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• R.J. Harrison, G.I. Fann (ORNL) with
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• Objectives:
− Eliminate basis set error 
− Correct scaling with system size
− One- (DFT/HF) and two-electron (MP2) models

• Funded by DOE/OBES/Chem. Sci. SciDAC
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Distinguishing features

• Multiresolution in multiwavelet bases
• Near-spectral precision
• Integral formulation of quantum theory

− efficient, avoids iterative solution of linear equations 
and problems with differential operators

• Separated representation of integral operators
− computation in higher dimensions

• Non-standard form of operators
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• The (multi)wavelet methods in this work are primarily based 
upon
− Alpert, Beylkin, Grimes, Vozovoi (to be published)
− B. Alpert (SIAM Journal on Mathematical Analysis 24, 246-262, 

1993). 
− Beylkin, Coifman, Rokhlin (Communications on Pure and Applied 

Mathematics, 44, 141-183, 1991.)

• The following are useful further reading
− Daubechies, “Ten lectures on wavelets”
− Walnut, “An introduction to wavelets”
− Meyer, “Wavelets, algorithms and applications”
− Burrus et al, “Wavelets and Wavelet transforms”
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Why “think” multiresolution?

• It is everywhere in nature/chemistry/physics
− Core/valence; high/low frequency; short/long range; 

smooth/non-smooth; atomic/nano/micro/macro scale
• Common to separate just two scales

− E.g., core orbital heavily contracted, valence flexible
− More efficient, compact, and numerically stable

• Multiresolution
− Recursively separate all length/time scales
− Computationally efficient and numerically stable in an 

orthogonal basis
− Coarse-scale models that capture fine-scale detail
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How to “think” multiresolution
• Consider a ladder of function spaces

− E.g., increasing quality atomic basis sets, or finer 
resolution grids, …

• Telescoping series

− Instead of using the most accurate representation (Vn), use 
the difference between successive approximations

− Representation on V0 small/dense; differences sparse
− Computationally efficient; possible insights (e.g., 

homogenization, regularization)
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Key Components - I

• Trade precision for speed – everywhere
− Don’t do anything exactly
− Perform everything to O(ε)
− Require 

• Robustness
• Speed, and
• Guaranteed, arbitrary, finite precision
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Key Components - II
• Separated form for integral operators

• Approach in current prototype code
− Represent the kernel over a finite range as a sum of Gaussians

− Only need 1D transition matrices (X,Y,Z) which are also low rank
away from singularity – asymptotic cost of O(Nboxk3M)= O(NM)
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Key Components – II cont’d

• E.g., bound-state Helmholtz Green 
Function
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Key components - III
• Multiwavelet basis

− Adaptively refine space into boxes
− In each box use an orthogonal tensor-product basis

(currently Legendre polynomials of order k)
− High-order convergence (10-k) in smooth regions
− Disjoint support

• Maintains high-order convergence even in presence of 
singularities (e.g., nuclei) and boundary conditions

• Provides analogs of forward/backward differences
− Wavelets span difference space Vn-Vn-1

− Efficient computation within box (good cache locality)
− Orthogonality - deep refinement without precision loss
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Three equivalent representations

• Scaling function basis (reconstructed)

• Multi-wavelet basis (compressed)

• Function value at Gauss-Legendre quadrature
points in each adaptively refined box
− Enables fast multiplication and local function eval.

• Fast wavelet transform – O(N)
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Integral Formulation - I
• Kalos, 1962 

• No derivative operator; fixed point iteration
• Accelerate with (Davidson-like) sub-space
• Not efficient for scattering states
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Prototype implementation
• Python with C and Fortran extensions

− High level composition – very rapid development
− Custom tensor/matrix/vector classes for efficient 

computation and easy extension (via SWIG)
• Adaptively refined functions

− Store blocks of coefficients in directory/hash table
− Not tied to specific algorithm/data structure

• Polymorphism – code looks (a little) like math

-0.5*(Delsq*psi) + V*psi −1/2∇2ψ + V ψ
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Test atomic calculations

• Hartree-Fock
− He iso-electronic sequence
− Comparison with results of Thakkar to 7dp

• LDA
− Be (4), Mg (12), Ca (20), Sr (38)
− Comparison to NIST results to 6 dp
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Numerical s-orbitals for strontium
- the correct asymptotic form is 
automatically obtained
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H2
+

• R=2.0 L=64 a.u. 

• David Bates (1953) 1.10263
• Uncontracted cc-pv6z 1.102632

-1.10263420310-9

-1.102634210-7

-1.1026210-5

(?)10-3

Energyε



16

Oak Ridge National Laboratory

Hartree-Fock H2

• R=1.4 L=44.8 a.u.  

-1.13362936623s9p4d4f2g1h

-1.133629573710-9

0.00538804

0.005396

0.0057

Gradient

-1.133629571463Mitin

-1.13362956610-7

-1.133628710-5

-1.1335610-3
Energyε

Mitin – best literature value PRA 62 10501
– extrapolation from distributed Gaussian bases
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Water LDA

• Dyadic
10-3 -75.9139
10-5 -75.913564
10-7 -75.91355634

• Non-dyadic
-75.9139
-75.913564
-75.91355635

• Uncontracted aug-cc-pVQZ –75.913002
• Solving with e=1e-3, 1e-5, 1e-7 (k=7,9,11)
• Demonstrates translation invariance, and that forcing to dyadic 

points is only an optimization; does not change the result.
• Average orbital sizes 1.6Mb, 8Mb, 56Mb
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Benzene

10-3 -230.194
10-5 -230.19838
10-7 -230.198345

• No symmetry used
• Partridge-3 prim + aug-cc-pvTZ pol. -230.158382
• Average orbital sizes 4 Mb, 16 Mb, 64 Mb
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Also working

• Takeshi Yanai (postdoc)
− Analytic derivatives
− Fast Hartree-Fock exchange
− TDDFT within Tamm-Damcoff approximation
− Abelian point group symmetry

(D2h and subgroups)
• Thanks also to 

− So Hirata for guidance with TDDFT
− Edo Apra for insights into DFT
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Summary

• Multiresolution provides a general framework for 
computational chemistry
− Accurate and efficient with a very small code
− Multiwavelets provide high-order convergence and accommodate 

singularities
• Readily accessible by students and researchers

− Familiar orthonormal basis (Legendre polynomials)
− Compression and reconstruction (c.f., FFT)
− Fast integral operators (c.f., FMM)

• Expect speed competitive to Gaussians in near future
− Optimal separated forms for kernels, multi-scale non-linear solver, 

better implementation
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