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Objectives
• Complete elimination of the basis error

– One-electron models (e.g., HF, DFT)
– Pair models (e.g., MP2, CCSD)

• Correct scaling of cost with system size
• General approach

– Readily accessible by students
– Much smaller computer code than Gaussians
– No two-electron integrals - replaced by fast 

application of integral operators
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Distinguishing Features

• Multiwavelet bases
– Disjoint support maintains high-order convergence up to 

singularities and complex boundary conditions

• Non-standard form of operators and functions
– Fully adaptive local representation
– Operators are easy to compute and fast to apply

• Integral operator formulation
– Avoids problems inherent to differential operators of high norm
– O(N) and with rapid convergence
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Many electron basis problem
• Scaling of cost of CCSD(T)

– O(o3V4) (o=occupied, V=virtual)
– Error in correlation energy is ε=O(L-3) where 

L is the maximum angular momentum
– O(o3ε−4) in Dunning cc-pVnZ
– O(o3ε−2.5) if exactly include linear r12 for atoms
– An appropriate basis should give near O(o3 log ε) 

and linear methods should enable O(o log ε)
– An appropriate basis must fully account for the 

singularities in the pair function (e-e, n-e).
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Overview
• An introduction to multiresolution analysis in 

multiwavelet bases
– Multiwavelets on disjoint intervals
– Two-scale relations
– Standard and non-standard representation of 

functions and operators
– Integral operators

• Density Functional Theory
• Initial applications
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Why “think” multiresolution?
• It is everywhere in nature/chemistry/physics

– Core/valence; high/low frequency; short/long range; 
smooth/non-smooth; atomic/nano/micro/macro scale

• Common to separate just two scales
– E.g., core orbital heavily contracted, valence flexible
– More efficient, compact, and numerically stable

• Multiresolution
– Recursively separate all length/time scales
– Computationally efficient and numerically stable
– Coarse-scale models that capture fine-scale detail
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How to “think” multiresolution - I
• Consider a ladder of function spaces

– E.g., increasing quality atomic basis sets, or finer 
resolution grids, …

• Telescoping series

– Instead of using the most accurate representation, use 
the difference between successive approximations

– Representation on V0 small/dense; differences sparse
– Computationally efficient; possible insights

0 1 2 nV V V V⊂ ⊂ ⊂ ⊂"

0 1 0 2 1 1( ) ( ) ( )n n nV V V V V V V V −= + − + − + + −"
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How to “think” multiresolution - II
• Homogenization (Beylkin, Brewster/Athan)

– Coarse scale equations that capture fine-scale detail
– E.g., Schur complement for linear equations
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Another Key Component

• Trade precision for speed – everywhere
– Don’t do anything exactly
– Perform everything to O(ε)
– Require 

• Robustness
• Speed, and
• Guaranteed, arbitrary, finite precision
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Problem Setup

• In 1-D solve on [0,1]

• Tensor product in n-D

• Periodic and infinite domains also feasible
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Scaling Function Basis - I
• Divide domain into 2n pieces

– Referred to as level n
– Adaptive sub-division – local refinement
– Non-uniform division important (not yet done)
– lth sub-interval [l*2-n,(l+1)*2-n] l=0,…,n-1

n=0

n=1

n=2

l=0 l=1 l=2 l=3
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Scaling Function Basis - II
• In each sub-interval define a polynomial basis

– Currently use the first k Legendre polynomials
– Other bases interesting (e.g, interpolating 

polynomials, non-polynomial functions)
– Zero outside of the sub-interval

/ 2

2 1 (2 1) 0 1( )
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Scaling Function Basis - III
2
1( ) , 0, ,3i x iφ = …

i=0

i=2
i=3

i=1
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Scaling Function Basis - IV
• Translation and

dilation

• Orthonormal

• Ladder of spaces

• Complete basis for  L2 [0,1] in limit of either large 
k or large n.
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Two-scale relationship
• V0 ⊂ V1 – can represent coarse scale basis exactly 

in the fine scale basis

• The filter coefficients (H) may be computed 
analytically or numerically.
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Expansion of a function
• Projection of a function into Vn

• Local error is O(f(k)(ξ)2-nk) – high-order convergence
• If a function is expanded in Vn, what is the error 

from truncating to Vn-1?
• The error is contained in Wn-1=Vn- Vn-1
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Multiwavelet Basis - I
• An orthonormal basis to span W V
• Also demand

– Disjoint support (important!)
– Dilation/translation of wavelets at level 0

• Expand in Vn
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Multiwavelet Basis - II

• Basis not yet completely specified
– Currently use Alpert’s basis (which imposes 

additional constraints … more about this later)
• The coefficients (G) may be evaluated 

analytically or numerically
– Numerical evaluation requires extended precision 

arithmetic (e.g., 208 bits used for k=22).
• Constructive approach 

– From scaling function make the wavelets
– Often the reverse (e.g., Daubechies wavelets)
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Multiwavelet Basis - IV
• Translation and

dilation

• Orthonormal

• Direct sum of 
sub-spaces

• Complete basis for  L2 [0,1] in limit of either large 
k or large n.
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Multiwavelet Basis - V

• Vanishing moments
– Critically important property
– Since Wn is orthogonal to Vn the first k

moments of functions in Wn vanish, i.e., 

• In Alpert’s basis, additional moments of 
some of the multiwavelet components also 
vanish

 ( ) 0,  0, , 1j
ix x dx j kψ = = −∫ …
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Some Consequences of 
Vanishing Moments

• Compact representation of smooth functions
– Consider Taylor series … the first k terms vanish and 

smooth implies higher order terms are small
• Compact representation of integral operators

– E.g., 1/|r-s| 
– Consider double Taylor series or multipole expansion
– Interaction between wavelets decays as r-2k-1

• Derivatives at origin vanish in Fourier space
– Diminishes effect of singularities at that point
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Two-scale relationship - I
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Two-scale relationship II

• May be rewritten without approximation as

• Where
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Compression of a function
0 0 1 1n nV V W W W −= ⊕ ⊕ ⊕ ⊕"

• Recursively apply the two-scale relation
• The basis is the scaling functions at level 0 and the 

multiwavelets at all levels 

• Haar basis (k=1) gives rise to calling coefficients of 
the scaling functions and wavelets as sums and 
differences respectively (hence notation s and d)

• Compression & reconstruction are O(N) operations
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Two equivalent representations
• Scaling function basis (reconstructed)

• Multi-wavelet basis (compressed)

• Rapid compression/reconstruction 
– Asymptotically faster than the FFT
– Use most appropriate basis for a given operation
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A Third Equivalent Representation

• The function tabulated at the Gauss-
Legendre quadrature points in each of the 
adaptively refined boxes
– Enables rapid multiplication of functions and 

application of local functions (e.g., Vxc)
– Diagonal transformation from interpolating 

polynomials 
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Truncation Error
• To satisfy the global error condition

• Truncate according to

• This is rather conservative – usually use

22

nf f fε− ≤

/ 2
22

2n n
ld fε−≤

2

n
ld ε≤
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• Slice thru grid used to 
represent the nuclear 
potential for H2 using k=7 to 
a precision of 10-5.

• Automatically adapts – it 
does not know a priori where 
the nuclei are.

• Nuclei at dyadic points on 
level 5 – refinement stops at 
level 8

• If were at non-dyadic points 
refinement continues (to 
level ??) but the precision is 
still guaranteed.

• In future will unevenly 
subdivide boxes to force 
nuclei to dyadic points.
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Summary so far
• Scaling functions

– Easy to manipulate, evaluate, integrate, …
• Multi-resolution analysis

– Separates behavior on different length scales
– Local truncation while preserving global error bound
– Vanishing moments

• Multi-wavelets
– High-order convergence with adaptive representation
– Disjoint support – efficient description of singularities if 

locacated at faces/edges/corners (more efficient than 
smooth wavelets since they do not have disjoint support)

• Fast compression and reconstruction
– Orthogonal transformations – numerically stable
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Compression of a Matrix

• Compression is just a linear transformation
– Apply separately to each dimension

– Result is said to be in “standard form”

TA QAQ=�
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Extension to higher dimensions

• Scaling function basis is tensor product

• Wavelet basis – tensor product is one choice
– Standard form – compress each dimension just as 

for a matrix
– But cannot refine strictly locally since length 

scales are mixed between dimensions
• To refine locally need the non-standard form

( , ) ( ) ( )n n n
ii ll il i lx y x yφ φ φ′ ′ ′ ′=



37

Non-standard form of functions
• Construct local basis for Wn-1=Vn- Vn-1

n=0 n=1
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Non-standard form of operators - I
• Standard form

– Matrix elements between different length scales
– Not very efficient on modern computers with deep 

memory hierarchies
– Potentially O(Nlog N) non-zero terms

• Non-standard form
– No matrix elements between lengths scales
– O(N) terms
– Act on (modified) non-standard form of functions
– Derivation is instructive
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Non-standard form of operators - II
• Pn an orthogonal projection into Vn

• Qn an orthogonal projection into Wn=Vn+1-Vn
Pn+ Qn= Pn+1

• Consider the projection of an operator T
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NS Form of Operators III

• Matrix elements in the scaling function basis

• Matrix elements of the NS form
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Integral operators - I
• Consider ( ) pv ( ) ( )Tf x dyK x y f y= −∫
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Integral operators - II
• Matrix elements easy to evaluate from 

compressed form of kernel K(x)
• Application in 1-d is fairly efficient

– O(k2) operations
• In 3-d seems to need O(Nboxk6) operations

– Prohibitively expensive
• More intelligent approach

– O(Nboxk4) operations for many “physical” kernels
– Even better is known to be possible
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Vanishing Moments 
• Sparse integral operators

– If the derivatives decay rapidly (i.e., the kernel 
becomes smoother at long range)

– See this by Taylor expansion (multipole series)
• Consider NS form of Poisson kernel (1/r)
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Relationship to the FMM
• Greengard, Rokhlin
• Separate the behavior on different length scales
• Exploit low-rank form of off-diagonal blocks
• Approaches each kernel as a special case
• Highly-optimized, but complex

– E.g., latest FMM uses seven different representations
• MRA approach is immediately general

– Simpler than FMM since don’t need to traverse 
up/down tree

– Not as fast unless use kernel-specific separated forms
– Perhaps more straightforward to parallelize



45

Summary so far

• Standard and non-standard form of 
functions and operators
– Non-standard form facilitates local refinement 

of functions
– Non-standard operators easy to compute/apply

• Integral convolution operators
– Importance of vanishing moments
– O(N) to any finite precision
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Regularized Nuclear Potential - I
• Compression of singular functions

– Do-able (if L2 integrable) but not efficient 
(logarithmic convergence)

• Regularization 
– Smooth the singularity retaining accurate 

information for the length scales of interest
– Beylkin, Cramer, Fann – algebraic/numerical 

regularization can handle any (hyper-) singular 
kernel even if not integrable.

– Here use simpler analytic regularization
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Regularized Nuclear Potential - II
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• u(r/c)/c shifts error to r<c
• c = O((ε/Z7)1/5)
• <V> accurate
• <T> main source of error
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Analytic Derivatives

• Hellman-Feynman theorem applies

( )E V O
x x

ε∂ ∂
= +
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Integral Formulation - I
• Kalos, 1962 

• No derivative operator; fixed point iteration
• Accelerate with (Davidson-like) sub-space
• Not efficient for scattering states
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Integral Formulation - II
• Extension to multiple roots via deflation

• Apply integral equation with this potential 
specific to individual excited state

  projects onto lower eigen vectors
(1 ) (1 )    shift low roots to 

Q
H Q H Q Q

H QH HQ QHQ Q
T V

= − − + ∆ ∆
= − − + + ∆
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Solution scheme
• For given precision ε

– Choose smallest odd k such that 102-k<ε
– Empirically the most efficient choice
– Regularize nuclear potential as described above

• Currently (still being refined)
– Initial guess from STO-3G NWChem calculation
– Solve with thresholds ε =10-3, 10-5, 10-7, 10-9

– Converge until residual norm < max(10-4, ε∗10)
– Project solution between bases
– Enable automatic refinement intermittently 
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Test atomic calculations

• Hartree-Fock
– He iso-electronic sequence
– Comparison with results of Thakkar to 7dp

• LDA
– Be (4), Mg (12), Ca (20), Sr (38)
– Comparison to NIST results to 6 dp
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H2
+

• R=2.0 L=64 a.u. 

• David Bates (1953) 1.10263
• Uncontracted cc-pv6z 1.102632

-1.10263420310-9

-1.102634210-7

-1.1026210-5

(?)10-3

Energyε
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Hartree-Fock H2
• R=1.4 L=44.8 a.u.  

10

-1.13362936623s9p4d4f2g1h

-1.133629565-9

0.00538804

0.005396

0.0057

Gradient

-1.133629571463Mitin

-1.1336295710-7

-1.13362810-5

-1.133410-3

Energyε

Mitin – best literature value PRA 62 10501
– extrapolation from distributed Gaussian bases
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Water LDA

• Dyadic
10-3 -75.9139
10-5 -75.913564
10-7 -75.91355634

• Non-dyadic
-75.9139
-75.913564
-75.91355635

• Uncontracted aug-cc-pVQZ –75.913002
• Solving with e=1e-3, 1e-5, 1e-7 (k=7,9,11)
• Demonstrates translation invariance and that forcing to dyadic 

points is only an optimization and does not change the obtained 
precision.

• Average orbital sizes 1.6Mb, 8Mb, 56Mb
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Benzene

10-3 -230.194
10-5 -230.19838
10-7 -230.198345

• No symmetry used
• Partridge-3 prim + aug-cc-pvTZ pol. -230.158382
• Average orbital sizes 4 Mb, 16 Mb, 64 Mb
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Also working

• Takeshi Yanai
– Analytic derivatives
– Fast Hartree-Fock exchange
– TDDFT within Tamm-Damcoff approximation 

• Thanks to 
– So Hirata for guidance with TDDFT
– Edo Apra for insights into DFT
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Two-electron Functions
• Currently exploring feasibility and approaches
• E.g., He 3- and 6-term Hylleraas functions

– Straightforward 6-D compression in Cartesians
– ε=10-3 k=5 have 1.3*108 variables
– ε=10-4 k=6 have 3.8*108 variables

• Need to exploit known behavior at large r12
– Reduces volume with high dimension
– Non-standard v.s. standard form?

• R=r1+r2 and r12=r1-r2
– Moves e-e singularity to origin but smears out nuclear 

singularities and many operators are harder to apply
• Variational models (e.g., MP2) require low precision
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Summary

• Multi-wavelets provide a general framework for 
computational chemistry
– Accurate and efficient with a very small code
– Higher-order convergence and accommodates singularities, 

discontinuities and complicated boundary conditions
• Readily accessible by students and researchers

– Familiar orthonormal basis (Legendre polynomials)
– Compression and reconstruction (c.f., FFT)
– Fast integral operators

• Expect speed competitive to Gaussians in near future
– Optimal separated forms for kernels, multi-scale non-linear 

solver, low-rank form for operators
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SciDAC: Advanced Methods for 
Electronic Structure

• Robert J. Harrison (PI) with Fann (PNNL), Beylkin (U. 
Colorado) 

• Objectives:
– Elimination of basis set error 
– Correct scaling with system size
– One- (DFT/HF) and two-electron (MP2) models

• Distinguishing features
– Multiresolution in multiwavelet bases
– Near-spectral precision
– Integral formulation of quantum theory (efficient, avoids 

iterative solution of linear equation and problems with 
differential operators)

– Separated representation of integral operators
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