, array literals.
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X10 v0.41 Cheat sheet: Array support
ArrayExpr:

new ArrayType ( Formal ) { Stm }

Distribution Expr -- Lifting

ArrayExpr [ Region ]                           -- Section

ArrayExpr | Distribution -- Restriction

ArrayExpr || ArrayExpr -- Union

ArrayExpr.overlay(ArrayExpr)            -- Update

ArrayExpr. scan( [fun [, ArgList] )

ArrayExpr. reduce( [fun [, ArgList] )

ArrayExpr.lift( [fun [, ArgList] )

ArrayType:

Type [Kind]  [ ] 

Type [Kind]  [ region(N) ]

Type [Kind] [ Region ]

Type [Kind] [ Distribution ]

Region:

Expr : Expr                                  -- 1-D region

[ Range, …, Range ]                   -- Multidimensional Region

Region && Region                     -- Intersection

Region || Region                         -- Union

Region – Region                         -- Set difference

BuiltinRegion

Dist:

Region -> Place                             -- Constant distribution

Distribution | Place                        -- Restriction

Distribution | Region                     -- Restriction

Distribution || Distribution             -- Union

Distribution – Distribution             -- Set difference

Distribution.overlay ( Distribution )

BuiltinDistribution

Language supports type safety, memory safety, place safety, clock safety.
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Comparison with Java, JUC, RMI
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Comparison with Java, JUC, RMI

X10 language builds on the Java 
language

Shared underlying philosophy: 
shared syntactic and semantic 
tradition, simple, small, easy to 
use, efficient to implement, 
machine independent

X10 does not have:
� Dynamic class loading
� Java’s concurrency features

– thread library, volatile, 
synchronized, wait, notify

X10 restricts:
� Class variables and static 

initialization

X10 adds to Java:
� value types, nullable
� Array language

– Multi-dimensional arrays, 
aggregate operations 

� New concurrency features
– activities (async, future), atomic 

blocks, clocks
� Distribution

– places
– distributed arrays
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Messaging and Cluster Parallelism: RMI and X10

� Storage model
– Java: independent JVM’s

communicating via RMI
• Some support for distributed garbage 

collection.
– X10: global address space partitioned 

into places
• One node may have many places
• Supports distributed collections and 

other distributed data structures
• Distributed GC still being designed.

� Remote method invocation
– Java supports serialization of arbitrary 

object reference subgraph, 
communication to remote object.

– X10: reference objects stay fixed, 
activities may be spawned remotely.
• Value data is copied.

� Distribution infrastructure
– RMI: nodes may intermittently 

fail
• Application code has to 

handle RemoteException
– X10 – nodes part of a single 

distributed VM instance.
– RMI: support for long-lived 

processes, registries, service 
discovery.

– X10 – not intended for globally 
distributed computation
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Comparison with Java, JUC, RMI

� X10 as a Java successor for 
concurrency and distribution
� Compatible with JUC
� Multiple places
� Block-structured 

concurrency (finish/async) w/ 
integrated exception model
� Atomic blocks
� Phased computation
� Static guarantees
� Richer annotations

� Coming soon!
– Generics

• Over an integrated type 
system

• That work for arrays
• No ‘?’

– Closures
– Dependent types, place 

types, implicit syntax
– Formal memory model
– FP support
– Relaxed exception model
– Precise specification of XVM
– Support for determinate 

cancellation?Future work
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X10 project landscape

� Core 
concurrency 
and 
distribution 
design.

� Array 
language 
design

V1 � V2

� X10DT

� Dependent 
types

� Generics

� X10lib

� JVM 
implementation

� XVM spec

� Annotations� Memory 
model

� FP 
semantics

� Relaxed 
exceptions

� Place types

� Extern 
interface

� Implicit 
syntax

02/04 07/04 02/05 07/05 02/06 07/06

� Applications

� Tiled 
regions
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Tutorial outline

1) X10 in a Nutshell

2) Sequential X10 
– Type system
– Standard library
– extern

3) Concurrency in X10
– activities
– atomic blocks
– clocks, clocked variables

6) X10 Arrays
– Points
– Regions

5) Distributed X10
– places
– distributions and distributed 

arrays

7) Comparison with other 
Concurrent Languages
– Java
– OpenMP
– MPI
– UPC

8) Current Status and Future 
Work
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Sequential X10

� Overview
� value types
� nullable types
� Safety properties 
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Sequential X10

place.FIRST_PLACE place.LAST_PLACE... 

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello, world!");

}

}

root activity

place.MAX_PLACES

Runtime constant.
Can be changed by using the 
NUMBER_OF_LOCAL_PLACES
option in x10 command line
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Sequential X10

� Classes and interfaces
� Fields, methods, 

Constructors
� Encapsulated state
� Single inheritance
� Multiple interfaces
� Nested/Inner/Anon classes

� Static typing
� Objects, GC
� Statements
� Conditionals, 

assignment,…
� Exceptions (but relaxed)

? Not included 
? Dynamic linking
? User-definable class 

loaders
x Changes

x Value types
x Points, regions, dist …
x Aggregate data/operations
x Space: Distribution
x Time: Concurrency

x Changes planned
x Generics
x Type system
x FP support
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Value types : immutable instances

value class 
– Can only extend value class 

or x10.lang.Object. 
– All fields are implicitly final
– Can only be extended by 

value classes.
– May contain fields with 

reference type.
– May be implemented by 

reference or copy.

Values are equal (==) if their 
fields are equal, recursively. 

public value complex {
double im, re;
public complex(double im, 

double re) {
this.im = im; 
this.re = re;

}
public complex add(complex a)   
{
return new complex(im+a.im, 

re+a.re);
} …
}
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Memory safety

� No “ill mem ref”
– No object can have a 

reference to an object who’s 
memory has been freed. 

– X10 uses garbage collection.
� Every value read from a 

location has been previously 
written into the location.
– No uninitialized variables.

� An object may only access 
memory within its 
representation, and other 
objects it has a reference to.
– X10 supports no pointer 

arithmetic.
– Array access is bounds-

checked dynamically (if 
necessary).

Runtime invariants
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Pointer safety

X10 supports the nullable type constructor.
� For any datatype T, the datatype nullable<T> contains all the value 

of T and null.
� If a method is invoked or a field is accessed on the value null, a 

NullPointerException (NPE) is thrown.

Runtime invariant
No operation on a value of type T, which is not of the form nullable 
S, can throw an NPE.

public interface Table {

void put(Object o);

nullable<Object> get(Object o);
}

public class Foo {
boolean check (Table h) {

return h.get(this) != null;
}

}

May return null

Cannot throw NPE. 
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x10.lang standard library

Java package with “built in” classes that provide support for selected X10 
constructs

� Standard types
– boolean, byte, char, double, float, int, long, short, String

� x10.lang.Object -- root class for all instances of X10 objects
� x10.lang.clock --- clock instances & clock operations
� x10.lang.dist --- distribution instances & distribution operations
� x10.lang.place --- place instances & place operations
� x10.lang.point --- point instances & point operations
� x10.lang.region --- region instances & region operations

All X10 programs implicitly import the x10.lang.* package, so the x10.lang 
prefix can be omitted when referring to members of x10.lang.* classes

� e.g., place.MAX_PLACES, dist.factory.block([0:100,0:100]), …

Similarly, all X10 programs also implicitly import the java.lang.* package
� e.g., X10 programs can use Math.min() and Math.max() from java.lang
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Programmer’s eye view
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Single Node SMP X10 Implementation
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Atomic sections do 
not have blocking 
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Java Concurrency Utilities (JCU)
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Fortran,
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X10
Runtime

JCU thread pool

High Performance JRE
(IBM J9 VM

+ Testarossa JIT
Compiler
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on PPC/AIX)

Portable Standard 
Java 5 Runtime

Environment
(Runs on 
multiple

Platforms)

Java
Runtime

Common components w/ SAFARI

STM library

X10 libraries
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X10 prototype implementation

Foo.x10

x10c X10 compiler --- translates Foo.x10 to Foo.java, 
uses javac to generate Foo.class from Foo.java

Foo.class

X10 source program --- must contain a class named 
Foo with a “public static void main(String[] args) 
method

X10 Virtual Machine
(JVM + J2SE libraries + 

X10 libraries + 
X10 Multithreaded Runtime)

External DLL’s
X10 extern
interface

X10 Abstract Performance Metrics
(event counts, critical path)X10 Program Output

X10 program translated into Java ---
// #line pseudocomment in Foo.java 
specifies source line mapping in Foo.x10

Foo.java

x10c Foo.x10

x10 Foo
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Examples of X10 compiler error messages

1) x10c TutError1.x10
TutError1.x10:8: Could not find field or local variable "evenSum".

for (int i = 2 ; i <= n ; i += 2 ) evenSum += i;
^----^

2) x10c TutError2.x10
x10c: TutError2.x10:4:27:4:27: unexpected token(s) ignored

3) x10c TutError3.x10
x10c: C:\vivek\eclipse\workspace\x10\examples\Tutorial\TutError3.java:49:

local variable n is accessed from within inner class; needs to be declared

final

Case 1: Error message 
identifies source file and 

line number

Case 2: Error message 
identifies source file, line 

number, and column range

Case 1: Carats indicate 
column range

Case 3: Error message reported by Java 
compiler – look for #line comment in .java file to 

identify X10 source location
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Eclipse demo
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Tutorial outline

1) X10 in a Nutshell

2) Sequential X10 
– Type system
– Standard library
– extern

3) Concurrency in X10
– activities
– atomic blocks
– clocks, clocked variables

6) X10 Arrays
– Points
– Regions

5) Distributed X10
– places
– distributions and distributed 

arrays

7) Comparison with other 
Concurrent Languages
– Java
– OpenMP
– MPI
– UPC

8) Current Status and Future 
Work
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Concurrency in X10

� async, finish
� future, force
� foreach
� Global vs. local termination
� Exception handling
� Behavioral annotations
� Atomic
� clocks
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Memory Model

� X10 v 0.41 specifies 
sequential consistency per 
place.
– Not workable.

� We are considering a 
weaker memory model.

� Built on the notion of 
atomic: identify a step as 
the basic building block.
– A step is a partial write 

function.
� Use links for non hb-reads.

� A process is a pomset of 
steps closed under certain 
transformations:
– Composition
– Decomposition
– Augmentation
– Linking
– Propagation

� There may be opportunity 
for a weak notion of atomic: 
decouple atomicity from 
ordering.

Please see: http://www.saraswat.org/rao.html

Correctly synchronized programs behave as SC.

Correctly synchronized programs= programs whose SC 
executions have no races.
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async

async (P)  S
� Creates a new child activity 

at place P, that executes 
statement S
� Returns immediately
� S may reference final

variables in enclosing blocks
� Activities cannot be named
� Activity cannot be aborted or 

cancelled

// global dist. array
final double a[D] =  …;
final int k = …;

async ( a.distribution[99] ) { 
// executed at A[99]’s    
// place
atomic a[99] = k; 

} 

Stmt ::= async PlaceExpSingleListopt Stmt

cf Cilk’s spawn

� Memory model: hb edge 
between stm before async 
and start of async.
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finish

finish S
� Execute S, but wait until all 

(transitively) spawned asyncs have 
terminated. 

Rooted exception model
� Trap all exceptions thrown by 

spawned activities. 
� Throw an (aggregate) exception if 

any spawned async terminates 
abruptly.
� implicit finish at main activity

finish is useful for expressing 
“synchronous” operations on 
(local or) remote data.

finish ateach(point [i]:A) 
A[i] = i; 

finish async 
(A.distribution [j]) 
A[j] = 2; 

// all A[i]=i will complete 
// before A[j]=2;

Stmt ::= finish Stmt

cf Cilk’s sync

� Memory model: hb edge 
between last stm of each 
async and stm after finish S.
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Termination

Local termination: 
Statement s terminates locally when activity has completed all its 
computation with respect to s.

Global termination:
Local termination + activities that have been spawned by s
terminated globally (recursive definition)

� main function is root activity
� program terminates iff root activity terminates.

(implicit finish at root activity)
� ‘daemon threads’ (child outlives root activity) not

allowed in X10
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Termination (Example)

public void main (String[] args) {
...
finish {
async {
for () {
async {... 
}

}
finish async {...
}
...

}
} // finish

}

termination

local globalstart
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Rooted computation X10

root activity

public void main (String[] args) {
...
finish {
async {
for () {
async {... 
}

}
finish async {...
}
...

}
} // finish

}

...

ancestor 
relation

spawn hierarchy

root-of relation
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Rooted exception model

public void main (String[] args) {
...
finish {
async {
for () {
async {... 
}

}
finish async {...
}
...

}
} // finish

}

...

root-of relation

exception flow along 
root-of relation

Propagation along the lexical scoping:
Exceptions that are not caught inside an activity are propagated
to the nearest suspended ancestor in the root-of relation.
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Example: rooted exception model (async)

int result = 0;
try {

finish {
ateach (point [i]:dist.factory.unique()) {
throw new Exception (“Exception from “+here.id)

}
result = 42;

} // finish
} catch (x10.lang.MultipleExceptions me) {

System.out.print(me);
} 
assert (result == 42); // always true

� no exceptions are ‘thrown on the floor’
� exceptions are propagated across activity and place 

boundaries
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Behavioral annotations

nonblocking
On any input store, a nonblocking method can continue execution or 
terminate. (dual:  blocking, default: nonblocking)

recursively nonblocking
Nonblocking, and every spawned activity is recursively nonblocking.

local
A local method guarantees that its execution will only access variables 
that are local to the place of the current activity. 
(dual: remote, default: local)

sequential
Method does not create concurrent activities.
In other words, method does not use async, foreach, ateach. 
(dual: parallel, default: parallel)

Sequential and nonblocking imply recursively nonblocking.
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Static semantics

� Behavioral annotations are checked with a conservative 
intra-procedural data-flow analysis.

� Inheritance rule: Annotations must be preserved or 
strengthened by overriding methods.

� Multiple behavioral annotations must be mutually 
consistent.
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foreach

foreach (point p: R) S 
� Creates |R| async statements in parallel at current place.

� Termination of all (recursively created) activities can be ensured 
with finish.

� finish foreach is a convenient way to achieve master-slave 
fork/join parallelism (OpenMP programming model)

foreach ( FormalParam: Expr ) Stmt

for (point p: R)
async { S }

foreach (point p:R) S
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atomic

� Atomic blocks are conceptually 
executed in a single step while 
other activities are suspended: 
isolation and atomicity.

� An atomic block ...
– must be nonblocking
– must not create concurrent 

activities (sequential)
– must not access remote data 

(local) // push data onto concurrent 
// list-stack
Node node = new Node(data);
atomic {

node.next = head;
head = node; 

}

// target defined in lexically
// enclosing scope.
atomic boolean CAS(Object old,                                    

Object new) {
if (target.equals(old)) {
target = new;
return true;

}
return false;

}

Stmt ::= atomic Statement
MethodModifier ::= atomic

� Memory model: end of tx hb
start of next tx in the same 
place.
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Static semantics of atomic blocks

An atomic block must...be local, sequential, nonblocking:

� ...not include blocking operations
– no await, no when, no calls to blocking methods
� ... not include access to data at remote places

– no ateach, no future, only calls to local methods
� ... not spawn other activities

– no async, no foreach, only calls to sequential methods
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Exceptions in atomic blocks
� Atomicity guarantee only for successful execution. 

– Exceptions should be caught inside atomic block
– Explicit undo in the catch handler

� (Uncaught) exceptions propagate across the atomic block boundary; 
atomic terminates on normal or abrupt termination of its block.

boolean move(Collection s, Collection d, Object o) {
atomic {
if (!s.remove(o)) { 
return false; // object not found

} else {
try {
d.add(o); 

} catch (RuntimeException e) {
s.add(o); // explicit undo
throw e;  // exception

}
return true; // move succeeded

}
}

}

cf. [Harris CSJP’04]
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Data races with async / foreach

final double arr[R] =  …; // global array

class ReduceOp {
double accu = 0.0;
double sum ( double[.] arr ) { 

foreach (point p: arr) {
atomic accu += arr[p];

}
return accu;

} 

concurrent conflicting
access to shared variable:
data race

X10 guideline for avoiding data races:
� access shared variables inside an atomic block
� combine ateach and foreach with finish
� declare data to be read-only where possible (final or value type)

finish
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Concurrency Control: Clocks

� clock
� Clocks safety
� Clocked variables
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Clocks: Motivation

� Activity coordination using finish and force() is accomplished by 
checking for activity termination

� However, there are many cases in which a producer-consumer 
relationship exists among the activities, and a “barrier”-like coordination is 
needed without waiting for activity termination
– The activities involved may be in the same place or in different places

Activity 0 Activity 1 Activity 2 . . .

Phase 0

Phase 1

. . .
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Clocks (1/2)

clock c = clock.factory.clock();
� Allocate a clock, register current activity with it. Phase 0 of c starts.

async(…) clocked (c1,c2,…) S
ateach(…) clocked (c1,c2,…) S
foreach(…) clocked (c1,c2,…) S
� Create async activities registered on clocks c1, c2, …

c.resume();
� Nonblocking operation that signals completion of work  by current 

activity for this phase of clock c

next;
� Barrier --- suspend until all clocks that the current activity is registered 

with can advance. c.resume() is first performed for each such clock, if 
needed.

� Next can be viewed like a “finish” of all computations under way in the 
current phase of the clock
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Clocks (2/2)

c.drop();
� Unregister with c. A terminating activity will implicitly drop all clocks 

that it is registered on.

c.registered()
� Return true iff current activity is registered on clock c
� c.dropped() returns the opposite of c.registered()

ClockUseException
� Thrown if an activity attempts to transmit or operate on a clock that it is 

not registered on
� Or if an activity attempts to transmit a clock in the scope of a finish
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Semantics 

Static semantics
– An activity may operate only on those clocks it is registered with.
– In finish S,S may not contain any (top-level) clocked asyncs.

Dynamic semantics
– A clock c can advance only when all its registered activities have 

executed c.resume().
– An activity may not pass-on clocks on which it is not live to sub-

activities. 
– An activity is deregistered from a clock when it terminates

Supports over-sampling, hierarchical nesting.

No explicit operation to register a clock.

� Memory model: hb edge between next stm of all 
registered activities on c, and their subsequent stm
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Behavioral annotations for clocks

clocked (c0,..., ck).

� A method m that spawns an async clocked(c0,...,ck) must declare 
{c0,...,ck} (or a superset) in its annotation: clocked (c0,..., ck).
� {c0,...,ck} are fields of type clock declared in the calss that declares m.
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Example (TutClock1.x10)
finish async {
final clock c = clock.factory.clock();
foreach (point[i]: [1:N]) clocked (c) {

while ( true ) {
int old_A_i = A[i]; 
int new_A_i = Math.min(A[i],B[i]);
if ( i > 1 ) 

new_A_i = Math.min(new_A_i,B[i-1]);
if ( i < N ) 

new_A_i = Math.min(new_A_i,B[i+1]);
A[i] = new_A_i;
next;
int old_B_i = B[i]; 
int new_B_i = Math.min(B[i],A[i]);
if ( i > 1 ) 

new_B_i = Math.min(new_B_i,A[i-1]);
if ( i < N ) 

new_B_i = Math.min(new_B_i,A[i+1]);
B[i] = new_B_i;
next;
if ( old_A_i == new_A_i && old_B_i == new_B_i ) 

break;
} // while

} // foreach 
} // finish async

parent transmits clock 
to child

exiting from while loop 
terminates activity for 
iteration i, and automatically 
deregisters activity from clock
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Clock safety

� An activity may be registered on one or more clocks
� Clock c can advance only when all activities registered 

with the clock have executed c.resume() and all posted 
activities have terminated globally.

Runtime invariant: Clock operations are guaranteed to 
be deadlock-free.
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Deadlock freedom

� Where is this useful?
– Whenever synchronization 

pattern of a program is 
independent of the data read 
by the program

– True for a large majority of 
HPC codes.

– (Usually not true of reactive 
programs.)

� Central theorem of X10:
– Arbitrary programs with 

async, atomic, finish (and 
clocks) are deadlock-free.

� Key intuition:
– atomic is deadlock-free.
– finish has a tree-like 

structure.
– clocks are made to satisfy 

conditions which ensure tree-
like structure.

– Hence no cycles in wait-for 
graph.
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...

warehousesmaster

RAMP_UP
RECORDING
RAMP_DOWN
STOP

phase 1

phase 2

finish

Clock example: SPECjbb
finish async {
final clock c = new clock();
final Company company = 
createCompany(...);
for (int w : [0:wh_num]) {

async clocked(c) { // a warehouse
int mode;
atomic { mode = company.mode; };
initialize;
next; // 1.
while (mode != STOP) {
select a transaction;
think;
process the transaction;
if (mode == RECORDING)
record data;

if (mode == RAMP_DOWN)
next; // 2.

atomic { mode = company.mode; };
} // while

} // a warehouse
} // for
// ------ continued next column -->

// master activity
next; // 1.
atomic { company.mode = RAMP_UP; };
sleep rampuptime;
atomic { company.mode = RECORDING; };
sleep recordingtime;
atomic { company.mode = RAMP_DOWN; };
next; // 2.
// all clients in RAMP_DOWN
company.mode = STOP;

} // finish async
// simulation completed.
print results.
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Cellular Automata Simulation: Game of Life

Acknowledgment:

“Barriers”, Chapter 5.5.4, Java Concurrency in 
Practice, Brian Goetz et al
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Game of Life – Java version (1 of 2)
java.util.concurrent version (Listing 5.15, p102, JCiP)

public class CellularAutomata {
private final Board mainBoard;
private final CyclicBarrier barrier;
private final Worker[] workers;

public CellularAutomata(Board board) {
this.mainBoard = board;
int count = Runtime.getRuntime().availableProcessors();
this.barrier = new CyclicBarrier(count,

new Runnable() { // barrier action
public void run(){mainBoard.commitNewValues();}});

this.workers = new Worker[count];
for (int i = 0; i < count; i++)
workers[i] = new Worker(mainBoard.getSubBoard(count, i));

} // constructor

public void start() {
for (int i = 0; i < workers.length; i++) new Thread(workers[i]).start();
mainBoard.waitForConvergence();

} // start()
} // CellularAutomata
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Game of Life – Java version (2 of 2)
private class Worker implements Runnable {
private final Board board;
public Worker(Board board) { this.board = board; }

public void run() {
while (!board.hasConverged()) {
for (int x = 0; x < board.getMaxX(); x++)
for (int y = 0; y < board.getMaxY(); y++)
board.setNewValue(x, y, computeValue(x, y));

try { barrier.await(); }
catch (InterruptedException ex) { return; }
catch (BrokenBarrierException ex) { return; }

} // while
} // run()

private int computeValue(int x, int y) {
// Compute the new value that goes in (x,y)
. . .

}
} // Worker



IBM Research: Software Technology

© 2006 IBM Corporation60

P
ro

gr
am

m
in

g 
T

ec
hn

ol
og

ie
s

Game of Life – X10 version
public class CellularAutomata {
private final Cell[.] mainBoard1, mainBoard2; 
public CellularAutomata(Cell[.] board) {
mainBoard1 = board; mainBoard2 = null; 

} // constructor

public void start() {
finish async {
final clock barrier = clock.factory.clock();
ateach ( point[i] : dist.unique() ) clocked(barrier) {
boolean red = true;
while ( !subBoardHasConverged(mainBoard1,mainBoard2,red) ) {
for ( point[x,y] : mainBoard1 | here )
if ( red ) mainBoard2[x,y] = computeValue(mainBoard1, x, y);
else mainBoard1[x,y] = computeValue(mainBoard2, x, y);

next;
red = ! red;

} // while
} // foreach
if (! red) mainBoard1 = mainBoard2; // answer is now in mainBoard1

} // finish async
// All boards have now converged

} // start() 
} // CellularAutomata



IBM Research: Software Technology

© 2006 IBM Corporation61

P
ro

gr
am

m
in

g 
T

ec
hn

ol
og

ie
s

Game of Life – X10 version
public class CellularAutomata {
private final Cell[.] mainBoard1, mainBoard2; 
public CellularAutomata(Cell[.] board) {
mainBoard1 = board; mainBoard2 = null; 

} // constructor

public void start() {
finish async {
final clock barrier = clock.factory.clock();
ateach ( point[i] : dist.unique() ) clocked(barrier) {
boolean red = true;
while ( !subBoardHasConverged(mainBoard1,mainBoard2,red) ) {
for ( point[x,y] : mainBoard1 | here )
if ( red ) mainBoard2[x,y] = computeValue(mainBoard1, x, y);
else mainBoard1[x,y] = computeValue(mainBoard2, x, y);

next;
red = ! red;

} // while
} // foreach
if (! red) mainBoard1 = mainBoard2; // answer is now in mainBoard1

} // finish async
// All boards have now converged

} // start() 
} // CellularAutomata

NOTE: exiting from while loop terminates 
activity for iteration i, and automatically 

deregisters activity from clock

Example of transmitting 
clock from parent to child
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Futures
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future

future (P)  S
� Creates a new child activity at 

place P, that executes 
statement S; 
� Returns immediately.
� S may reference final variables 

in enclosing blocks.

future vs. async
� Return result from 

asynchronous computation
� Tolerate latency of remote 

access.

// global dist. array
final double a[D] =  …;
final int idx = …;

future<double> fd = 
future (a.distribution[idx]) 
{ 
// executed at a[idx]’s
// place
a[idx]; 

};

Expr ::= future PlaceExpSingleListopt {Expr }

future type
� no subtype relation between T 

and future<T>
Considering addition of a delayed 

future: needs run() to be called 
before it is activated
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future example

public class TutFuture1 {
static int fib (final int n) {

if ( n <= 0 ) return 0;
if ( n == 1 ) return 1;
future<int> x = future { fib(n-1) };
future<int> y = future { fib(n-2) };
return x.force() + y.force();

} 

public static void main(String[] args) {
System.out.println("fib(10) = " + fib(10));

}
}

� Divide and conquer: recursive calls execute concurrently.
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Example: rooted exception model (future)

double div (final double divisor)
future<double> f = future { return 42.0 / divisor; }
double result;
try {
result = f.force();

} catch (ArithmeticException e) {
result = 0.0;

}
return result;

}

� Exception is propagated when the future is forced.
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Futures can deadlock

nullable future<int> f1=null;

nullable future<int> f2=null;

void main(String[] args) {

f1 = future(here){a1()};

f2 = future(here){a2()};

f1.force();

}

int a1() {
nullable future<int> tmp=null; 
do {

tmp=f2;
} while (tmp == null);
return tmp.force();

}

int a2() {
nullable future<int> tmp=null; 
do {

tmp=f1;
} while (tmp == null);
return tmp.force();

}

X10 guidelines to avoid deadlock:
� avoid futures as shared variables 
� force called by same activity that created body of future, or a 

descendent.

cyclic wait condition
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Memoization

� Acknowledgment:

� “Memoization”, Chapter 5.6, Java 
Concurrency in Practice, Brian Goetz 
et al
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Memoization in Java

public class Memoizer<A,V> implements Computable<A,V> {
private final ConcurrentMap<A,Future<V>> cache 

= new ConcurrentHashMap<A, Future<V>>();
private final Computable<A,V> c;
public Memorizer(Computable<A,V> c) { this.c = c;}
public V compute(final A arg) throws InterruptedException {
while (true) {

Future<V> f = cache.get(arg);
if (f==null) { 
Callable<V> eval = new Callable<V>() {

public V call() throws InterruptedException {
return c.compute(arg);

}
};
FutureTask<V> ft = new FutureTask<V>(eval); 
f = cache.putIfAbsent(arg, ft);
if (f == null) { f = ft; ft.run();}

}
try {
return f.get();

} catch (CancellationException e) {
cache.remove(arg,f);

} catch (ExecutionException e) {
throw launderThrowable(e.getCause());

}}}}
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Memoization

public class Memoizer implements Computable  {
private final ConcurrentMap cache = 

new ConcurrentHashMap ();  
private final Computable c;  

public Memoizer(Computable c) { this.c = c;} 

public Object compute (final Object arg) throws Exception 
{    

nullable<Future> f = (Future) cache.get(arg);    
if (f == null) {
Future g = new Latch(c, arg);
f = cache.putIfAbsent(arg, g);
if (f==null) { f=g; f.run();}    

}    
return f.force();  

}

} 
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Memoization (with proposed generics)

public class Memoizer<V,A> implements Computable<V,A> {
private final ConcurrentMap<future<V>,A> cache = 

new ConcurrentHashMap<future<V>,A>();  
private final Computable<V,A> c;  

public Memoizer(Computable<V,A> c) { this.c = c;} 

public V compute (final A arg) throws Exception {    
nullable<future<V>> f = cache.get(arg);    
if (f == null) {
future<V> g = new Latch(c, arg);
f = cache.putIfAbsent(arg, g);
if (f==null) { f=g; f.run();}    

}    
return f.force();  

}
} 
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Concurrency Control: 
Conditional atomic blocks, when, await
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when

� when (E) S
– Activity suspends until a state in which 

the guard E is true. 
– In that state, S is executed atomically 

and in isolation.

� Guard E
– boolean expression
– must be nonblocking
– must not create concurrent activities 

(sequential)
– must not access remote data (local)
– must not have side-effects (const)

� await (E)
– syntactic shortcut for when (E) ;

Stmt ::= WhenStmt
WhenStmt ::= when ( Expr ) Stmt |

WhenStmt or (Expr) Stmt

class OneBuffer {
nullable<Object> datum = 

null;
boolean filled = false;

void send(Object v) { 
when ( ! filled ) {

datum = v;
filled = true;

}
}

Object receive() {
when ( filled ) {

Object v  = datum;
datum = null;
filled = false;
return v;

}
}

}
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Static semantics of guard for when / await 

� boolean field
� boolean expression with field access or constant values

class BufferBuffer {
..
void send(Object v) { 

when (size() < MAX_SIZE)   
{
datum = v;
filled = true;

}
}
...

}

compile-time error
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Semaphores

class Semaphore {
private boolean taken;

void p() { 
when (!taken)

taken = true;
}

atomic void v() {
taken = false;

}
}

acquire semantics

release semantics
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Original Java code
// Main thread (see spec.jbb.Company): …

// Wait for all threads to start.

synchronized (company.initThreadsStateChange) {

while (initThreadsCount != threadCount) {

try {

initThreadsStateChange.wait();

} catch (InterruptedException e) {…}

}

} ...

// Tell everybody it’s time for warmups.

mode = RAMP_UP;

synchronized (initThreadsCountMonitor) {

initThreadsCountMonitor.notifyAll();

} ....

// Worker thread 

// (see spec.jbb.TransactionManager): …

synchronized (company.initThreadsCountMonitor) {

synchronized (company.initThreadsStateChange) {

company.initThreadsCount++;

company.initThreadsStateChange.notify();

}

try {

company.initThreadsCountMonitor.wait();

} catch (InterruptedException e) {…}

} ...

X10 atomic sections
// Main thread: …
// Wait for all threads to start.
when(company.initThreadsCount==

threadCount) { 
mode = RAMP_UP;
initThreadsCountReached = true;

} …

// Worker thread: …
atomic {

company.initThreadsCount++; 
}

await ( initThreadsCountReached ); 
//barrier synch.

…

Atomic blocks: Simplifying barrier synchronization
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Event Handling and Concurrency:
GUI Applications as an Exemplar

Acknowledgment:

“GUI Applications”, Chapter 9, Java Concurrency in 
Practice, Brian Goetz et al
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Scenario: Thread Hopping in a GUI Application (Java)
java.util.concurrent version (Listing 9.5, p196, JCiP)

private void longRunningTaskWithFeedback() {
button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
button.setEnabled(false); label.setText("busy"); // 1) Dim button

exec.execute( // 2) Submit long-running task for execution
new Runnable() { 
public void run() {
try {
/* Do big computation */

} finally {
// 3) Submit task to run in GUI even thread executor
GuiExecutor.instance().execute(new Runnable() {

public void run() {
button.setEnabled(true); label.setText("idle");

}
});

}
} // run()

});
} // run()

});
}
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Scenario: Thread Hopping in a GUI Application (X10)

private void longRunningTaskWithFeedback() {

button.setEnabled(false); label.setText("busy"); // 1) Dim button

async (ExecPlace) {// 2) Create long-running task at ExecPlace

/* Do big computation */

// 3) When done, create task at GuiExecutorPlace

async (GuiExecutorPlace) {

button.setEnabled(true);

label.setText("idle");

}

}

}

finish async (GuiExecutorPlace)SwingUtilities.invokeAndWait()

async (GuiExecutorPlace)SwingUtilities.invokeLater()

here == GuiExecutorPlaceSwingUtilities.isEventDispatchThread()

X10 idiomSwing utility
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Single-threaded vs. Multi-threaded GUI frameworks

1) Java approach -- Single-threaded GUI framework 
– GUI objects are kept consistent by thread confinement
– Pro: Programmer does not have to worry about deadlock in GUI thread
– Cons:

• Cannot exploit parallelism to speed up GUI framework
• Reasoning about data accesses across task boundaries can still be tricky due 

to nondeterminism of task scheduling

2) X10 approach – Single-place Multi-threaded GUI framework a
– All GUI tasks are scheduled at GuiExecutorPlace -- GUI objects are accessed 

only by activities in GuiExecutorPlace
– Pro: Can easily exploit parallelism within GuiExecutorPlace
– Con: atomic blocks necessary to ensure mutual exclusion among tasks (but 

making atomicity explicit should also make the code more maintainable?)
– See next slide on how to address overhead of atomic blocks in a Single-place 

Multi-threaded GUI framework 
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Performance Implications (Discussion)

� Use of atomic blocks can introduce additional overhead in X10 implementation, 
compared to single-threaded Java version

– For multi-core architectures, this additional overhead should be more than
compensated for by performance improvements due to concurrency …

� … but if there is a real need for improving the performance of GuiExecutorPlace for 
execution on a single thread …

– Restrict GuiExecutorPlace to be a local nonblocking place

• only local nonblocking activities are permitted to run at such a place

– nonblocking� no static occurrence of when, force(), next() permitted (but finish 
is permitted)

– local � all data accessed is statically guaranteed to be place-local

– X10 runtime can use a single active worker thread for GuiExecutorPlace and 
guarantee absence of interleaving among tasks at GuiExecutorPlace

� atomic-enter and atomic-exit can then be replaced by no-ops
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Using X10 method annotations

A method declaration, foo(), can be annotated with:
� nonblocking� no static occurrence in foo() of when, force(), next(); any 

method that foo() invokes must also be annotated as nonblocking
� local � all data accessed in foo() is statically guaranteed to be place-local; 

any method that foo() invokes must also be annotated as local

To check if an activity (async, foreach, ateach, future) is local nonblocking
– Check local body of activity to ensure that it satisfies the conditions
– Check that all methods called in activity are also annotated (and checked) 

as local nonblocking
– NOTE: this also works in the presence of recursion
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Tutorial outline

1) X10 in a Nutshell

2) Sequential X10 
– Type system
– Standard library
– extern

3) Concurrency in X10
– activities
– atomic blocks
– clocks, clocked variables

4) X10 Arrays
– Points
– Regions

5) Distributed X10
– places
– distributions and distributed 

arrays

6) Comparison with other 
Concurrent Languages
– Java
– OpenMP
– MPI
– UPC

7) Current Status and Future 
Work
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X10 Array Language

� point, region, distribution
� Syntax extensions
� Initialization
� Multi-dimensional arrays
� Aggregate operations 
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point

A point is an element of an n-dimensional Cartesian 
space (n>=1) with integer-valued coordinates e.g., [5], [1, 2], …

– Dimensions are numbered from 0 to n-1
– n is also referred to as the rank of the point

A point variable can hold values of different ranks e.g., 
– point p; p = [1]; … p = [2,3]; …

Operations
– p1.rank 

• returns rank of point p1
– p1.get(i)

• returns element (i mod p1.rank) if i < 0 or  i >= p1.rank
– p1.lt(p2), p1.le(p2), p1.gt(p2), p1.ge(p2)

• returns true iff p1 is lexicographically <, <=, >, or >= p2 
• only defined when p1.rank and p1.rank are equal
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Syntax extensions for points

� Implicit syntax for points:
point p = [1,2] � point p = point.factory(1,2)

� Exploded variable declarations for points:
point p [i,j] // final int i,j

� Typical uses :

– for (point p [i, j] : r) { ... }

– for (point [i, j] : r) { ... }

– int sum (point [i,j], point [k, l]) 
{ return [i+k, j+l]; }

– int [] iarr = new int [2] (point [i,j]) { return i; }



IBM Research: Software Technology

© 2006 IBM Corporation86

P
ro

gr
am

m
in

g 
T

ec
hn

ol
og

ie
s

Example: point (TutPoint1)

public class TutPoint {

public static void main(String[] args) {

point p1 = [1,2,3,4,5];

point p2 = [1,2];

point p3 = [2,1];

System.out.println("p1 = " + p1 + 

" ; p1.rank = " + p1.rank + 

" ; p1.get(2) = " + p1.get(2));

System.out.println("p2 = " + p2 + 

" ; p3 = " + p3 + " ; p2.lt(p3) = " +

p2.lt(p3));

}
}

Console output:

p1 = [1,2,3,4,5] ; p1.rank = 5 ; p1.get(2) = 3
p2 = [1,2] ; p3 = [2,1] ; p2.lt(p3) = true
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Rectangular regions
A rectangular region is the set of points contained in a rectangular subspace

A region variable can hold values of different ranks e.g., 
– region R; R = [0:10]; … R = [-100:100, -100:100]; … R = [0:-1]; …

Operations
– R.rank ::= # dimensions in region; 
– R.size() ::= # points in region
– R.contains(P) ::= predicate if region R contains point P
– R.contains(S) ::= predicate if region R contains region S
– R.equal(S) ::= true if region R equals region S
– R.rank(i) ::= projection of region R on dimension i (a one-dimensional region)
– R.rank(i).low() ::= lower bound of ith dimension of region R
– R.rank(i).high() ::= upper bound of ith dimension of region R
– R.ordinal(P) ::= ordinal value of point P in region R
– R.coord(N) ::= point in region R with ordinal value = N
– R1 && R2 ::= region intersection (will be rectangular if R1 and R2 are rectangular)
– R1 || R2 ::= union of regions R1 and R2 (may not be rectangular)
– R1 – R2 ::= region difference (may not be rectangular)
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Example: region (TutRegion1)

public class TutRegion {

public static void main(String[] args) {

region R1 = [1:10, -100:100]; 

System.out.println("R1 = " + R1 + " ; R1.rank = " + 
R1.rank + " ; R1.size() = " + R1.size() + " ; 
R1.ordinal([10,100]) = " + R1.ordinal([10,100]));

region R2 = [1:10,90:100]; 

System.out.println("R2 = " + R2 + " ; R1.contains(R2) = 
" + R1.contains(R2) + " ; R2.rank(1).low() = " + 
R2.rank(1).low() + " ; R2.coord(0) = " + R2.coord(0));

}

}

Console output:

R1 = {1:10,-100:100} ; R1.rank = 2 ; R1.size() = 2010 ; 
R1.ordinal([10,100]) = 2009

R2 = {1:10,90:100} ; R1.contains(R2) = true ; 
R2.rank(1).low() = 90 ; R2.coord(0) = [1,90]
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Syntax extensions for regions

Region constructors

int hi, lo;

region r = hi;

� region r = region.factory.region(0, hi) 
region r = [low:hi] 

� region r = region.factory.region(lo, hi) 

region r1, r2;  // 1-dim regions

region r = [r1, r2]

� region r = region.factory.region(r1, r2); 
// 2-dim region
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X10 arrays

� Java arrays are one-dimensional and local
– e.g., array args in main(String[] args)
– Multi-dimensional arrays are represented as “arrays of arrays” in 

Java
� X10 has true multi-dimensional arrays (as Fortran) that can be 

distributed (as in UPC, Co-Array Fortran, ZPL, Chapel, etc.)

Array declaration
– T [.] A declares an X10 array with element type T
– An array variable can refer to arrays with different rank

Array allocation
– new T [ R ] creates a local rectangular X10 array with 

rectangular region R as the index domain and T as the element 
(range) type 

– e.g., int[.] A = new int[ [0:N+1, 0:N+1] ];
Array initialization

– elaborate on a slide that follows...
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Array declaration syntax: [] vs [.]

General arrays: <Type>[.]
– one or multidimensional arrays
– can be distributed
– arbitrary region

Special case (“rail”): <Type>[]  
– 1 dimensional
– 0-based, rectangular array
– not distributed
– can be used in place of general arrays
– supports compile-time optimization

Array of arrays (“jagged array”): <Type>[.][.]
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Simple array operations

� A.rank ::= # dimensions in array
� A.region ::= index region (domain) of array
� A.distribution ::= distribution of array A
� A[P] ::= element at point P, where P belongs to A.region
� A | R ::= restriction of array onto region R

– Useful for extracting subarrays
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Aggregate array operations

� A.sum(), A.max() ::= sum/max of elements in array
� A1 <op> A2

– returns result of applying a pointwise op on array 
elements, when A1.region = A2. region

– <op> can include +, -, *,  and / 
� A1 || A2 ::= disjoint union of arrays A1 and A2 

(A1.region and A2.region must be disjoint)
� A1.overlay(A2) 

– returns an array with region, A1.region || A2.region, with 
element value A2[P] for all points P in A2.region and A1[P] 
otherwise.

Future work: framework for array operators
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Example: arrays (TutArray1)

public class TutArray1 {

public static void main(String[] args) {

int[.] A = new int[ [1:10,1:10] ] 

(point [i,j]) { return i+j;} ;

System.out.println("A.rank = " + A.rank +

" ; A.region = " + A.region);

int[.] B = A | [1:5,1:5];

System.out.println("B.max() = " + B.max());

}

}

Console output:

A.rank = 2 ; A.region = {1:10,1:10}
B.max() = 10

array copy
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Initialization of mutable arrays

Mutable array with nullable references to mutable’ objects:

RefType nullable [] farr = new RefType[N];  // init with null value

Mutable array with references to mutable objects:

RefType [] farr = new RefType [N];  // compile-time error, init required

dist d = dist.factory.block(N);
RefType [.] farr = new RefType [d] (point[i]) { return RefType(here, i); }

Execution of initializer is implicitly parallel / distributed
(pointwise operation):

That hold ‘reference to value objects’ (value object can be inlined)

int [] iarr = new int[N] ;  // init with default value, 0
int [] iarr = new int[] {1, 2, 3, 4};  // Java style
int [] iarr = new int[N] (point[i]) 

{return i}; // explicit init
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Initialization of value arrays

Initialization of value arrays requires an initializer.

Value array of reference to mutable objects:
RefType value [] farr = new value RefType [N];  

// compile-time error, init required

RefType value [] farr = new value RefType [N] (point[i]) 
{ return new Foo(); }

Value array of ‘reference to value objects’ (value object can be inlined)

int value [] iarr = new value int[] {1, 2, 3, 4};  
// Java style init

int value [] iarr = new value int[N] (point[i]) 
{ return i }; 
// explicit init
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Tutorial outline

1) X10 in a Nutshell

2) Sequential X10 
– Type system
– Standard library
– extern

3) Concurrency in X10
– activities
– atomic blocks
– clocks, clocked variables

4) X10 Arrays
– Points
– Regions

5) Distributed X10
– places
– distributions and distributed 

arrays

6) Comparison with other 
Concurrent Languages
– Java
– OpenMP
– MPI
– UPC

7) Current Status and Future 
Work
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Distributed X10

� Places
� Locality rule
� Distributions
� async, futures
� ateach
� Distributed arrays
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Places in X10

� place.MAX_PLACES = total number of places (runtime constant)
� place.places = value array of all places in an X10 
� place.factory.place(i) =  place corresponding to index i
� here = place in which current activity is executing
� <place-expr>.toString() returns a string of the form “place(id=99)”
� <place-expr>.id returns the id of the place

X10 Places

System Nodes

X10 language defines mapping from X10 
objects to X10 places, and abstract 

performance metrics on places

X10 Data Structures

Future X10 deployment system will define 
mapping from X10 places to system nodes; 

not supported in current implementation
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Locality rule

Any access to a mutable (shared heap) datum must be
performed by an activity located at the place as the
datum.

� direct access via a remote heap reference is not 
permitted.

�Inter-place data accesses can only be performed by 
creating remote activities (with weaker ordering 
guarantees than intra-place data accesses)

�BadPlaceException is thrown if the locality rule is 
violated.
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async and future with explicit place specifier

async (P) S
� Creates new activity to execute statement S at place P
� async S is equivalent to async (here) S

future (P) { E }
� Create new activity to evaluate expression E at place P
� future { E } is equivalent to future (here) { E }

Note that here in a child activity for an async/future computation will refer to 
the place P at which the child activity is executing, not the place where 
the parent activity is executing

Specify the destination place for async/future activities so as to obey the 
Locality rule e.g.,

async (O.location) O.x = 1;
future<int> F = future (A.distribution[i]) { A[i] } ;
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Implicit syntax

� Use conventional syntax for 
operations on values of 
remote type:

� x.f = e //write x.f of type T

� final T v = e;

finish async(x.loc) { 

x.f=v;

}

� … = …x.f …//read x.f of type T

�
future<T>(x.loc){x.f}.force()

� Similarly for array reads and 
writes.

� Invoke a method 
synchronously on values of 
remote type

� e.m(e1,…,en);

����
final T  v  = e;

final T1 v1 = e1;

…

final Tn vn = en;

finish async (v.loc) {

v.m(v1,…,vn);

}

� Similarly for methods 
returning values.
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Inter-place communication using async and future

Question: how to assign A[i] = B[j], when A[i] and B[j] 
may be in different places?

Answer #1: Use nested async:

finish async ( B.distribution[j] ) {
final int bb = B[j];
async ( A.distribution[i] ) A[i] = bb;

}

Answer #2: Use future-force and an async:

final int b = future (B.distribution[j]) 
{ B[j] }.force();

finish async ( A.distribution[i] ) A[i] = b;
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ateach (distributed parallel iteration)

ateach (point p:D) S
� Creates |D| async statements in parallel at place specified by 

distribution.

� Termination of all (recursively created) activities with finish.
� ateach is a convenient construct for writing parallel matrix code 

that is independent of the underlying distribution, e.g.,

� SPMD computation:

ateach ( FormalParam: Expr ) Stmt

for (point p:D.region)
async (D[p]) { S }

ateach (point p:D) S

ateach ( point p : A.distribution ) 
A[p] = f(B[p], C[p], D[p]) ;

finish ateach( point[i] : dist.factory.unique() ) S
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Example: ateach (TutAteach1)

public class TutAteach1 {

public static void main(String args[]) {

finish ateach (point p: dist.factory.unique()) {

System.out.println("Hello from " + here.id);

} 

} // main()

}

unique distribution:  maps point i in 
region [0 : place.MAX_PLACES-1]  
to place place.factory.place(i).Console output:

Hello from 1
Hello from 0
Hello from 3
Hello from 4
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Distributions in X10

A distribution maps every point in a region to a place.

Creating distributions (x10.lang.dist):
– dist D1 = dist.factory.constant(R, here); // local distribution 

– maps region R to here
– dist D2 = dist.factory.block(R); // blocked distribution
– dist D3 = dist.factory.cyclic(R); // cyclic distribution
– dist D4 = dist.factory.unique(); // identity map on 

[0:MAX_PLACES-1]
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Distributed Containers

� DistributedHashMap

� Adaptation of ConcurrentHashMap by Doug Lea 
for X10.
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DistributedHashMap

� Keys
– immutable objects (instances of value classes)
– hashing of entries according to keys across places
� Values 

– references to mutable objects

Design goals
– Distribution of Key-Value pairs
– Thread-safety
– Operations are linearizable
– Internal concurrency for optimization
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DistributedHashMap - design

place 1{k, v} {k, v}

{k, v}

{k, v}
place 2

DistributedHashMap Segment Entry

Object
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DistributedHashMap - data structures
class DistributedHashMap {

Segment[] segments;

Segment segmentFor(final int hash) { ... } 
int hash(final Object x) { ... }

}

class Segment {
final int index;
int count;
int modCount; 
Entry[] table;
public final Semaphore sem;

...
}
class Entry {

final value key;
final int hash;
Object value;
final nullable<Entry> next;

}

mutual exclusion among writers / 
fallback for global operations

to detect ABA violation

for consistency among concurrent 
readers and writers

references to segments in different places

(unique distribution)

key is an instance of a value type

index in Segments[]
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DistributedHashMap - operations

Selected operations 

� boolean containsValue(final value key)
– must not suffer from aba problem
– optimization: internal concurrency across places
– reader concurrency

� nullable<Object> put(final value key,                           
final Object value)

– concurrent across places, sequential in each place

� nullable<Object> get(final value key) 
– concurrent intra and inter-place read access

� others that we do not discuss here
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DistributedHashMap – aba problem

Linearizability requires that ABA problem cannot occur:

� ABA problem: thread 2 must not observe r == false;
(could happen if k1, k2 target different segments and operations in 
both thread occur concurrently)

� Problem can occur whenever Hashtable is traversed
(operations isEmpty, size, containsValue)

� Prevention of ABA complicates implementation significantly
� Modification counters

// initially {k1, v} is in the table

// thread 1            // thread2
table.put(k2, v);      r = table.containsValue(v);
table.remove(k1, v);
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DistributedHashMap – get

nullable<Object> get(final Object key) {
final int hash = hash(key); // throws NullPointerException if key null
final Segment segmentfor = segmentFor(hash);
return segmentfor.get(key, hash);

}

nullable<Object> get(final Object key, final int hash) {
atomic if (count==0) return
int hashIndex = indexFor(hash, index);
nullable<Entry> first = table[hashIndex];
nullable<Entry> e = first;
for (e = first; e !=null; e =e.next) 

if (e.hash == hash && e.key == key) {
Object value = e.value;
if (value !=null) return value;
break;

}
// Recheck under synch if key apparently not there or interference
Segment seg = segments[hash & SEGMENT_MASK];
sem.p(); 
try{      

Entry newFirst = table[index];
if (e != null || first != newFirst) {

for (e = newFirst; e != null; e = e.next) {
if (e.hash == hash && eq(key, e.key)) 

return e.value;
}

}
return null;

} finally { sem.v();}
}

atomic, to reliably communicate with put.

class DistributedHashMap ...

class Segment ...
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DistributedHashMap – put
nullable<Object> put(final Object key, final Object value) {

int hash = hash(key);
Segment segmentfor = segmentFor(hash);
return segmentfor.put(key, hash, value);

}

nullable<Object> put(final Object key, final int hash, final Object value) {
nullable<Object> oldval = null;
sem.p();
try {
nullable<Entry> first = table[indexFor(hash,index)];
nullable<Entry> e = first;
while (e != null) { 

if (e.hash == hash && key == e.key)
break;

e = e.next;
}

if (e != null) {
oldval = e.value; 
atomic { e.value = value; }

} else {
modCount ++;
table[index] = new Entry(key, hash, value, first);
atomic { count ++; }

}
} finally { sem.v(); }
return oldval;

}

acquire lock – exclusive put per segment, 
sync with concurrent put.

release lock, sync with concurrent put.

atomic write means release (sync with concurrent get)

class DistributedHashMap ...

class Segment ...

atomic read + write means acquire-release sync with
concurrent get

comparison of  values with operator ==
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DistributedHashMap – containsValue (1/2)
boolean containsValue(final Object value) {

final int[.] mc = new int[segments.distribution];
final boolean[.] vals = new boolean[segments.distribution];

// try without locking
finish ateach (point p:segments) {

atomic {
mc[p] = segments[p].modCount;
vals[p] = segments[p].containsValue(value);

}
}
if (vals.or())

return true;   
finish ateach (point p:segments) {

mc[p] -= segments[p].modCount;
}
if (mc.sum() == 0)

return false;

// resort to locking all segments ....    
for (point p:segments)

finish async (segments.distribution[p]) { segments[p].sem.p(); }

finish ateach (point p:segments) {
vals[p] = segments[p].containsValue(value);
segments[p].sem.v();

}
return vals.or();

}

reduction

reduction

acquire all locks in order

release locks in any order

search in parallel across segments

reduction

non-blocking 

blocking 

class Segment ...

temporary distributed arrays
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DistributedHashMap – containsValue (1/2)
boolean containsValue(final Object value) {

final int[.] mc = new int[segments.distribution];
final boolean[.] vals = new boolean[segments.distribution];

// try without locking
finish ateach (point p:segments) {

atomic {
mc[p] = segments[p].modCount;
vals[p] = segments[p].containsValue(value);

}
}
if (vals.or())

return true;   
finish ateach (point p:segments) {

mc[p] -= segments[p].modCount;
}
if (mc.sum() == 0)

return false;

// resort to locking all segments ....    
for (point p:segments)

finish async (segments.distribution[p]) { segments[p].sem.p(); }

finish ateach (point p:segments) {
vals[p] = segments[p].containsValue(value);
segments[p].sem.v();

}
return vals.or();

}

reduction

reduction

acquire all locks in order

release locks in any order

search in parallel across segments

reduction

non-blocking 

blocking 

class DistributedHashMap ...

temporary distributed arrays
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DistributedHashMap – containsValue (2/2)

boolean containsValue(final Object value) {
atomic if (count == 0) return;
for (point [p]: table) {

nullable<Entry> e = table[p];
while (e != null) {

if (e.value.equals(value))
return true;

e = e.next;
}

}
return false;

}

class Segment ...

atomic read means acquire sync with concurrent put.
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Tutorial outline

1) X10 in a Nutshell

2) Sequential X10 
– Type system
– Standard library
– extern

3) Concurrency in X10
– activities
– atomic blocks
– clocks, clocked variables

4) X10 Arrays
– Points
– Regions

5) Distributed X10
– places
– distributions and distributed 

arrays

6) Comparison with other 
Concurrent Languages
– Java
– OpenMP
– MPI
– UPC

7) Current Status and Future 
Work



IBM Research: Software Technology

© 2005 IBM Corporation119

P
ro

gr
am

m
in

g 
T

ec
hn

ol
og

ie
s

X10 in Comparison

� MPI + OpenMP
� UPC
� Exemplary stencil computations in

– C/MPI
– Titanium
– UPC
– X10
– C++ / htalib
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X10, in comparison with MPI+OpenMP …

MPI / OpenMP

� Processes
� Programmer-managed global data 

structures
� Message passing w/ programmer-

managed marshalling
– Includes reductions

� Low-level message envelopes
– <source, destination, tag, 

communicator>
� Barriers
� Fix number of OpenMP threads
� Locks, critical sections
� Affinity directives 
� INDEPENDENT directive

X10

� Places
� Partitioned Global Address Space

� Asynchronous activities w/ objects 
and futures

– Includes reductions
� Strongly-typed invocations and return 

values (futures)

� Clocks
� Asynchronous activities
� Atomic sections
� Placetype system (@-clauses)
� foreach, ateach statements
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X10 in comparison with UPC
� Simple syntax for remote memory accesses: 

Read is rval, write is lval

� Block cyclic distribution of 1D arrays 

� SPMD model with standard synchronizations 
(barriers, locks), inquiry functions, etc.   

� split barriers w/ notify & wait

� Work sharing supported by upc_forall

� Type system identifies private vs. shared data. 
Four classes of pointers (SP & SS pointer 
operations are expensive):

– PP: Private space pointed by Private pointer 
e.g., int *p1

– SP: Shared space pointed by Private pointer 
e.g., shared int *p2

– PS: Private space pointed by Shared pointer 
e.g., int *shared p3 (not recommended!)

– SS: Shared space pointed by Shared pointer 
e.g., shared int *shared p4;

� Memory consistency can be controlled by user 
(relaxed vs. strict)

� Portable (to the extent that ANSI C is portable)

� Same in X10

� More general distributions in X10

� X10 supports both fork-join and SPMD 
models

� Clock now & next ops

� X10 has foreach and ateach

� (X10 may have @activity annotations.)
X10 has type-safe object references, not 
pointers

� X10 has two different memory 
consistency models: within and across 
places

� X10 has stronger portability (like Java)
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2D-stencil in C / MPI

#include "mpi.h"
int main( argc, argv )
int argc;
char **argv;
{

int        rank, value, size, errcnt, toterr, i, j, 
itcnt;
int        i_first, i_last;
MPI_Status status;
double     xlocal[(12/4)+2][12];
double     xnew[(12/3)+2][12];
MPI_Init( &argc, &argv );
MPI_Comm_rank( MPI_COMM_WORLD, &rank );
MPI_Comm_size( MPI_COMM_WORLD, &size );
if (size != 4) MPI_Abort( MPI_COMM_WORLD, 1 );
/* xlocal[][0] is lower ghostpoints, 
xlocal[][maxn+2] is upper */

/* Note that top and bottom processes have one less 
row of interior

points */
i_first = 1;
i_last = maxn/size;
if (rank == 0)        i_first++;
if (rank == size - 1) i_last--;

/* Fill the data as specified */
for (i=1; i<=maxn/size; i++) 
for (j=0; j<maxn; j++) 

xlocal[i][j] = rank;
for (j=0; j<maxn; j++) {
xlocal[i_first-1][j] = -1;
xlocal[i_last+1][j] = -1;
}

/* Send leftunless I am s I'm at the top, then 
receive from below */
/* Note the use of xlocal[i] for &xlocal[i][0] */
if (rank < size - 1) 

MPI_Send( xlocal[maxn/size], maxn, MPI_DOUBLE, 
rank + 1, 0, 

MPI_COMM_WORLD );
if (rank > 0)

MPI_Recv( xlocal[0], maxn, MPI_DOUBLE, rank - 1, 
0, 

MPI_COMM_WORLD, &status );

/* Send down unless I'm at the bottom */
if (rank > 0) 

MPI_Send( xlocal[1], maxn, MPI_DOUBLE, rank - 1, 
1, 

MPI_COMM_WORLD );
if (rank < size - 1) 

MPI_Recv( xlocal[maxn/size+1], maxn, MPI_DOUBLE, 
rank + 1, 1, 

MPI_COMM_WORLD, &status );

itcnt ++;
for (i=i_first; i<=i_last; i++) 

for (j=1; j<maxn-1; j++) {
xnew[i][j] = (xlocal[i][j+1] + xlocal[i][j-1] +

xlocal[i+1][j] + xlocal[i-
1][j]) / 4.0;
}

MPI_Finalize( );
return 0;

}

code works only with 4 procs and 12x12 mesh

communication computationinitializationdata declaration
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2D-stencil in Titanium
final static int DIM=2; //space dimension
final static Point<DIM> startPoint=Point<DIM>.all(0);
final static Point<DIM> endPoint=Point<DIM>.all(1)+Point<DIM>.direction(DIM,1);
public static single void main (String single [] single args){
final int single numThreads=Ti.numProcs();
final int threadID=Ti.thisProc();
final RectDomain<DIM> problemDomain=[startPoint:endPoint];
final int size=endPoint[DIM]-startPoint[DIM]+1;
if (numThreads>size) System.exit(-1);
final int localSize=size/numThreads;
final Point<DIM> startPoint0=startPoint-Point<DIM>.direction(DIM,startPoint[DIM]);
final Point<DIM> endPoint0=endPoint-Point<DIM>.direction(DIM,endPoint[DIM]);
RectDomain<DIM> localDomain;
//construct local domain
if (threadID==numThreads-1){
localDomain=[startPoint0+Point<DIM>.direction(DIM,localSize*threadID):endPoint];

} else{
localDomain=[startPoint0+Point<DIM>.direction(DIM,localSize*threadID):

endPoint0+Point<DIM>.direction(DIM,localSize*(threadID+1)-1)];
}
//construct a distributed array
double [1d] single local  [DIM d]  distArrayA=new double [0:numThreads-1]   [DIM d];
double [DIM d] local localArrayA = new double [localDomain.accrete(1)]; //construct local subarray
distArrayA.exchange(localArrayA); //exchange references to local subarray
double [1d] single local  [DIM d]  distArrayB=new double [0:numThreads-1]   [DIM d];
double [DIM d] local localArrayB = new double [localDomain]; //construct local subarray
distArrayB.exchange(localArrayB); //exchange references to local subarray
//initialize the array
foreach(p in localDomain) 

localArrayA[p]=1;
//exchange ghost values for distArrayA. The boundary values are zeroes by default.
RectDomain<DIM> tempDomain;
if (threadID>0){
tempDomain=distArrayA[threadID-1].domain().shrink(1);
localArrayA.copy(distArrayA[threadID-1].restrict(tempDomain));

}
if (threadID<numThreads-1){
tempDomain=distArrayA[threadID+1].domain().shrink(1);
localArrayA.copy(distArrayA[threadID+1].restrict(tempDomain));

}
Ti.barrier();
//local stencil operation
Point<DIM> disp=Point<DIM>.direction(DIM,1);
foreach (p in localDomain) localArrayB[p]=(localArrayA[p-disp]+localArrayA[p+disp])*0.5;

}

code is rank-
independent

communication

computation

initialization

data declaration
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2D-stencil in UPC
shared [N] double a[M][N];
shared [N] double b[M][N];

int main() {
int i, j;

// initialize a
upc_forall(i = 0; i < M; i++; continue)
upc_forall(j = 0; j < N; j++; &a[i][j]) {
a[i][j] = rand();

}
}
upc_barrier();
// exchange ghosts
upc_forall(i = 0; i < M; i++; &b[i][0]) {
b[i][0] = a[(i-1)%M][N-1];
b[i][N] = a[(i+1)%M][1];

}
upc_barrier();
// compute b
upc_forall(i = 0; i < M; i++; continue)
upc_forall(j = 1; j < N-1; j++; &b[i][j]) {
b[i][j] = (a[i][j+1] + a[i][j-1])*0.5;

}
}

}

communication

computation

initialization

data declaration
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Additional material on distributions
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Using distributions

D[P] = place to which point P is mapped by distribution D 
� if  point p is in D.region
� otherwise ArrayOutOfBoundException

Allocate a distributed array e.g., T[.] A = new T[ D ];
� Allocates an array with index set = D.region, such that element 

A[P] is located at place D[P] for each point P in D.region
� NOTE: “new T[R]” for region R is equivalent to “new T[R->here]”

Iterating over a distribution – generalization of foreach to ateach



IBM Research: Software Technology

© 2006 IBM Corporation127

P
ro

gr
am

m
in

g 
T

ec
hn

ol
og

ie
s

Operations on distributions

� D.region ::= source region of distribution

� D.rank ::= rank of D.region

� D | R ::= region restriction for distribution D and region R (returns 
a restricted distribution)

� D | P ::= place restriction for distribution D and place P (returns 
region mapped by D to place P)

� D1 || D2 ::= union of distributions D1 and D2 (assumes that 
D1.region and D2.region are disjoint)

� D1.overlay(D2) ::= asymmetric union of D2 over D1 

� D.contains(p) ::= true iff D.region contains point p

� D1 – D2 ::= distribution difference: D1 | (D1.region – D2.region) 
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Syntax extensions for distributions

Constant distributions
region r = [0:N];
dist d = r->here 

� dist d = dist.factory.constant(r, here);

dist d = 1000->here
� dist d = dist.factory.constant([0,1000], 

here);

Distributions are implicitly converted to regions
for (point [i,j]: d) {...} 

� for (point [i,j]: d.region) {...} 
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Multidimensional arrays

double[.] darr = new double[[0:N, 0:M]->here];

for (point [i,j]: darr.region)

darr[i,j] = ..;

� initial values in darr are 0.0

� Iteration schema 
– ‘lexicographical order’ (standard, fix)
– [0,0], [0,1], [0,2], ...

� Storage layout 
– row major (fix)
– spatial access locality with standard iteration schema

N

M
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Distributed multidimensional arrays

dist cyclic = dist.factory.cyclic([0:4, 0:6])

dist blockcyclic = dist.factory.blockCyclic([0:4, 0:6], 6)

double[.] darr = new double[XXX];

block cycliccyclic tiled

for 1D arrays: cf. UPC

assuming 4 places

Future work:
hierarchically tiled

regions
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Example: RandomAccess (1/2)

dist D = dist.factory.block(TABLE_SIZE);

final long[.] table = new long[D] (point [i]) { return i; }

final long[.] RanStarts = new  long[dist.factory.unique()]

(point [i]) { return starts(i);};

final long value [.] SmallTable =  new long value[TABLE_SIZE]

(point [i]) { return i*S_TABLE_INIT; };

finish ateach (point [i] : RanStarts ) {

long ran = nextRandom(RanStarts[i]);

for (int count: 1:N_UPDATES_PER_PLACE) {

int J = f(ran);

long K = SmallTable[g(ran)];  

async (table.distribution[J]) atomic table[J] ^= K;

ran = nextRandom(ran);

}

}

assert(table.sum() == EXPECTED_RESULT);

(1)
(2)

(3)

(4)
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Example: RandomAccess (2/2)

(1) Allocate and initialize table as a block-distributed array.

(2) Allocate and initialize RanStarts with one random number seed 
for each place.

(3) Allocate a small immutable table that can be copied to all places.

(4) Everywhere in parallel, repeatedly generate random table indices 
and atomically read/modify/write table element.
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JGF Monte Carlo benchmark -- Sequential

double[] expectedReturnRate = 
new double[nRunsMC];

...
final ToInitAllTasks t =

(ToInitAllTasks) initAllTasks;
for

(point [i]: expectedReturnRate) {
PriceStock ps = new PriceStock();
ps.setInitAllTasks(t);
ps.setTask(tasks[i]);
ps.run();
ToResult r = 

(ToResult) ps.getResult();
expectedReturnRate[i] = 

r.get_expectedReturnRate();
volatility[i] =

r.get_volatility();
}

A task array (of size 
nRunsMC) is initialized 
with ToTask instances at 
each index. 

Task: 

� Simulate  stock
trajectory, 

� Compute expected rate
of return and volatility, 

� Report average 
expected rate of return
and volatility.
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JGF Monte Carlo benchmark -- Parallel

double[] expectedReturnRate = 
new double[nRunsMC];

...
final ToInitAllTasks t =

(ToInitAllTasks) initAllTasks;
finish foreach

(point [i]:expectedReturnRate) {
PriceStock ps = new PriceStock();
ps.setInitAllTasks(t);
ps.setTask(tasks[i]);
ps.run();
ToResult r = 

(ToResult) ps.getResult();
expectedReturnRate[i] = 

r.get_expectedReturnRate();
volatility[i] =

r.get_volatility();
}
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JGF Monte Carlo benchmark -- Distributed

dist D = dist.factory.block([0:(nRunsMC-1)]);
double[.] expectedReturnRate = new double[D];...

final ToInitAllTasks t =
(ToInitAllTasks) initAllTasks;

finish ateach
(point [i]:expectedReturnRate) {
PriceStock ps = new PriceStock();
ps.setInitAllTasks(t);
ps.setTask(tasks[i]);
ps.run();
ToResult r = 

(ToResult) ps.getResult();
expectedReturnRate[i] = 

r.get_expectedReturnRate();
volatility[i] =

r.get_volatility();
}
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The End!


