


• Oak Ridge National Laboratory, and the 
University of Tennessee, Knoxville
George Fann, Robert J. Harrison,
Zhengting Gan, Takeshi Yanai

• Colorado University, Boulder
Gregory Beylkin, Fernando Perez, 
Lucas Monzon

• Ohio University, Athens
Martin Mohlenkamp



An Introduction to MADNESS

• What is it?
• Simple example of use
• The Function class 
• Another example and extending with autoswig
• Multiresolution representation of functions
• How does the S/W work?
• More detailed examples
• Separated representation of operators
• Examples using operators



What is MADNESS?

• Multiresolution Adaptive Numerical 
Scientific Simulation
– It is an environment to prototype and develop 

scientific applications using multiresolution
methods in multiwavelet basis

– The important key words/phrases are
• Multiresolution, multiwavelet, low-separation rank

– It presently contains just a Density Functional 
Theory (DFT) code, but others are working on 
fluid dynamics, climate modeling, …



Objectives

• Fast algorithms with guaranteed precision
– Accomplished via a sound mathematical 

foundation
• High-level composition of numerical codes

– Work with functions and operators rather than 
with sparse arrays of matrix elements

– Matlab-like environment
• Eliminate basis set error

– AO basis far from complete for most operators



How to use it?
• E.g., Generate a numerical representation of a simple function and 

print its value out at a point

from mra import *

def testf(x,y,z):
x, y, z = x-0.5, y-0.5, z-0.5
return exp(-50.0*(x*x+y*y+z*z))

f = Function(function=testf,thresh=1e-3,k=5)
print “Numerical value: %.4f" % f(0.33,0.44,0.55)
print " Analytic value: %.4f" % testf(0.33,0.44,0.55)



Line-by-line analysis

from mra import *

– “import” is Python’s term for including 
functionality and defintions from other modules.  

– The most important thing in the “mra” module is 
the Function class which supports 3D 
numerical functions.  There are also 1D, 2D, 6D 
Function classes and also operators to act on 
these functions.



Line-by-line example I - cont’d
def testf(x,y,z):

x, y, z = x-0.5, y-0.5, z-0.5
return exp(-50.0*(x*x+y*y+z*z))

• This defines a Python procedure for e-50r**2 .  
• The numerical functions are defined on [0,1]

– the “simulation” cell or frame
• The user cell is most usually [-∞, ∞] so you have to 

truncate to a finite cell [-L/2,L/2] and then shift and 
scale coordinates.



Line-by-line example I - cont’d

f = Function(function=testf,
thresh=1e-3,k=5)

• Forms a numerical representation of the 
Python function “testf” with a 5’th order 
wavelet and adaptively refining to provide a 
norm-wise precision of 1e-3.



Line-by-line example I - cont’d
print “Numerical value: %.4f" % \
f(0.33,0.44,0.55)

print " Analytic value: %.4f" % \
testf(0.33,0.44,0.55)

• The numerical functions behave much like 
algebraic functions, but with only finite precision.  

• They can be evaluated by calling them with the 
desired arguments.  



The Function Class

Function(function=None, cfunction=None, thresh=1e-7, 
k=9, initial_level=2, refine=1, compress=1):

calling as a Function to evaluate
+, -, * with scalars and numerical or python functions 
squaring with **2 notation
reconstruct(nonstandard=0):
compress(truncate=0):
truncate(thresh=None):
project(newk): 
norm2():
inner(other):
trace():
diff(axis,transpose=0):  (note Dx, Dy, Dz)
diff2(axis):
laplacian(): (note delsq) 
local_function(function=None,cfunction=None):
mul_func(function=None,cfunction=None):
scale(alpha):
gaxpy(alpha, other, beta):
griddx(filename='/tmp/grid.dx'):
plotdx(filename='/tmp/plot.dx', npt=(20,20,20),

box=(0,1,0,1,0,1)):



Function(function=None, cfunction=None, 
thresh=1e-7, k=9, initial_level=2, 
refine=1, compress=1)

• function specifies a Python callable function
• cfunction specifies a pointer to a C callable function (can 

specify one or both)
• thresh is the truncation threshold
• k is the order of the wavelet.  For efficiency of integral 

operators, usually choose k to satisfy thresh=10**(2-k).
• initial_level=2 is the level at which the function is first 

sample for adaptive refinement
• refine=true/false enables adaptive refinement
• compress=true/false compresses the function
• can override defaults by changing the class



• Calling as a Function to evaluate
• Seen this already

– E.g., 
f = Function(function=testf)
print f(0.4,0.3,0.2)

– Note that the function is defined on the unit cube [0,1] … 
so you must transform from your coordinates (e.g., the 
molecular coordinates) to the simulation frame.

– If you are going to evaluate at many points, first 
reconstruct the function (see below)

– If you need even greater speed, we can implement a 
much faster operation to evaluate at many points at the 
same time.



• Basic arithmetic operations (+, -, *) are 
supported for combination with real scalars, 
other MRA functions, and Python functions

• E.g.,
f = 2.0*f
f = 2.0*g + 3.0*f
f = h-pi*g
f = g*h + f

where f, g, and h are functions
(if a Python function is given it is quietly and 

expensively first turned into a numerical form)



• Addition and subtraction of functions happen 
rapidly and accurately.  

• The multiplication operation deserves special 
mention
– Both functions are first reconstructed (below)
– Then the sum coefficients of each function are 

transformed down to the locally lowest level
– If autorefine is enabled, they are refined one more 

level down
– Then, the value of the functions are evaluated on the 

Legendre quadrature grid, the multiplication 
performed, and the result transformed

– Thus, a loss of precision is inherent in the process.
– Enabling autorefine provides more (almost always 

adequate) precision but is 8x more expensive.
– Without autorefine is often adequate (and is used for 

the DFT, though some care is needed with GGA)



• Squaring is a special case of multiplication 
and writing f**2 will be faster than f*f



reconstruct(nonstandard=0):
compress(truncate=0):

• Move between the representation in the 
scaling function basis (reconstructed) and 
in the wavelet basis (compressed)

• In general the reconstructed form is 
dense, whereas the compressed form is 
sparse.

• The non-standard form is used to prepare 
for application of an integral operator.

• Operate in place.



truncate(thresh=None):

• Truncates small difference (wavelet) 
coefficients

• If called, and the wavefunction is not 
already compressed, compress() is first 
called.

• Operate in place.



project(newk):

• Returns a new function that is formed by 
crudely projecting the function into the 
basis of order newk.

• The function is reconstructed, then
– if newk>=oldk, sum coefficients are copied 

--- no precision is lost
– if newk<oldk, sum coefficients for polynomials 

order <= newk are copied and others are 
discarded 
--- precision is lost



norm2():
• f.norm2() returns 

inner(other):
• f.inner(g) returns 

trace():
• f.trace() returns

2
f
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diff(axis,transpose=0):
• f.diff(axis) returns new function containing the 

derivative.  axis=0,1,2.  Note can also use
Dx*f or Dy*f or Dz*f or DxT*f etc.

diff2(axis):
• Returns a new function with the second 

derivative.  Can use D2x*f, etc.  Same as 
(Dx*DxT+DxT*Dx)/2

laplacian():
• Returns a new function as from Delsq*f
del():
• Returns the tuple (Dx*f,Dy*f,Dz*f)



• Note that some care is needed to form a satisfactory 
matrix representation of the Laplacian

• Our basis set is discontinuous, so derivatives are only 
defined in a weak sense (i.e., as a projection back into 
the basis) and higher derivatives have more numerical 
noise.

• Integration by parts shows that

• If (as is the case for DFT) our functions and their 
derivatives vanish at the end points, only the second 
term survives

• This form is preferable since it involves only first 
derivatives, is symmetric by construction, and has better 
variational properties. 

121 1
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local_function(function=None,cfunction=None):
• In-place, evaluates function(self(x))
• E.g., f.local_function(g), transforms f() to numerical values on the 

adaptively refined Legendre quadrature grid, computes g(f(x)) at each 
grid point, and transforms back. 

mul_func(function=None,cfunction=None):
• In-place, evaluates pointwise function multiplication
• E.g., f.mul_func(g) transforms f() to numerical values on the adaptively 

refined Legendre quadrature grid, computes f(x)*g(x) at each grid point, 
and transforms back. 

• These routines are meant as optimizations to avoid first computing 
compressed representations of g(x)

• Also, they conveniently compute in the support of f(x) (i.e., using the 
adaptively refined mesh of f(x)) which is often what is desired.

• If autorefine is enabled (see later) the operation is applied after refining 
one level down.



scale(alpha):
• f.scale(a) scales f(x) in place by the scalar a
gaxpy(alpha, other, beta):

• f.gaxpy(a,g,b) replaces f(x) by a*f(x)+b*g(x)

• These routines, by operating in place, are intended 
to be faster and save memory compared with the 
functionally equivalent Python statements
f = a*f
f = a*f + b*g

• Note, that if gaxpy() is applied in the scaling 
function basis, a compress() is eventually required 
to complete the operation.  This is so that multiple 
gaxpy’s may be applied with just one compress.



griddx(filename='/tmp/grid.dx'):
plotdx(filename='/tmp/plot.dx', 

npt=(20,20,20),
box=(0,1,0,1,0,1)):

• These two functions write OpenDX files to 
enable visualization of the grid and the 
function.

• Have a look at the network in the 
madness/opendx directory for an example 
of how to use them.



E.g., Energy of Hydrogen Atom
from mra import *
L = 32.0
Function.k = 7
Function.thresh = 1e-5

def psi(x,y,z):
fac = 102.12922378276677 #sqrt(L**3/pi)
x,y,z = (x-0.5)*L,(y-0.5)*L,(z-0.5)*L
return fac*exp(-sqrt(x*x+y*y+z*z))

def V(x,y,z):
x, y, z = (x-0.5)*L, (y-0.5)*L, (z-0.5)*L
return -1.0/sqrt(x*x+y*y+z*z)

psi = Function(function=psi)
V   = Function(function=V)
px, py, pz = Del*psi
S  = psi.inner(psi)
VE = (V*psi).inner(psi)/S
TE = 0.5*(px.inner(px)+py.inner(py)+pz.inner(pz))/L**2/S
print "norm",S,"kinetic",TE,"potential",VE,"energy",TE+VE
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Output

norm 1.00000000014
kinetic 0.500000335672

potential -1.00000013916
energy -0.499999803488

• Correct, but numerical compression of the Python 
functions took 70s.  Using C-function is 20x faster since 
all of the Python loops and function calls are avoided

• Autoswig is provided to make this easy. 



Same example using C - I
from mra import *
from autoswig import autoswig

L = 32.0
Function.k, Function.thresh = 7, 1e-5

C = autoswig('''
static double L;
double psi(double x, double y, double z) {
double fac=102.12922378276677; /* sqrt(L*L*L/pi) */
x=(x-0.5)*L; y=(y-0.5)*L; z=(z-0.5)*L;
return fac*exp(-sqrt(x*x+y*y+z*z));

}
void *Cpsi = (void *) psi;

double V(double x, double y, double z) {
x=(x-0.5)*L; y=(y-0.5)*L; z=(z-0.5)*L;
return -1.0/sqrt(x*x+y*y+z*z);

}
void *CV = (void *) V;
''')

C.cvar.L = L        # Must tell C how big the box is



Same Example using C - II
# Note use of cfunction rather than function

psi = Function(cfunction=C.cvar.Cpsi)
V   = Function(cfunction=C.cvar.CV)

# Below here, the code is exactly the same as
# in the pure Python example

px, py, pz = Del*psi

S  = psi.inner(psi)
VE = (V*psi).inner(psi)/S
TE = 0.5*(px.inner(px) + py.inner(py) + \

pz.inner(pz))/L**2/S
print "     norm",S
print "  kinetic",TE
print "potential",VE
print "   energy",(TE+VE)



Extending Python with Autoswig
• SWIG (http://www.swig.org) 

– A very powerful tool for interfacing scripting 
languages such as Python, Perl, Tcl, etc., with C, C++ 
and even Fortran.

– Swig can read source code or function prototypes and 
generate the wrapping code to enable Python to call 
C functions and to access C global variables.

– Handling complex types (structures, arrays, classes) 
is also automated and can be extended though 
typedefs and typemaps.

– Autoswig automates running swig, compiling and 
linking the resulting code to produce a shared library 
that is loaded into Python as a module.

http://www.swig.org/


Autoswig Examples
from autoswig import autoswig
# Equivalent Python and C routines
def fred(a,b,c):

return a*b+c

x = autoswig('int fred(int a,int b,int c){return a*b+c;}')

print fred(3,4,5), x.fred(3,4,5)

# Inplace modification of Python strings (v. bad 
# practice since it violates immutability, but 
# sometimes useful, e.g., for serializing data)

x = autoswig("void dave(char *a) {a[0] = 'H';}")
a = 'hello'
print a       # ---> “hello”
x.dave(a)
print a       # ---> “Hello”



Autoswig – how does it work
• Caches modules in a directory
• Generates a unique integer to label the 

source code (hash function)
• Tries to load the module 

– If succeeds, then no need to compile
• Writes the source to disk
• Compiles, and links to make a shared lib
• Loads the module 
• If any step fails, error message will point 

you to the relevant log file



Autoswig – overriding defaults
• Can override defaults in the autoswig call, e.g.

import autoswig
autoswig.autoswig(code,include_dirs=[“/dave/x”],language=“C++”)

• Or the directory of defaults in autoswig module
• Most important things are

– autoswigdir directory to cache modules
• default is madness/autoswig/autoswigdir which may not work 

if you don’t have write permission
– include and library paths
– have a look in autoswig.py for full list
– E.g., to modify the actual defaults

import autoswig
autoswig.defaults[‘autoswigdir’] = “…….”
autoswig.defaults[‘language’] = “C++”



Multiresolution representation of 
functions in the multiwavelet basis

• So you’ve seen how to do it … now for 
some mathematical detail about what is 
actually going on

• This is just a thumbnail sketch, but 
probably enough for you to implement new 
low-level capabilities



The mathematicians …

Gregory Beylkin
http://amath.colorado.edu/faculty/beylkin/

George I. Fann
gi_fann@pnl.gov
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Why “think” multiresolution?
• It is everywhere in nature/chemistry/physics

– Core/valence; high/low frequency; short/long range; 
smooth/non-smooth; atomic/nano/micro/macro scale

• Common to separate just two scales
– E.g., core orbital heavily contracted, valence flexible
– More efficient, compact, and numerically stable

• Multiresolution
– Recursively separate all length/time scales
– Computationally efficient and numerically stable
– Coarse-scale models that capture fine-scale detail



How to “think” multiresolution

• Consider a ladder of function spaces

– E.g., increasing quality atomic basis sets, or finer 
resolution grids, …

• Telescoping series

– Instead of using the most accurate representation, use the 
difference between successive approximations

– Representation on V0 small/dense; differences sparse
– Computationally efficient; possible insights

0 1 2 nV V V V⊂ ⊂ ⊂ ⊂

0 1 0 2 1 1( ) ( ) ( )n n nV V V V V V V V −= + − + − + + −



Another Key Component

• Trade precision for speed – everywhere
– Don’t do anything exactly
– Perform everything to O(ε)
– Require 

• Robustness
• Speed, and
• Guaranteed, arbitrary, finite precision



Problem Setup
• In 1-D solve on [0,1]

• Tensor product in n-D

• Periodic and infinite domains also feasible



Scaling Function Basis - I
• Divide domain into 2n pieces

– Referred to as level n
– Adaptive sub-division – local refinement
– Non-uniform division important (not yet 

done)
– lth sub-interval [l*2-n,(l+1)*2-n] l=0,…,n-1

n=0

n=1

n=2

l=0 l=1 l=2 l=3



Scaling Function Basis - II
• In each sub-interval define a polynomial basis

– Currently use the first k Legendre polynomials
– Other bases interesting (e.g, interpolating 

polynomials, non-polynomial functions)
– Zero outside of the sub-interval
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Scaling Function Basis - III
2
1( ) , 0, ,3i x iφ = …

i=0

i=2
i=3

i=1



Scaling Function Basis - IV
• Translation and

dilation

• Orthonormal

• Ladder of spaces

• Complete basis for  L2 [0,1] in limit of either
large k or large n.
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Two-scale relationship

• V0 ⊂ V1 – can represent coarse scale basis 
exactly in the fine scale basis

• The filter coefficients (H) may be computed 
analytically or numerically.
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Expansion of a function
• Projection of a function into Vn

• Local error is O(f(k)(ξ)2-nk) – high-order 
convergence

• If a function is expanded in Vn, what is the error 
from truncating to Vn-1?

• The error is contained in Wn-1=Vn- Vn-1
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Multiwavelet Basis - I
• An orthonormal basis to span
• Also demand

– Disjoint support (important!)
– Dilation/translation of wavelets at level 0

• Expand in Vn
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Multiwavelet Basis - II
• Basis not yet completely specified

– Currently use Alpert’s basis (which imposes 
additional constraints … more about this later)

• The coefficients (G) may be evaluated 
analytically or numerically
– Numerical evaluation requires extended precision 

arithmetic (e.g., 208 bits used for k=12).
• Constructive approach 

– From scaling function make the wavelets
– Often the reverse (e.g., Daubechies wavelets)
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Multiwavelet Basis - IV
• Translation and

dilation

• Orthonormal

• Direct sum of 
sub-spaces

• Complete basis for  L2 [0,1] in limit of either
large k or large n.

/ 2( ) 2 (2 )n n n
li ix x lψ ψ= −

( ) ( )n n
li mj nn lm ijx xψ ψ δ δ δ

∞
′

′
−∞

=∫

0 0 1 1n nV V W W W −= ⊕ ⊕ ⊕ ⊕



Multiwavelet Basis - V

• Vanishing moments
– Critically important property
– Since Wn is orthogonal to Vn the first k

moments of functions in Wn vanish, i.e., 

• In Alpert’s basis, additional moments of 
some of the multiwavelet components 
also vanish

 ( ) 0,  0, , 1j
ix x dx j kψ = = −∫ …



Some Consequences of 
Vanishing Moments

• Compact representation of smooth functions
– Consider Taylor series … the first k terms vanish 

and smooth implies higher order terms are small
• Compact representation of integral operators

– E.g., 1/|r-s| 
– Consider double Taylor series or multipole 

expansion
– Interaction between wavelets decays as r-2k-1

• Derivatives at origin vanish in Fourier space
– Diminishes effect of singularities at that point



Two-scale relationship - I
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Filter coefficients for k=1 (Haar)

(0) (1)

(0) (1)
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Hence, coefficients of scaling functions and wavelets are 
often referred to as sum and difference coefficients.



Filter coefficients for k=4
7.0711e-01  0.0000e+00  0.0000e+00 0.0000e+00 H0
-6.1237e-01  3.5355e-01  0.0000e+00  0.0000e+00
0.0000e+00 -6.8465e-01  1.7678e-01  0.0000e+00
2.3385e-01  4.0505e-01 -5.2291e-01  8.8388e-02

7.0711e-01  0.0000e+00  0.0000e+00 0.0000e+00 H1
6.1237e-01  3.5355e-01  0.0000e+00  0.0000e+00
0.0000e+00  6.8465e-01  1.7678e-01  0.0000e+00
-2.3385e-01  4.0505e-01  5.2291e-01  8.8388e-02

0.0000e+00  1.5339e-01  5.9409e-01 -3.5147e-01 G0
1.5430e-01  2.6726e-01  1.7252e-01 -6.1237e-01
0.0000e+00  8.7867e-02  3.4031e-01  6.1357e-01
2.1565e-01  3.7351e-01  4.4362e-01  3.4233e-01

0.0000e+00 -1.5339e-01  5.9409e-01  3.5147e-01 G1
-1.5430e-01  2.6726e-01 -1.7252e-01 -6.1237e-01
0.0000e+00 -8.7867e-02  3.4031e-01 -6.1357e-01
-2.1565e-01  3.7351e-01 -4.4362e-01  3.4233e-01

The point being only that these are not mysterious or weird values.



Two-scale relationship II

• May be rewritten without approximation as

• Where
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Compression of a function

• Recursively apply the two-scale relation
• The basis is the scaling functions at level 0 and the 

multiwavelets at all levels 

• Haar basis (k=1) gives rise to calling coefficients of the 
scaling functions and wavelets as sums and differences 
respectively (hence notation s and d)

• Compression & reconstruction are O(N) operations
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Two equivalent 
representations

• Scaling function basis (reconstructed)

• Multi-wavelet basis (compressed)

• Rapid compression/reconstruction 
– Asymptotically faster than the FFT
– Use most appropriate basis for a given 

operation
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A Third Equivalent 
Representation

• The function tabulated at the Gauss-
Legendre quadrature points in each of the 
adaptively refined boxes
– Enables rapid multiplication of functions and 

application of local functions (e.g., Vxc)
– Diagonal transformation from interpolating 

polynomials 



Truncation Error
• To satisfy the global error condition

• Truncate according to

• This is rather conservative – usually use

22

nf f fε− ≤

/ 2
22

2n n
ld fε−≤

2

n
ld ε≤



• Slice thru grid used to 
represent the nuclear 
potential for H2 using k=7 to 
a precision of 10-5.

• Automatically adapts – it 
does not know a priori where 
the nuclei are.

• Nuclei at dyadic points on 
level 5 – refinement stops at 
level 8

• If were at non-dyadic points 
refinement continues (to 
level ??) but the precision is 
still guaranteed.

• In future will unevenly 
subdivide boxes to force 
nuclei to dyadic points.





Summary so far
• Scaling functions

– Easy to manipulate, evaluate, integrate, …
• Multi-resolution analysis

– Separates behavior between length scales
– Local truncation while preserving global error bound
– Vanishing moments

• Multi-wavelets
– High-order convergence with adaptive representation
– Disjoint support – efficient description of singularities if 

locacated at faces/edges/corners (more efficient than 
smooth wavelets since they do not have disjoint support)

• Fast compression and reconstruction
– Orthogonal transformations – numerically stable



Compression of a Matrix

• Compression is just a linear transformation
– Apply separately to each dimension

– Result is said to be in “standard form”

TA QAQ=



Extension to higher 
dimensions

• Scaling function basis is tensor product

• Wavelet basis – tensor product is one 
choice
– Standard form – compress each dimension 

just as for a matrix
– But cannot refine strictly locally since length 

scales are mixed between dimensions
• To refine locally need the non-standard 

form

( , ) ( ) ( )n n n
ii ll il i lx y x yφ φ φ′ ′ ′ ′=



Non-standard form of 
functions

• Construct local basis for Wn-1=Vn- Vn-1

n=0 n=1
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Non-standard form of 
operators - I

• Standard form
– Matrix elements between different length scales
– Not very efficient on modern computers with deep 

memory hierarchies
– Potentially O(Nlog N) non-zero terms

• Non-standard form
– No matrix elements between lengths scales
– O(N) terms
– Act on (modified) non-standard form of functions
– Derivation is instructive



Non-standard form of operators - II
• Pn an orthogonal projection into Vn

• Qn an orthogonal projection into Wn=Vn+1-Vn
Pn+ Qn= Pn+1

• Consider the projection of an operator T
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NS Form of Operators III

• Matrix elements in the scaling function 
basis

• Matrix elements of the NS form
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Integral operators - I
• Consider ( ) pv ( ) ( )Tf x dyK x y f y= −∫
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Integral operators - II
• Matrix elements easy to evaluate from 

compressed form of kernel K(x)
• Application in 1-d is fairly efficient

– O(k2) operations
• In 3-d seems to need O(Nboxk6)

operations
– Prohibitively expensive

• More intelligent approach
– O(Nboxk4) operations for many “physical” 

kernels
– Even better is known to be possible



Vanishing Moments 
• Sparse integral operators

– If the derivatives decay rapidly (i.e., the kernel 
becomes smoother at long range)

– See this by Taylor expansion (multipole series)
• Consider NS form of Poisson kernel (1/r)
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Relationship to the FMM
• Greengard, Rokhlin
• Separate the behavior on different length scales
• Exploit low-rank form of off-diagonal blocks
• Approaches each kernel as a special case
• Highly-optimized, but complex

– E.g., latest FMM uses seven different 
representations

• MRA approach is immediately general
– Simpler than FMM since don’t need to traverse 

up/down tree
– Not as fast unless use kernel-specific separated 

forms



Summary

• Standard and non-standard form of 
functions and operators
– Non-standard form facilitates local refinement 

of functions
– Non-standard operators easy to 

compute/apply
• Integral convolution operators

– Importance of vanishing moments
– O(N) to any finite precision
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