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Multiresolution chemistry objectives
• Complete elimination of the basis error

– One-electron models (e.g., HF, DFT)
– Pair models (e.g., MP2, CCSD, …)

• Correct scaling of cost with system size
• General approach

– Readily accessible by students and researchers
– Higher level of composition 
– No two-electron integrals – replaced by fast 

application of integral operators
• New computational approaches 
• Fast algorithms with guaranteed precision 4
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– Alpert, Beylkin, Grimes, Vozovoi (J. Comp. Phys., 2002)
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Essential techniques for fast 
computation
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How to “think” multiresolution
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• Consider a ladder of function spaces

– E.g., increasing quality atomic basis sets, or finer 
resolution grids, …

• Telescoping series

– Instead of using the most accurate representation, use 
the difference between successive approximations

– Representation on V0 small/dense; differences sparse
– Computationally efficient; possible insights

0 1 2 nV V V V⊂ ⊂ ⊂ ⊂
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Scaling Function Basis
• Divide domain into 2n pieces (level n)

– Adaptive sub-division (local refinement)
– lth sub-interval [l*2-n,(l+1)*2-n] l=0,…,n-1

• In each sub-interval define a polynomial basis
– First k Legendre polynomials
– Orthonormal, disjoint support / 2

( ) 2 1 (2 1)

( ) 2 (2 )
i i
n n n
il i

x i P x

x x l

φ

φ φ

= + −

= −

n=0

n=1

n=2
l=0 l=1 l=2 l=3 8



9

Scaling Function Basis - III
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Multiwavelet Basis
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• Space of polynomials on level n is Vn

• Wavelets - an orthonormal basis to span 
• Currently use Alpert’s basis
• Vanishing moments

– Critically important property
– Since Wn is orthogonal to Vn the first k moments of 

functions in Wn vanish, i.e., 

• Sparse representations of many physically important 
kernels

1n n nW V V+= −

 ( ) 0,  0, , 1j
ix x dx j kψ = = −∫ …
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Adaptive Refinement
• To satisfy the global error condition

• Truncate according to

• This is rather conservative – usually use

22
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• Slice thru grid used to 
represent the nuclear 
potential for H2 using k=7 to 
a precision of 10-5.

• Automatically adapts – it 
does not know a priori where 
the nuclei are.

• Nuclei at dyadic points on 
level 5 – refinement stops at 
level 8

• If were at non-dyadic points 
refinement continues (to 
level ??) but the precision is 
still guaranteed.

• In future will unevenly 
subdivide boxes to force 
nuclei to dyadic points.
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Integral Formulation

• E.g., used by Kalos, 1962 
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Converges as a fixed-point iteration without preconditioning
for the lowest eigen function. 15



Integral operators in 3D
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• Non-standard-form matrix elements easy to 
evaluate from compressed form of kernel K(x)

• Application in 1-d is fairly efficient
– O(Nboxk2) operations

• In 3-d seems to need O(Nboxk6) operations
– Prohibitively expensive

• Separated form
– Beylkin, Cramer, 

Mohlenkamp, Monzon
– O(Nboxk4) or even O(Nboxk3) in 3D
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Separated form for integral operators
* ( ) ( )T f dsK r s f s= −∫

• Approach in current prototype code
– Represent the kernel over a finite range as a sum of Gaussians

– Only need compute 1D transition matrices (X,Y,Z)
– SVD the 1-D operators (low rank away from singularity)
– Apply most efficient choice of low/full rank 1-D operator
– Even better algorithms not yet implemented
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Automatically generated 
representations of
exp(-30r)/r accurate to 
1e-10, 1e-8, 1e-6, 1e-4, 
and 1e-2 (measured by 
the weighted error 
r(exp(-30r)/r - fit(r))) 
for r in [1e-8,1] were 
formed with 92, 74, 
57, 39 and 21 terms, 
respectively.  

Note logarithmic 
dependence upon 
precision.



Water dimer LDA
aug-cc-pVTZ geometry, kcal/mol.
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Basis Uncorrected BSSE Corrected

cc-pVDZ -11.733 -3.958 -7.775

cc-pVTZ -9.464 -1.654 -7.810

cc-pVQZ -8.708 -0.821 -7.888

aug-cc-pVDZ -8.187 -0.382 -7.805

aug-cc-pVTZ -7.992 -0.086 -7.906

aug-cc-pVQZ -7.995 -0.054 -7.941

ε=10-3 -6.483

ε=10-5 -7.932

ε=10-7 -7.943



Benzene dimer LDA
aug-cc-pVDZ geometry, kcal/mol.
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Basis Uncorrected BSSE Corrected
cc-pVDZ -1.506 -1.035 -0.471
cc-pVTZ -1.271 -0.387 -0.884
cc-pVQZ -1.074 -0.193 -0.881

aug-cc-pVDZ -1.722 -0.698 -1.024
aug-cc-pVTZ -1.159 -0.193 -0.966

ε=10-5 -0.872
ε=10-7 -0.956
ε=10-9 -0.956



LDA scaling with Z and system size (energy ε=10-5)
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Alkali earth atoms Z=4,12,20,38 (C6H6)n MP2 aug-cc-pvTZ geometry

(H2O)n n=5,9 … t = O(n1.1)

Stacked benzene – MOs are delocalized by symmetry 
Water cluster – MOs are asymptotically localized 

(long tail is smooth so is inexpensively treated)



Cytosine Dimer

• Sekino, Kurita and Inoue

• Definitive value of the stacking
energy of bases to resolve 
apparent discrepancy between 
Slater and Gaussian basis results

• DFT, PW91 potential

• Advantage of STOs was illusory
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Analytic Derivatives

• Hellman-Feynman theorem applies
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Computation of the gradient
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Since the basis is orthonormal, the integral is a simple inner product
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Smoothed Nuclear Potential
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• u(r/c)/c shifts error to r<c
• ε=0.00435*Z5*c3

• <V> accurate due to 
vanishing moments



Translational Invariance

• Dyadic
10-3 -75.9139
10-5 -75.913564
10-7 -75.91355634
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• Non-dyadic
-75.9139
-75.913564
-75.91355635

• Uncontracted aug-cc-pVQZ –75.913002
• Solving with e=1e-3, 1e-5, 1e-7 (k=7,9,11)
• Demonstrates translation invariance and that forcing to dyadic 

points is only an optimization and does not change the obtained 
precision.

• Average orbital sizes 1.6Mb, 8Mb, 56Mb



Sources of error in the gradient
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• Partially converged orbitals
– Same as for “conventional” methods

• Smoothed potential
• Numerical errors in the density/potential

– Higher-order convergence except where the 
functions are not sufficiently smooth

• Inadequate refinement (clearly adequate for the energy, 
but not necessarily for other properties)

• Exacerbated by nuclei at non-dyadic points
• Gradient measures loss of spherical symmetry around the 

nucleus … the large value of the derivative potential 
amplifies small errors
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Dependence on
potential smoothing
parameter (c)

Absolute errors of
derivatives for 
diatomics with the
nuclei at dyadic points.

For energy accuracy
of 1e-6
H 0.039
Li 0.0062
B 0.0026
N 0.0015
O 0.0012
F 0.00099
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Dependence on
potential smoothing
parameter (c)

Absolute errors of
derivatives for 
diatomics with the
nuclei at non-dyadic
points.

For energy accuracy
of 1e-6
H 0.039
Li 0.0062
B 0.0026
N 0.0015
O 0.0012
F 0.00099



N2 Hartree-Fock R=2.0 a.u.
Basis Grad.Err. EnergyErr.
cc-pVDZ 5e-2 4e-2
aug-cc-pVDZ 5e-2 4e-2
cc-pVTZ 7e-3 1e-2
aug-cc-pVTZ 6e-3 9e-3
cc-pVQZ 8e-4 2e-3
aug-cc-pVQZ 9e-4 2e-3
cc-pV5Z 1e-4 4e-4
aug-cc-pV5Z 2e-5 2e-4

k=5 6e-3 1e-2
k=7 4e-5 2e-5
k=9 3e-7 -2e-7
k=11 0.0 0.0

0.026839623 -108.9964232
30



Comparison with NUMOL and 
aug-cc-pVTZ
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• H2, Li2, LiH, CO, N2, Be2, HF, BH, F2, P2, BH3, CH2, CH4, C2H2, 
C2H4, C2H6, NH3, H2O, CO2, H2CO, SiH4, SiO, PH3, HCP

• NUMOL, Dickson & Becke JCP 99 (1993) 3898
• Dyadic points (0.001a.u.) + Newton correction
• Agrees with NUMOL to available precision

– LDA (k=7,0.002;   k=9, 0.0006)
• k=9 vs. aug-cc-pVTZ rms error

– Hartree-Fock 0.004 a.u. (0.019 SiO)
– LDA 0.003 a.u. (0.018 SiO)



Asymptotic Scaling

32

• Current implementation
– Based upon canonical orbitals – O(N1-2)

• Density matrix/spectral projector
– Well established – O(Natomlogm(ε)) to any finite 

precision (Goedecker, Beylkin, …)
– This is not possible with conventional AO Gaussians
– Need separated representation for efficiency

• Gradient
– each dV/dx requires O(-log(ε)log(vol.)) terms
– All gradients evaluated in O(-Natomlog(ε)log(vol.))



High-precision Hartree-Fock
geometry for water

• Pahl and Handy Mol. Phys. 100 (2002) 3199
– Plane waves + polynomials for the core
– Finite box (L=18) requires extrapolation 
– Estimated error 3µH, 1e-5 Angstrom

• k=11, conv.tol=1e-8,ε=1e-9, L=40
– Max. gradient = 3e-8, RMS step=5e-8
– Difference to Pahl 10µH, 4e-6 Angstrom, 0.0012

Basis OH HOH Energy
k=11 0.939594 106.3375 -76.06818006
Pahl 0.939598 106.3387 -76.068170
cc-pVQZ 0.93980 106.329 -76.066676 33
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H2 HOMO and CIS excited states



13Σu 13Σg 3Πu 23Σu 23Σg
3Πg

HF aug-cc-pVTZ 9.5520 11.958 12.81 14.36 16.98 17.74

aug-cc-pVQZ 9.5529 11.961 12.59 14.29 16.32 16.79

d-aug-cc-pVQZ 9.5523 11.959 12.26 14.15 14.49 14.81

k=7, r< 3*10-4 9.55178 11.95491 12.26 14.11 14.48 14.66

k=9, r< 3*10-6 9.55176 11.95490 12.26 14.11 14.48 14.66

LSDA aug-cc-pVTZ 9.94 10.65 12.46 12.40 15.76 16.37

aug-cc-pVQZ 9.95 10.61 12.07 12.10 14.85 15.22

d-aug-cc-pVQZ 9.93 10.31 10.94 10.72 11.19 11.98

LSDA(AC) k=7, r< 3*10-4 10.53 12.26 12.35 14.11 14.45 14.53

HCTH aug-cc-pVTZ 10.19 10.79 12.74 12.71 15.85 16.30

aug-cc-pVQZ 10.19 10.76 12.28 12.42 14.89 15.14

d-aug-cc-pVQZ 10.18 10.52 11.12 10.95 11.36 12.23

HCTH(AC) k=7, r< 3*10-4 10.87 12.40 12.50 14.10 14.44 14.50

H2 low-lying triplet excitation energies in eV
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37C2H4 excitation energies with asymptotically corrected potentials
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Mean abs. error of Gaussian results relative to MRA
- augmented 6-31g* 0.14 eV
- augmented TZ2P 0.05 eV
- augmented TZ2P 0.01 eV (valence only)



Fast Multipole Method
3 equivalent perspectives
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• Multipole expansion of long-range interactions

• Increasing smoothness of kernel at long range

• Blocks of operator well-separated from the diagonal 
have low operator rank

• [Also need fast translation operator]
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He atom (results from yesterday)
• Compute expectation value of the total Hamiltonian for He 

atom with a trial wavefunction in 6-D multiresolution 
– 5-th order multiwavelet bases
– truncation threshold: 1e-3 ( ) ( ) ( )1 2

1 2 12, 1 r rr r c r e ξ− +Ψ = +

〈Ψ|H|Ψ〉 〈Ψ|Vnuc|Ψ〉
−2.873 37 − 7.189 83

− 7.189 87
− 7.999 86
− 8.000 00

−2.876 58
−2.748 40
−2.750 00

〈Ψ|1/r12|Ψ〉
c=0.50, ξ=2.0 1.022 19

1.022 15
1.250 04
1.250 00

c=0.00, ξ=2.0

6D MRA

Analytic

6D MRA

Analytic
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Kinetic energy is currently a problem for the prototype – will be 
resolved with better refinement criterion 
- in 3D there is no problem; in 6D should get identical result at C=0



Timings and sizes
• Wavefunction (k=4, ε=1e-3, deepest n=5) 

– (c=0.5) 0.9GB
– (c=0.0) 42MB

• R12*Wavefunction
– (c=0.5) 1.8GB memory + 0.5h CPU

• Kinetic*Wavefuction
– (c=0.5) 0.8h CPU
– (c=0.0) 50s CPU

• Vnuc*Wavefunction
– (c=0.5)  0.5h CPU
– (c=0.0) 133s CPU

43

Anticipate 10+x speedup
possible with better 
implementation and algorithms.

But, more general systems will
require deeper refinement and
higher-order wavelets.

Also looking at fast algorithms for
Gaussian geminal form



Current Capabilities
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• Open/closed shell Hartree-Fock and DFT
– Wide range of GGAs, hybrid (O(N) HF exchange), 

and AC functionals
– Energies and analytic derivatives
– Full TDDFT and RPA for excitation energies
– Abelian point groups
– Parallel execution on shared memory computers 

(e.g., ORNL 256 processor SGI Altix)
– Interfaces to NWChem, GAMESS-US and UTChem

• Several prototypes for computing in 6D 
– Density matrix, Green’s function, 2-e wave function



High-level composition using 
functions and operators

45

• Conventional quant. chem. uses explicitly 
indexed sparse arrays of matrix elements
– Complex, tedious and error prone

• Python classes for Function and Operator
– in 1,2,3,6 and general dimensions
– wide range of operations 
Hpsi = -0.5*Delsq*psi+ V*psi
J = Coulomb.apply(rho)

• All with guaranteed speed and precision
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Summary
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• Multiresolution provides a general framework for 
computational chemistry
– Accurate and efficient with a very small code
– Multiwavelets provide high-order convergence and 

accommodate singularities
• Readily accessible by students and researchers

– Familiar orthonormal basis (Legendre polynomials)
– Compression and reconstruction (c.f., FFT)
– Fast integral operators (c.f., FMM)

• Separated form for operators and functions
– Critical for efficient computation in higher dimension

• Expect speed competitive to Gaussians in near future
– Optimal separated forms for kernels, multi-scale non-linear 

solver, better implementation
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