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I was very pleased to be asked to contribute to
this collection of commentaries on research
related to covariate measurement error.  This is a
very important topic for statisticians and
epidemiologists, and it seems like a good time to
try to gain perspective on the many
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MEASUREMENT ERROR IN
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PERSPECTIVE
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Much work in biostatistics has focused on
measurement errors in exposure variables and
risk factors. The very large literature is
summarized in the two books of Carroll et al
(1995) [8] and Fuller (1987) [16]. Recent
developments included the regression calibration
technique   by   Rosner  and Spiegelman [34,
35],    the
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ESTIMATION AND INFERENCE IN

EPIDEMIOLOGY WITH EXPOSURE

MEASUREMENT ERROR

 
DONNA SPIEGELMAN
Harvard University

Since the first papers on this topic appeared in
the biomedical research literature [5], much
methodologic progress has been made, and there
is currently a large and growing number of
statisticians working in this area (see Carroll et al
(1995) [8] for a recent review). In this
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MODEL-BASED LATENT

VARIABLE PROBLEMS WITH

EPIDEMIOLOGIC APPLICATIONS

ROBERT LYLES
Johns Hopkins University
The potential biases to regression analyses
incurred as a result of covariate misclassification
or measurement error (ME) are familiar to most
epidemiologists, as is the fact that statistical
methods are available to adjust for such biases.
It is generally appreciated that covariate ME
often stems from using less expensive or
CONTINUED ON PAGE 9
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recent developments in the field. To assist in this
effort, I will now share some of my observations and
comments.  Given space constraints, this discussion
will include very few citations,  so I must apologize
ahead of time to those of you who have contributed
to this very active area of biostatistical research for
not adequately referencing your work.

I first became interested in measurement error
problems in the early 1980’s  while participating in
the Harvard Six Cities Study, a longitudinal study of
the health effects of air pollution.  Studies conducted
by our group had helped to identify the inadequacy of
traditional central site monitoring as a measure of
personal air pollution exposure. As a result,
statisticians and epidemiologists began to search out
ways to address the consequences of measurement
error in exposures on analyses of the health effects of
air pollution.  During the same period, similar
observations in occupational and nutritional
epidemiology lead researchers in other fields to
consider the same issues.

The topic of Aerrors-in-variables@  was at that time a
venerable subject, with significant references dating
back to the 1950’s and 1940’s.   The phenomena of
Abias towards the null@  in slope estimates for simple
regression and the less predictable effects on slope
estimates for variables measured without error in
multiple regression were well understood and
featured in many textbooks.   However, most of these
techniques were not directly relevant to epidemiolgic
regression analyses. In particular, logistic regression,
generalized linear models, and proportional hazards
models presented new challenges.

By far the most formidable obstacle was, and
remains, an inherent computational complexity.
These models are characterized by nonlinear
regression functions.  This feature leads to difficulties
in evaluating the proper form for regression function
for the expectation of the health outcome variable
given the observed, error-prone variable.  A good
example of this is a simple logistic regression with a
normally distributed risk factor and normal
measurement errors. The risk model conditional on
the error-prone risk factor measure can only be
expressed as an integral form. Maximum likelihood
estimation thus requires the solution of a
indeterminate integral form at each step in the
iterative solution of the score equations, a time
consuming and numerically unstable procedure.

The recent text by Carroll, Ruppert and Stefanski [8]
contains a comprehensive bibliography and summary
of the many methods that have been proposed for
treating the computational and theoretical issues,
including the use of integrable models such as probit
regression with normal errors; the regression
calibration approximation; small measurement error
approximations, which can be viewed as
complementing the regression calibration approach;
conditional score functions and other methods that
attempt to develop improved score equations;
approximations based on simulation of measurement
error; and improved score tests for basic hyposthesis
testing.

The renewed interest among epidemiologists in
measurement error methods has also stimulated an
interest in design issues.  Nutritional and
environmental applications required that the classical
additive error assumptions for errors-in-variables in
linear models be replaced by more general
Aconditional independence@ assumptions for
Asurrogate@ exposure estimates.  Also, much of the
classical literature assumed that the measurement
error was known (or was equal to the residual error in
a regression model, as is true in certain engineering
applications  if measurements are being made with
the same instrument).  In epidemiology, special
validation studies are often required to estimate
measurement error parameters.  The joint
consideration of the design of validation and Amain@
studies has lead to several interesting methodologic
developments, as reviewed by Spiegelman [36].

So where do we stand now, and what directions
should we take in the future?  There are certainly
remain many important methodological issues, such
as covariate measurement error in longitudinal data
which just now being carefully investigated, with
several recent and soon to appear developments.   A
number of promising new approaches for
proportional hazards models have been presented at
recent statistical meetings. High grade software for
advanced nonlinear techniques is now being
developed and distributed, thus removing a practical
barrier to the use of the new techniques.

But if I were to identify  the most important
challenge for future it would to apply measurement
error methods in an vital way to important research
problems.  In preparation for this commentary, I
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searched the six year MEDLINE data base for
articles in medical journals with any mention of the
terms Ameasurement error@ and Aregression@. This
search yielded 22 references. If the search is
Arestricted to references mentioning correction@,
Aattenuation@ , or Aadjustment@, the number of
references drops to three and only two of these
apparently involve actual applications of
measurement error methods.  A similar search on the
terms Aproportional hazards@ and Aregression@ or
Amodel@ yielded 471 references.

It is difficult at best to evaluate the impact of new
statistical techniques, but I believe this exercise
shows that applications of measurement error
methods lag well behind theoretical developments.
Why is this?  Recently an epidemiologist colleague
expressed the view to me that since measurement
error adjustments usually have little effect on
t-statistics or may even make them smaller, they are
regarded as dispensable in studies where nonlinear
regression techniques are used primarily to identify
Asignificant@ effects.   It is hard to counter this
argument because, despite constant reminders of the
pitfalls of hypothesis testing, many investigators and
medical journals remain fixated on the all important
Ap-value@.

There are other reasons one can advance for the
scarcity of good applications.  I have already
mentioned the availability of software, which is
currently being addressed.   In part, the scarcity of
applications may be due to a continuing lack of
awareness about the potential problems associated
with measurement error, suggesting a need for more
review papers in applied journals, workshops, etc. I
also think that we have to try harder to use
measurement error methods in our collaborative
research.  My own list of compelling applications
includes:  meta-analyses in which the included
studies have different levels of measurement error;
measurement error adjustments for important
confounders, since these may have dramatic effects
on t-statistics for the risk factor of interest;  and
sample size adjustments based on estimates of
measurement error parameters.

Even without wide application of specific methods, I
think research on measurement error methods has
made a strong contribution to epidemiology and
medical research.   It is more common now to see
substantial validation studies accompanying large

scale studies. This reflects an increasing appreciation
of the scientific  implications of measurement error.
I am optimistic that as these methods are further
refined, implemented and disseminated, we will
come to view measurement error methods as an
essential part of the statistician’s tool kit.

ii

1997 YOUNG INVESTIGATOR AWARD
DEADLINE EXTENDED

TO JULY 15, 1997!

The Statistics in Epidemiology Section will once
again be awarding a $500.00 prize to be given to
the best paper presented at the sessions
sponsored by the Section at the annual Joint
Statistical Meetings in Anaheim  in August
1997.  This will be the 3rd year that the section
has presented this award.  Individuals who are
members of the ASA and who are either
graduate students of Statistics, Biostatistics or
Epidemiology or have  graduated at the doctoral
or master level within five years of June 1, 1997
are eligible for the award.  The paper is to be
presented at the meetings by  the award
candidate.

Individuals who have submitted contributed
papers to sessions sponsored  by the Section and
who wish to be considered for the award in 1997
should  send a copy of the paper with a cover
letter to:

Susan Ackermann, Ph.D. Past  Chair,
Johnson and Johnson,

ICOM Development Group,
920 Rt. 202, P.O. Box 300,

Raritan, New Jersey 08869-0602

by July 15, 1997.  Please also send a  cover
letter which includes documentation supporting
the eligibility for the  award (e.g. certificate of
student status or date of graduation).  The
recipient will be notified by the second week of
July 1997.  The award and certificate will be
presented at the business meeting of the
Statistics in Epidemiology Section in Anaheim.
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(All candidates should still send a  copy of their
paper to the Section Program Chair).

ii

SPIEGELMAN, CONTINUED

piece, unless stated otherwise, I will use the
terminology measurement error to refer to error in
both continuous and categorical covariates, while
error in the latter is typically referred to in the
literature as misclassification. This distinction is
important because most of the methods proposed for
the continuous covariate case are valid for
misclassified categorical variables, but the reverse is
not true.

Scientific investigators have been slow to apply any
of the methodologies thus far proposed to their
published work. It has been known for quite some
time that random misclassification leads to bias
towards the null [23]; hence, estimates of effect could
be treated as conservative underestimates of the true
underlying effect, an error which has generally been
regarded as far less pernicious than overestimation.
We know now that this rule has important exceptions,
such as when there are more than two categories of
exposure [14, 15] and thus the need for methods for
removing bias away from the null due to
measurement error is more important than previously
realized.

Unfortunately, there is a dire lack of user-friendly
software to implement the methods which have thus
far been proposed. Even the matrix method [3, 17] for
correcting for binary or nominal polytomous
categorical covariate misclassification, the oldest and
most well known method in epidemiology for dealing
with exposure measurement error, has never been
implemented with user-friendly software. A notable
exception to this is the regression calibration method
[1, 2, 28, 34, 35]; I and colleagues  have written and
distributed user-friendly software in two forms (SAS
macros, and a Fortran program) to epidemiologists
around the world [request via email: stdls@
channing.harvard.edu], and Ray Carroll has also
made software available for this method [Obtainable
at http://stat.tamu.edu/ under QVF]. This method is
useful for cohort studies analyzed by logistic or Cox
regression, and for cross-sectional studies using the
linear regression model, as long as no recall bias is
suspected. It is undoubtedly due, at least in part, to

the availability of this software, that this method for
correction of exposure measurement error has been
applied to analysis appearing in original scientific
investigations [32, 42] and many others.

Although many epidemiologists are quite concerned
about possible bias in their work due to covariate
measurement error, few have the necessary data to
incorporate explicit correction for this bias in their
analysis.  Without augmenting the usual data with a
validation or reliability substudy, estimation of the
parameters necessary for bias correction is not
possible.  Statisticians advocate the use of main
study/validation study designs when a gold standard
exists which can be used to validate the usual method
of measurement in a small subsample, and main
study/reliability study designs when the error is
assumed to be random within-person and no gold
standard is available. In this latter design, replicate
measures (two is usually sufficient) are taken in a
small subsample of the main study participants.
Without validation or reliability data, the parameters
of the problem are not identifiable unless empirically
unverifiable assumptions about the form of the
measurement error model as well as the values of its
parameters are made. The resulting analysis is
extraordinarily sensitive to these assumptions. The
main study/validation study has become virtually
standard in nutritional epidemiology, but it is rare to
find this design used in other branches of
epidemiology. Although several papers have
provided explicit formulas for sample size and power
(see [36] for a review), I am not aware of the
availability of any user-friendly software. These
calculations involve optimization of complicated
multiparameter functions subject to non-linear
constraints, and without the availability of such
software it is unlikely that epidemiologists will be
able to use any methods developed.

I will give a brief overview of the likelihood-based
approach. The construction of the likelihood in the
presence of covariate measurement error should
elucidate the understanding of any approach to this
problem, even if the likelihood is ultimately not used.
For simplicity, I will give the univariate case --
multivariate extensions are straightforward. If
f1(Y*x;β) is the model for the outcome, Y, conditional
on covariate x, and β, or some element thereof, is the
parameter of interest, and if X is a surrogate for x, i.e.
if f(Y*X,x)=f(Y*x), then f3(Y*X;β,θ)=If1(Y*x;β)
f2(x*X;θ) dx, where f2(x*X;θ) is the measurement
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error model, indexed by parameter θ. The likelihood
in a main study/validation study (M/V) design or a
main study/reliability study (M/R) design is thus
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where  n1 is the sample size of the main study and n2

is the sample size of the validation or reliability
study. Standard likelihood estimation and inference
can be applied to this model [39].

So why have so many papers been written on
methods for consistent estimation and valid inference
in models with covariate measurement error?  First, f3

may not have a closed-form solution, requiring the
development of mathematical or numeric
approximations. For example, with f1 a logistic
regression model and f2 a Gaussian model, f3 has no
closed form. This important case motivated many
recent papers, as it describes a group of models
typically used in epidemiologic applications [7, 13,
41].

Second, although f2 and f1 are typically standard
models supported by commercial statistical software,
f3 rarely is, even when it is closed-form. In addition,
equation (1) is almost never supported by commercial
software. L(β,θ) given in equation (1) is typically a
complicated, non-linear multi-parameter function,
often with linear and/or non-linear constraints on
elements of (β,θ). Estimation and inference using (1)
must be customized to the problem at hand, and the
assistance of a technically sophisticated Fortran or
C+ programmer is thus required.

Third, this is a fully parametric method, and there is
concern that bias in the estimation of β might be
introduced by mis-specifying f2. In the estimating
equations tradition, methods have been proposed
where the first (and possibly second) moments of f1

are specified. Some authors specify the first (and
possibly second) moment(s) of f2 and others the full
model for f2 [9, 19]. In either case, estimating
equations for β are then derived, and estimation and
inference proceeds as usual. In much of this work, in

my view, inadequate attention is paid to explicit
modeling of the measurement error process or the
additional uncertainty in the inference due to
uncertainty about the measurement error process,
given the data. In a third approach, the E(Y*x;β) is
specified, and estimating equations are derived with
f2 completely non-parametric [31, 33]. Even when the
estimating equations are semi-parametrically
efficient, in examples I have looked at, there is a
huge loss of efficiency relative to the fully parametric
likelihood-based method [38]. However, this method
is non-parametric in exactly the way that is needed --
in the specification of f2, about which there is
typically a modest amount of data.

In conclusion, much interesting and practical work
has been published by statisticians on methods for
valid estimation and inference in the presence of
exposure measurement error. Some areas which
could benefit from further attention, in my view,
include software development for both design and
analysis, research into the effect of local mis-
specification of the relevant features of the
measurement error model, methods for failure-time
data, and more efficient, intuitive methods for
misclassified data and data with both continuous
variable measurement error and categorical variable
misclassification.

ii
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PALTA, CONTINUED

bootstrap extrapolation of Stefanski and the
introduction into biostatistics of instrumental variable
techniques. These techniques tend to boost the
estimate of association between the risk factor and
outcome, but as they also increase the standard error,
leave significance levels relatively unchanged.
Finding examples of the application of these
techniques in epidemiology, remains a challenge.
Looking through the Methods sections of all articles
in 7 recent issues of the American Journal of
Epidemiology, I found one article (besides [37]) that
used any sort of correction for measurement error or
within individual variability. In that article, which
had repeat within individual measurements on blood
pressure and urinary sodium:potassium ratio, the
authors stated AAlthough a correction factor was
estimated, the primary emphasis for these analyses
remained on the raw values@. Interestingly, the
authors found that their correlation coefficient
between urinary sodium:potassium ratio and blood
pressure increased from 0.16 to 0.28 after correction
for Aregression dilution@, a substantial difference
which was primarily due to variability in urinary
values [18]. One wonders at the shyness in utilizing
error adjustments, especially as many risk factors,
including most of those analyzed in the articles I
scanned, are measured with error. I propose as
possible reasons the lack of access to software,
reluctance to oversell risk factors, complexity of
adjustment when multiple risk factors and
confounders are involved, and concern with
assumptions. I also point to some aspects of
measurement error modeling in epidemiology that
have received relatively less interest from
biostatisticians.

Two recent publications are examples of the type
needed to bridge some of the gap by making
assumptions and procedures very clear. The
technique of instrumental variables, was presented by
Carroll and Stefanski [10]. Another very recent
publication [37] shows when the regression

calibration technique can be applied in the situation
without a true gold standard, and in the process
discusses how to estimate the correlation between
errors using a third measurement. By discussing the
different assumptions involved, these developments
may re-kindle interest among a broader
epidemiologic audience. Although the effect of
various independence and distributional assumptions
has been investigated in the statistics literature, not
much of this has reached the epidemiologic
community.

Another road to increase interest in measurement
error adjustment among epidemiologists may be via
the deep concern with confounding. In most
observational studies,  the fear of falsely concluding
association is paramount. However, adjusting for
measurement error in multiple risk factors and
confounders is complex, both statistically and
logistically, as a multivariate validation sample must
be assembled [34]. At this point such validation
samples are not routine. With confounder error
following the calibration model, so called Aresonant@
error occurs in the estimated association between the
outcome and risk factor. In this situation it is
unpredictable how the risk factor-outcome
association will be affected. A recent article [22]
showed that the consequences of confounder error in
strong confounders may be large. They suggested
that associations in observational studies between
dietary beta-carotene and lung cancer may have been
due to resonance of error in estimating smoking
exposure [22]. Clearly such possibilities should be of
great concern to epidemiologists and biostatisticans
alike.

As in modeling measurement error in the risk factor,
there is a choice of whether the confounder error is
assumed to follow a regression calibration or a
Berkson model [8]. The first model assumes
independence between the true value and the error
(W=X+U, where W, X, U are observed, true and
error values), while the second model (in its basic
form) assumes independence between the observed
value and the error (X=W+U). While the calibration
error structure seems natural when the confounder is
known, but mismeasured, it may be argued that the
latter may describe some situations where not quite
the right confounder has been found (e.g. when using
mother’s education to capture socioeconomic level).
When formulating a Berkson error structure for the
confounder, one finds that measurement error will
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bias ordinary regression only if the distribution of U
depends on the risk factor. It is not known, however,
how often and how strongly this happens. In a recent
publication, we outlined how Berkson error can be
transformed into confounding [26]. Some of our
work with confounding in longitudinal studies is also
related to the above, as it shows that one can adjust
for cross-sectional confounders (or cohort effects) by
using the individual specific risk factor mean as a
surrogate for the confounders. This produces an
unbiased estimator of risk factor effect as long as
time to time variability in the confounder is not
correlated with time to time variability in the risk
factor [11].  We discussed  a study of sleep disorders
across two time points, four years apart. The  logistic
regression coefficient of Afeeling excessive daytime
sleepiness@ (dichotomized into Anever or rarely@
versus Asometimes@) on age was -0.15 (p<.0001) in
GEE analysis, but changed to 0.036 (p=.0003) when
mean age of each individual across surveys was
adjusted for. The investigators saw the mean age as a
surrogate for life style factors which may cause sleep
deprivation in younger persons, thereby causing a
seeming decrease in sleepiness with aging.

In model formulation, Berkson confounder error is
indistinguishable from Berkson error in the risk
factor, and also from error in the response. Carroll et
al [8] pointed out that the likelihood for the Berkson
model is identical to that of a mixed effects model.
Subject matter knowledge, of course, may identify
the errors that are operating in a specific situation. As
we know, measurement error in the response creates
no bias in regression coefficients in ordinary
regression, only lack of statistical efficiency.
However, in the grouped and dichotomized responses
often encountered in epidemiology the case is
different. Classical epidemiologic (and biostatistical)
texts (e.g. Breslow and Day [4])  have dealt with the
problem in terms of  Apercent mis-classification@ and
have indeed shown that, given certain independence
conditions, there may be a conservative bias in the
estimated odds ratio. Social scientist appear to have a
more elegant formulation in terms of Alatent
variables@ (see e.g. [24]). It can be argued that many
ordinal and binary responses arise from underlying
continuous scales. As this scale is (almost) imaginary
it might as well be assumed scaled to be normally (or
logistically) distributed, hence leading to probit and
logit links. This is very helpful, as it allows us to fall
back on the usual variance component framework

from multivariate theory to model binary and ordinal
outcomes.

Work by [25] and Qu et al. [29] is relevant in
modeling the correlation structure, including error, in
the latent outcome. As the correlation structure is
modeled, application in longitudinal settings is
natural. For example, in the study of sleep disorders
described above, we asked several questions related
to tiredness. The responses were on an ordinal scale
from 0-5, but were dichotomized in analyses. The
structural latent variable framework [27] allowed the
following variance components to be modeled (a)
between individual variation in intercept, which is
equivalent to correlation within individual (b)
variation between two tiredness questions on the
questionnaire at the same time point  (c) correlation
in the error of the same item across the two time
points. However, in modeling latent variables,  some
aspect of the variance has to be assumed as equaling
1, i.e. chosen as the unit of regression coefficients.
Typical choices are total variance (= marginal
models) and within individual variance (=cluster
specific models). When the error- in -response
variance is estimated it can be removed from the
standardizing variance, which amounts to rescaling to
the variability of the true outcome. Regression
coefficients are thereby adjusted for measurement
error. In our example, with marginal coefficients this
resulted in an increase of approximately 20% in
regression coefficients of tiredness on age, gender
and BMI. As epidemiologists turn to global health
assessment outcomes measured by questionnaires,
such assessment will become important.

In summary, then, much work remains in increasing
understanding and application of measurement error
techniques in epidemiology. It appears necessary to
acknowledge greater complexity, while retaining
interpretability. Methods from the social sciences,
where there is a stronger tradition of assessing
measurement errors, may provide meaningful
insights. We also need to pay careful attention to the
concerns of epidemiologists, who are aware of what
assumptions do and do not hold in their data,
primarily worry about confounders and are
professionally geared to conservatism with weak
associations.

ii
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more readily obtainable surrogate exposure variables.
It may be less common to contemplate the ME
problem that arises when one is forced to characterize
an important aspect of individuals= exposure
experience on the basis of a small collection of actual
exposure data.  For example, the true mean level of
some exposure experienced over a study period may
be biologically relevant to an outcome of interest, but
one may only have a few repeated measurements
available on each individual from which to calculate
a sample mean as a surrogate.

If a reasonable model for repeated exposure
measurements can be postulated, the ME resulting
from the inability to observe the actual unknown
exposure variable (in this case the latent Atrue@ mean)
can be adjusted for using existing techniques.  These
techniques are in some cases identical to, and are at
least the same in spirit as, the method commonly
termed Aregression calibration@.  This method has
well-demonstrated epidemiologic applications in the
contexts of linear, logistic, and proportional hazards
regression models [40].

Consider the case of a longitudinal study in which
subjects are measured periodically with respect to an
exposure variable (e.g., a biomarker, a shift-long
personal breathing zone measurement, etc.).  Assume
for simplicity that the distribution of repeated
exposure measurements is stationary with a
compound symmetric correlation structure, and that n
measurements are obtained on each of k subjects.
Then a reasonable overall model might be a simple
random effects ANOVA, e.g.,

n1,...,=j   ; k1,...,=i    ,e  +  b  +    =  Y ijiij µ

where we assume

          ), N(0,~     b
2

bi σ   and

           ) N(0,~     e
2

wij σ

are independent.  A latent variable ME problem can
then be illustrated in terms of a Atrue disease model@
(TDM), a Ameasurement error model@ (MEM), and a
Apredictor distribution model@ (PDM) [12]:

) ,( N~            ,  +    +    =  R  TDM 2

iiii σεεµβα 0:
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The TDM is a simple linear regression of a
continuous health-related outcome (R) on true
individual-specific mean exposure (µ

i
).  The MEM

relates the sample mean of the n observations on the
i-th person (which is the logical surrogate exposure

variable) to the true mean, via the MEM term ei

Note that MEM and PDM are directly specifiable
based on the overall model for repeated exposures.
Hence, we have a straightforward additive-normal
ME problem with non-systematic and non-
differential error.  It is easily shown that the OLS

estimator from the surrogate regression of Ri  on

Yi
 has the convergence property

    ,)/n  +  (1      
-1

OLS
βλβ →ˆ

where σσλ 2

b

2

w /=   [6,30]. Regression

calibration provides the corrected estimator

/n)  +  (1   = 
OLSRC

λββ ˆˆˆ , where λ̂  is a

consistent estimator (such as the MLE) for λ.  An
adjusted confidence interval may also be derived via
application of the delta method [40].  The adjusted

estimator β̂
RC

 is essentially unbiased and the

coverage of the adjusted confidence interval (which
accounts for estimation of λ) can be shown via
simulation to maintain the nominal value of 95% in
all cases. The biased naive confidence interval,
however, will not contain the true value for large
sample sizes.

The example above simply couches the well-known
additive-normal ME scenario in simple linear
regression within a particular model-based construct.
However, the epidemiologic appeal of this construct
(or primarily its extensions) may be considerable for
situations in which biological arguments point to
average exposure over a study period as an important
risk factor for an outcome.  These arguments are
more appropriately embodied in a conceptual health
effects model like the TDM model above than in the
naive regression model employing a potentially crude
surrogate for true average exposure.  The overall
model for repeated exposure measurements, once
validated, provides the mechanism by which the
appropriate study question can be addressed.  A
crucial general point is that the appeal of adjustment
procedures like regression calibration is in their
preservation of validity with respect to point and
confidence interval estimation in the presence of



measurement error.  For instance, if one were solely
interested in testing whether β = 0 in the above
setting, one would do no better than the usual t-test
based on the surrogate regression model.  For insight
into the incorporation of additional covariates
measured with or without error in the TDM, one can
refer to the vast literature on ME adjustment.

While it is possible to imagine many practical
problems in which the basic conceptual framework
illustrated here might be applicable, most of these
will not permit straightforward regression calibration
as a solution.  If the exposure data are unbalanced,
for instance, then it is not possible to derive a simple
convergence result analogous to the above.  In these
cases one must appeal to more general methods,
although the basic goal and conceptualization of
these methods is essentially the same.  One possible
approach would be an adaptation of quasi-likelihood
[19], which incorporates heterogeneity in the
conditional variance of the response variable given
the surrogate.  This strategy has been useful in an
occupational epidemiologic application involving
grouped data on workers, with the predictor of
interest being the true mean exposure over a study
period based on a model assuming lognormality of
repeated exposure measurements [20].  Adaptations

of the conceptual framework to address further
epidemiologic hypotheses of potential interest are
also possible.  In this direction, as part of an ongoing
study of HIV infection, an investigation of the health-
related effects of both individual-specific mean and
variability with respect to biomarker levels over time
has been undertaken using a natural extension of the
setting illustrated via models decribed above [21].

[Dr. Lyles is the Winner of the 1996 Epidemiology
Section Young Investigator Award]
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