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Cost-effectiveness analysis (CEA) is an
evaluation methodology that can be used to
compare the costs and outcomes of different
health promotion interventions or medical
treatments.  The results of a CEA are typically
represented by one or more cost-effectiveness
(CE) ratios.  Each CE ratio is the difference in
costs between two interventions, divided by the
difference in intervention effectiveness.  The CE
ratio is thus a measure of the incremental costs
and effects of one intervention, relative to
another.
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Epidemiologic investigations routinely collect
large amounts of information.  The measures (or
estimates) resulting from analyzing these data
often have some relevant similarities.  For
example, in cancer mapping, one might use data
from a cancer registry to estimate standardized
incidence rates for particular cancers across
numerous geographic areas; similarities between
these estimates include cancer type, geographical
location, and the calendar time during which
cancer occurred.  Conventional estimation
generally ignores the additional information
provided by such similarities, and must deal with
problems of multiple comparisons (1).  The latter
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problem arises from performing numerous
analyses on the same data without taking into
consideration the increased likelihood of falsely
detecting an association.  The suitability of
suggested solutions to this problem, which
include “correcting” the resulting estimates for
having made multiple comparisons, have been
extensively questioned (see, for example, Witte
et al. (2)).

Hierarchical modeling—incorporating higher
level "prior" models into a conventional
analysis—offers a solution to problems of
multiple inference.  Furthermore, this approach
can give estimates that are more plausible and
stable than conventional estimates by
“borrowing information” from the similarities in
one’s data.  For example, in cancer mapping,
standardized incidence or mortality rates may be
improved by using a spatio-temporal second-
stage model to pull estimates toward each other
when they are close in location and calendar
time.  Based on the theoretical and applied work
to date, the potential benefits of using
hierarchical models are considerable (3-7).
However, surprisingly few epidemiologic
investigations have applied hierarchical models
(8-10).  Therefore, I present here some of the
theory and methods underlying hierarchical
modeling, and examples of how one might apply
this approach in epidemiology.

Hierarchical models
Assume that one collects data on multiple
correlated exposures of interest x (say, food
intake), and disease status y.  Further assume that
one wants to use these data to estimate
coefficients β for the effects of these exposure on
disease.  One can estimate β from the following
generalized linear model for the expectation of y
conditional on x,

g E1[ ( )]y| +x x= α β ,        (1)
where g1 is a monotonic differentiable strictly
increasing link function between the random and
systematic components, and y has mean E(y|x)
and variance σ2.  Conventional analytic
approaches to estimating β using equation 1
include: 1) fitting a (full) model that contains all
of the exposures; 2) reducing a full model with a
preliminary testing algorithm (e.g., stepwise);
and 3) constructing numerous one-at-a-time
models (i.e., evaluating the multiple parameter
inference problem as multiple one-parameter
inference problems) (7).  Unfortunately, none of
these approaches provides entirely satisfactory

estimates of β.  Approach 1 is impractical if the
parameters are non-estimable (i.e., too many
parameters for the amount of data); moreover,
even when the parameters are estimable, this
approach can give biased and inefficient
estimates.  Approach 2 excludes statistically
"non-significant" exposures from the full model
regardless of their biologic importance (11, 12),
and produces biased point and variance estimates
(3, 4, 13).  Approach 3 takes no account of
correlations among the exposures.  Finally, none
of the approaches properly address issues of
multiple comparisons (4, 14).

Instead of undertaking a conventional analysis,
one can use a hierarchical model to estimate β.
This approach provides a coherent framework
for multiple inference problems, using shrinkage
estimation to improve estimation accuracy (3, 6).
In particular, this approach uses higher level
“priors” to model the parameters of interest (here
β) as random variables whose joint distribution is
a function of hyperparameters.  Assume that in
addition to the above data (i.e., x and y), one has
information about similarities between the
components of β.  For example, Witte et al. (6)
estimated the effects of 87 foods on breast
cancer.  Similarities among these foods included
their nutrient composition.  One can use such
additional information in a second-stage
generalized linear model for the expectation of β
conditional on this information,

g E2[ ( )]β λ π  |Z Z= + , (2)

where g2 is a strictly increasing link function, β
has mean E(β |Z) and variance τ2, and Z is a
second-stage design matrix expressing the
similarities between the β.  For example, in the
diet and breast cancer example (6) a linear link
function we assumed, and a second-stage design
matrix Z was defined where zij indicates the level
of nutrient i in food j.  Thus, the coefficients for
each food effect βi could have distinct second-
stage means (the λi), but would also be related
through a second-stage covariate (i.e., their
nutrient composition) that is thought to be
relevant to the strength of the food specific
effects (which are measured by βi).

Hierarchical (i.e., posterior) estimates are then
obtained by combining results—in the simplest
sense essentially taking weighted averages—
from the different level models.  Weights used in
combining these results reflect how well each
stage was able to estimate that level’s
parameters.  Specifically, more unstable
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estimates will be given smaller weight, and vice-
versa.  Hence, if sufficient data exist to estimate
adequately first-stage parameters, adding a
second-stage will have limited affect on these
estimates.  To fit the separate levels in a
hierarchical model one can use iterative
weighted-least-squares.  Assume that one has
conventional maximum-likelihood coefficient

estimates $β  from fitting a first-stage model.

One can then compute hierarchical estimates %β W

of the coefficients β by averaging $β  with the
fitted E(β) from the second-stage regression of
$β  on Z.  In particular, one can estimate the
second-stage regression coefficients π using
weighted-least-squares:

~ ( ) $π β= ′ −Z WZ ZW1 ,      (3)

where W V diag= +( $ ( ))τ2 -1, and $V  is

inverse information for β evaluated at $β .  The
fitted value for β from the second-stage
regression is therefore Z%π .  Averaging Z%π  with

the maximum-likelihood estimates β  gives the
hierarchical estimate

%

% ( ) $β π βW + - ,= BZ I B         (4)
with estimated covariance matrix

~
$ (C V I I H B= − −[ )’ ]       (5)

where B WV= $ , I = identity matrix, and H =

Z Z WZ Z W( ’ ) ’ .-1   Equation 4 shows how
two-stage hierarchical modeling compromises
between first- and second-stage estimates: the
distance of the hierarchical estimate from the
estimates in either stage is indirectly proportional
to the stability of the stage-specific estimates.
More specifically, the larger the elements in
$V are, the further β W will be from $β .

Conversely, the larger the τ2 are, the further β W

will be from Z%π .

Using the weighted-least-squares approach
requires that enough data exists to estimate the
parameters in a full first-stage model.  When this
is not the case, a penalized likelihood
hierarchical approach can be used instead.  This
approach entails thinking of the second-stage
design matrix Z as a rational basis for choosing a
penalty function for penalized likelihood.
Specifically, the penalty function based on (2),

 P = % ( %β βP P’ - )’( - )I H I H (6)

could be used to compute hierarchical estimates

of the coefficients %β P by penalized likelihood.
This corresponds to a weighted sum-of-squared-

residual penalty for departures of %β P from the
linear model Zπ .  The maximum penalized
likelihood estimates are obtained by maximizing
L-P/2τ2, where L is the conventional
loglikelihood derived from (1).  Hence, τ2 is the
inverse of the usual smoothing parameter in
penalized likelihood (15).

Applications of hierarchical modeling
Hierarchical models have been used successfully
in numerous investigations.  In longitudinal
studies, one can use hierarchical approaches to
analyze repeated measurements.  For example,
Hui and Berger (16)  used a hierarchical model
to estimate bone loss in postmenopausal women.
In their application, conventional estimates of
decreasing bone mass from consecutive
measures for each subject had a high degree of
variability due to the limited data for some
women.  However, by applying a higher level to
model the age-specific bone loss using all of the
data, they obtained estimates that were generally
much more reasonable.  Additional technical
details for using hierarchical models in
longitudinal studies can be found elsewhere (17).

For case-control studies, Thomas et al. (14) used
a hierarchical model to estimate 684 log odds
ratios corresponding to 57 occupational
exposures and 12 cancer sites, while Greenland
(5) applied a slightly different model to estimate
84 log odds ratios corresponding to 7
occupational exposures and 12 cancer sites.
Witte et al. (6) extended these hierarchical
approaches to estimate log odds ratios for 87
dietary items and breast cancer.  These
applications all used conventional logistic
regression as the first-stage of a hierarchical
model.  Thomas et al. (14) assumed
independence of the resulting estimates and a
common prior distribution, while Greenland (5)
and Witte et al. (6) added second-stage models to
incorporate information about the similarities
between first-stage exposures and/or outcomes.
In each application, this “borrowing of strength”
by the hierarchical model shrunk extreme and
unstable regression coefficient estimates toward
more moderate and stable estimates, resulting in
hierarchical estimates that were better than the
conventional estimates.  Greenland (3) and Witte
and Greenland (7) present results from
simulation studies comparing conventional



4

maximum-likelihood with hierarchical
estimation of multiple logistic regression
coefficients from case-control studies.
Simulation results indicated that hierarchical
models can offer substantial improvement over
conventional models when evaluating multiple
exposures, even when the second-stage model is
seriously misspecified.

Cancer mapping has used hierarchical models for
estimating effects according to geographic area
(18).  For example, Clayton and Kaldor (19)
used a hierarchical model to estimate lip cancer
incidence in Scottish counties.  Their hierarchical
approach incorporates into higher level models
relevant factors (e.g., degree of urbanization),
internal estimation of age effects, and allows for
spatial correlation of random area effects (20).
This model shrunk extreme and unstable
standardized mortality ratios towards a regional
average, resulting in more reasonable
hierarchical estimates.

Thomas et al. (8) presented a hierarchical
empirical-Bayes approach for testing
associations with large numbers of candidate
genes in the presence of environmental risk
factors.  They investigated this approach by
application to human leukocyte antigen (HLA)
associations in insulin-dependent diabetes
mellitus (IDDM), and by a simulation study
designed to reflect situations they have observed
in family studies of IDDM.  Their hierarchical
approach assumed that the log relative risks for
all alleles at a given locus are exchangeable and
they modeled the covariance between two
haplotypes as a function of the number of alleles
they share, and the marginal strength of the
effects of these alleles.  Simulation results
indicated that hierarchical modeling was superior
to maximum likelihood.  In particular, when
there were no haplotype effects, empirical-Bayes
estimates were closer to the true value than
maximum-likelihood estimates for 75 percent of
the alleles, and the empirical-Bayes estimates
were more stable as well.  When there were
haplotype effects, empirical-Bayes was also
superior because maximum likelihood models
were often unable to fit without first using the
data to select a subset of variables.

Hierarchical models have also seen use in
experimental studies.  For example, DuMouchel
and Harris (21) developed a hierarchical
approach that combined potency measures
obtained in different species in order to conduct

inter-species extrapolation.  They applied this
approach to the results of studies on 10
environmental hydrocarbon mixtures; intervals
of posterior uncertainty that had spanned six
orders of magnitude were reduced to spanning
just two orders of magnitude.  The fourth
Advisory Committee on the Biological Effects of
Ionizing Radiation (22) also applied this
approach to estimate the association between
high-linear energy transfer (LET) radiation
(plutonium and radium) and human bone cancer
risk using results from animal studies.  Meng and
Dempster (23) performed a hierarchical
toxicological analysis of tumors occurring at 17
separate sites in rats.  All of these experimental
applications of hierarchical modeling provided
substantial benefits over conventional analytic
techniques.  In addition, Louis (24) gives an
overview and application of hierarchical models
for improving analysis of biopharmaceutical
data.

Based on the successful application of
hierarchical models in a variety of situations and
the theoretical and simulation work that indicates
the potential improvement available when
incorporating higher level models (3-5, 7), it is
recommend that statisticians and epidemiologists
incorporate this approach into their set of
analytic tools.  Specifically, I suggest presenting
results from both conventional and hierarchical
models.  Of course, the potential improvement
available with hierarchical approaches does
require reasonable higher level models; but, as
long as this requirement is met, hierarchical
modeling will generally give better estimates
than (one-stage) conventional maximum
likelihood.  For those interested in using this
approach, some commercial software packages
exist (e.g., HLM, 25); in addition, SAS code for
hierarchical modeling is available at URL
http://darwin.cwru.edu/~witte (26).
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Cost-Effectivenes Analysis
(Continued)

Assessing the economic efficiency of an
intervention or treatment procedure via the
methods of CEA requires information on disease
and treatment history, as well as information on
costs.  This information is seldom known with
certainty for a number of reasons.  The required
data on intervention costs and consequences can
rarely be obtained from a single source.  Instead,
data are often obtained from a mixture of
sources, including empirical observations (e.g.,
clinical trials) and expert opinion [Gold et al.
1996].  Value judgments may play a part in
pinpointing data values or there may be
disagreement as to which methodology to
employ when conducting a CEA [Drummond et
al. 1997].  Therefore, there is an inherent
element of uncertainty in the CE ratio.

In quasi-experimental designs (which are
common in public health research), the accuracy
of the CE ratio depends on the magnitude of
error in estimating the costs and consequences of
the program being evaluated.  The main types of
errors are associated with study particulars, such
as design and data specification (including
sample size and random variation within the
population, for example), as well as with effect
estimation errors.

One method – indeed, the most popular method
historically – for addressing uncertainty in CEAs
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is to conduct multiple sensitivity analysis [Briggs
1995].  In a sensitivity analysis, one or more key
parameters of the cost or effectiveness model is
varied, perhaps from a worst-case to best-case
value, and the CE ratio is recalculated.  If the CE
ratio is little affected by such manipulations, so
that the main conclusions of the analysis are
unchanged, then the CEA is considered robust.
If, on the other hand, the results of the analysis
are sensitive to the particular parameters values
(hence to the uncertainty in the analysis), then
the main conclusions should be accepted with
caution, if at all.  Some of the main criticisms of
the sensitivity analysis approach to uncertainty
include the inherent subjectivity in selecting
which parameters to vary, and the range of
parameter values to be considered; the difficulty
of assessing the influence of more than one
parameter at a time (i.e., conducting multivariate
sensitivity analyses); and ambiguity in
interpreting the results of a sensitivity analysis
(e.g., how much credence should be placed in the
results of a worst case analysis if the worst case
scenario is exceedingly unlikely ever to occur?).

Recently, attention has focused on statistical
methods for quantifying the uncertainty in CEAs
and, especially, developing methods to estimate
confidence intervals around CE ratio point
estimates.  Statistical methods and sensitivity
analysis may be used in conjunction with one
another.  Confidence intervals are useful for
specifying the probable range of a particular
statistic, such as a CE ratio.  By definition, there
is a 95% chance that the “true” value of the CE
ratio lies within the range specified by the 95%
confidence interval.  That is, if a quasi-
experiment were repeated a very large number of
times, approximately 95% of these experiments
would produce confidence intervals that contain
the “true” value of the CE ratio.

Calculating 95% confidence intervals for costs or
effects separately entails knowing the
distributions, means, and variance of these
parameters, as well as the overall sample size
[Polsky et al. 1997].  Because the standard error
of either costs or effects is unbiased and
efficient, and because the cost and effect
distributions approach normality when the
respective sample sizes are sufficiently large, the
confidence estimates calculated from these cost
or effect estimates are said to be reliable.
Nevertheless, properties such as the unknown
distribution of the CE ratio, the unknown
estimator of the variance of the ratio of two

random variables, and the lack of an unbiased
and efficient estimator of the CE ratio’s standard
error prevent the direct calculation of the
confidence interval.

There are two main schools of thought for
calculating confidence intervals: the classical
versus Bayesian school of thought.  The main
difference between classical and Bayesian
methodologies relates to the relevant information
needed to estimate parameter values.  The
classical statistician relies on actual data to
predict the “true” value/distribution/frequency of
parameters.  Bayesians rely on information
provided by the analyst or decision maker on the
likelihoods of possible parameters, prior to data
collection.  Once a prior distribution is specified,
based upon these likelihoods, the prior
distribution information is combined with the
actual data set, which results in the posterior
distribution, describing the likelihoods of all
possible values (from prior distribution, and
from data).  This confidence interval is then
estimated based upon the mean of the posterior
distribution (Gold et al., 1996).  Empirical
Bayesians also rely on the information given by
the analyst or decision maker on the likelihoods
of possible parameters prior to data collection,
but only partially.  The other information for the
prior distribution comes from the actual data.
Once the prior distribution is specified, based
upon these likelihoods, from expert opinion and
actual data, the confidence interval (CI) is then
estimated similarly to the Bayesian technique
(Louis, 1991, Gold et al., 1996).  Classical and
Bayesian methods are equivalent for large
sample sizes, and if the prior distribution dictates
uniform values of parameters (Berger and Berry,
1988, Gold et al., 1996).

Classical methods are further broken down into
parametric and non-parametric methods.  The
Taylor series or delta method uses the Taylor
series expansion to estimate the variance of the
CE ratio (assumption entails normal
distribution).  The Fieller theorem relaxes the
assumption of normality, and the variance of the
CE ratio is based upon the assumption that the
numerator and denominator of the CE ratio
follow a bivariate normal distribution
(Chaudhary and Stearns, 1996, Gold et al., 1996,
Polsky et al., 1997, Laska et al., 1997a).

For bootstrap methods, instead of estimating the
variance of the CE ratio directly through use of a
formula, random draws with replacement are
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taken from an existing data set forming random
samples (typically, 1000 draws, Efron and
Tibshirani, 1993, Polsky et al., 1997).  The CE
ratio is calculated for each sample (bootstrap
estimates), and the mean and standard deviation
are calculated based on the 1000 samples
created.  The parametric bootstrap method
assumes that the CE ratio is normally distributed.
However, other types of bootstrap methods do
not assume the CE ratio is normally distributed.
The percentile bootstrap method entails using
upper and lower percentiles of bootstrap
estimates to calculate upper and lower CIs.  The
percentile bias corrected bootstrap method
adjusts for bias through algebraic adjustments
(Chaudhary and Stearns, 1996, Briggs et al.,
1997), and the percentile bias corrected and
accelerated bootstrap method adjusts for bias and
skewness through algebraic adjustments (Briggs
et al.,1997).  Finally, the percentile-t method
(Briggs et al., 1997) adjusts for bias in a different
way from previous methods, namely, the
bootstrap estimate of the CE ratio is estimated
and standardized.  The bootstrap process is then
repeated in order to obtain an estimate of the
standard error of the standardized CE ratio.
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