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I ntroduction

Diagnostic testing is frequently used in clinical
practice to help clinicians to select different
treatment therapies. The receiver operating
characteristic (ROC) curve is a useful graphical
and evaluation tool for assessing the accuracy of
a medical diagnostic test for detecting whether
or not a patient has a disease or condition. The
ROC analysis was originally developed for
analyzing classification accuracy in
differentiating a “signal” versus a “noise” in
radar signal detection during the Second World
War [1, 2].

A diagnostic test can yield one of the three
outcome types. It can be a binary classification
indicating that the patient is either non-diseased
(here called “non-disease” for convenience, and
labeled D=0) or diseased (D=1). It can also be
an ordinal-scale; for example, it can classify
each patient into one of the five ordinal-rating
categories, where 1=definitely non-disease,
2=probably non-disease, 3=equivocal,
4=probably diseased, and 5=definitely diseased.
Finally, it can be a continuous-scale, such as
tumor volume and cancer antigen assay.

(continued on page 4)
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Making causal inferences about the effect of
exposures on outcomes is the objective of many
epidemiologists. To accomplish this goal, they
design studies, collect data, and conduct data
analyses. In principle, any association measure
(e.g., a regression coefficient) estimated by
statistical methods can be interpreted causally.
The justification for interpreting causally the
results of a statistical method in a particular
Situation lies beyond statistics. It is a matter of a
priori assumptions.

As an example, consider two possible studies to
estimate the overall effect of a new antiretroviral
therapy on the time to AIDS among HIV-
infected patients. First, an ideal experiment
(large sample size, full compliance, and no loss
to follow-up) in which patients were randomly
assigned to either new or standard therapy and
then followed for several years. Second, a large
observational study in which sicker patients
were more likely to receive the new
antiretroviral therapy. The data from both
studies is analyzed using a correctly specified
Cox proportional hazards model with cumulative
treatment dose as the only covariate. Most
epidemiologists would agree that the hazard
ratio from this model could be interpreted as the
causal effect of a unit of treatment (on the

(continued on page 2)
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hazard ratio scale) in the first study, but not in
the second one. The justifications for these
causal statements are not based on statistical
arguments. We say that the first hazard ratio can
be interpreted causally because the treatment
was randomized and randomization in large
samples ensures that both groups are comparable
or exchangeable, i.e., there is no confounding
(Greenland and Robins 1986). We say that the
second hazard ratio cannot be interpreted
causally because of failure to control for joint
predictors of treatment and outcome identified
by a priori expert knowledge, i.e., there is
confounding by, say, CD4 count and viral load
(Greenland and Robins 1986).

In both cases the statistical method is the same,
but the conclusions regarding causal
interpretation of the hazard ratio are different
because the a priori non-statistical information
employed by the user of the method varies. In
general, a parameter of a particular statistical
model has a causal interpretation when all
confounders have been measured (and
appropriately controlled). Because this condition
cannot be checked empirically, causal inference
from observational data---and from randomized
trials with small sample sizes, lack of
compliance, or loss to follow-up--- is a risky
task. Why then do the so-called causal methods
exist? If the causal wvalidity of statistical
estimates relies so heavily on the assumption of
no unmeasured confounders, then shouldn't
epidemiologists concentrate on using their
expert knowledge to make this assumption at
least approximately true in the study design/data
collection phase and then use standard statistical
methods in the data analysis phase? (Standard
methods are those based on stratifying or
conditioning on covariate history, e.g., non
parametric stratified analysis, generalized linear
models, time-dependent Cox proportional
hazards regression, propensity score matching.)
Here comes the problem: standard statistical
methods may yield invalid estimates of the
overall or direct causal effect, even if the
assumption of no unmeasured confounders holds
true. Specifically, this occurs in longitudinal

studies when the investigator is interested in the
causal effect of a time-varying treatment (e.g.,
antiretroviral therapy) and some of the time-
dependent confounders (e.g., CD4 count and
viral load) are themselves affected by prior
treatment (Robins 1986). The so-called causal
methods overcome this problem, and hence
ensure that all confounders painstakingly
identified by the epidemiologist will be
appropriately controlled.

Causal methods and the definition of causal
effect embedded in them derive from
counterfactual theory. Briefly, we say that the
binary time-varying treatment A(t) has a causal
effect on subject's i response Y, measured at the
end of follow-up, if the subject's outcome varies
under different hypothetical treatment regimes a
(e.g., treated at all times, never treated). For
example, we may compare a subject's outcome
when continuously treated (Yja;) with her
outcome when never treated (Y] z0) and say that
there exists a causal effect if Yj a1 - Yiap# 0. Of
course, the subject follows only one treatment
regime and therefore one can only possibly
observe either Yj a1 or Yjao. For example, if the
subject remained untreated at all times, then
Yi, ao = Y whereas the value of Y] a1 is missing.
Because, in general, Yja1 and Yjao represent
situations that go against what actually happened
(counter to the fact), they are known as
counterfactual outcomes. In fact, the subject will
generally follow a treatment regime that is
neither Yja1 nor Yo, and hence the value of
both counterfactual outcomes will be missing.
This missing data problem renders it unfeasible
to make causal inferences for subject-specific
effects. However, under the assumption of no
unmeasured confounders, it is possible to make
inferences about causal effects averaged over a
population of individuals, i.e., E[ Ya1] - E[ Yao] -
For example, if Y represents five-year survival
(1=death, O=alive), E[ Ya1] - E[ Yao] #0 means
that the mortality risk had everybody in the
population been continuously treated is different
from the risk had everybody remained untreated.
In other words, treatment has a causal effect on
the risk of death in the population under study.



Counterfactual outcomes, also known as
potential responses, were introduced in statistics
by Neyman (1923), who described them in
randomized experiments with time-invariant
treatments. Rubin (1974) extended Neyman's
theory to observational studies (see also review
by Holland (1986)). Robins (1986, 1987) then
developed a formal counterfactual theory that
generalized the former and that applies to
longitudinal  studies  with  time-varying
treatments. This is a key development because
most exposures of interest to epidemiologists
vary over time.

The earliest product of Robins' theory was the g-
computation algorithm formula (the g
formula"), a non parametric causal method to
compute overall or direct causal effects of time-
varying treatment regimes under the assumption
of no unmeasured confounders, even in the
presence of time-dependent confounders
affected by previous treatment. Specifically, the
g-formula computes the expected value of the
counterfactual outcomes under the treatment
regimes of interest (e.g., E[ Ya1] and E[Yao] ).
These expected values can then be contrasted,
using differences or ratios, to determine if the
treatment has a population causal effect. More
recently, approaches to causal inference based
on causal diagrams (directed acyclic graphs)
have led to a method of estimation of causal
effects that is mathematically equivalent to the
g-formula (Pearl 1995).

Despite its theoretical interest, the g-formula
cannot be used in most practical applications
because it is a completely nonparametric
method, i.e., it makes no modeling assumptions.
Hence using the g-formula in longitudinal
studies even with a moderate number of repeated
measures and covariates would require
enormous amounts of data and computing time.
On the other hand, fully parametric approaches
may lead to bias of the treatment effect
estimates. To solve this problem, Robins has
developed two classes of semiparametric causal
methods that incorporate modeling assumptions:
marginal structural models (MSMs; Robins
1998 and 2000) and structural nested models
(SNMs; Robins 1997 and 1998). The word
“structural' is commonly utilized as a synonym

for “causal' in the social sciences. The
parameters of MSMs and SNMs---estimated
through inverse probability of treatment
weighting and g-estimation, respectively--- can
always be interpreted as the causal effect of
treatment, under the assumptions of no
unmeasured confounders and no model
misspecification. MSMs are linear, logistic,
failure time, etc. models for the counterfactual
outcomes under prespecified treatment regimes.
For example, a marginal structural Cox model
has been used to estimate the mortality hazard
ratio for being continuously versus never treated
with antiretroviral therapy and prophylaxis for
opportunistic infections in HIV-infected patients
(Herndan 2001). SNMs are models for the
counterfactual outcomes under prespecified or
dynamic treatment regimes (i.e., those in which
the decision to treat at a certain time depends on
the subject's covariate and treatment history).
For example, a structural nested failure time
model has been used to estimate the causal
effect of isolated systolic hypertension on
cardiovascular death (Witteman 1998). SNMs
can be used for means and failure time
outcomes, but are not generally useful for
dichotomous outcomes.

In summary, all statistical methods used for
causal inference require that the assumption of
no unmeasured confounders is at least
approximately true, but only causal methods,
such as MSMs and SNMs, permit a valid
analysis if the investigator believes that time-
dependent confounders are affected by prior
treatment. The choice of the analytic approach
depends upon the set of assumptions that the
investigator is willing to accept.
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Receiver Operating Characteristic (ROC)
Analysis (Continued from page 1)

Suppose the outcome of a medical test results in
a continuous-scale measurement T. Let t be a
threshold (sometimes called a cutoff) value of T,
used to classify patients, such that m subjects are
classified as non-diseased if T <t, and n subjects
are classified as diseased if T>t. As a result, for
any set of N=m-+n test results, once the true
disease status (or the gold standard) for each
patient is determined, independent of the test
result, we have the following two-by-two
contingency table at t:

Gold Standard
Non- Diseased Total
Diagnosis | diseased (D=1)
(D=0)
Negative | True False #{T>t}
(T+) Negative’s Negative's | (Test
“ +I1 S)
Positive False True #H T<t}
(T-) Positive's Positive's | (Test “—
” S)
Total m n N=m+n

The accuracy of such a binary diagnostic test is
commonly assessed using the probability that
the test correctly classifies a non-diseased
subject as negative P(T- | D=0), namely the true
negative rate TNR=1-FPR, or gpecificity, and
the probability that the test correctly classifies a
diseased subject as positive P(T+ | D=1), namely
the true positive rate TPR, or sensitivity. When
evaluating a continuous-scale diagnostic test,
both specificity=P(T<tID=0) and
sensitivity=P(T>tID=1) depend on the test
threshold t. As t varies, so do these two
quantities. By considering all possible values of
the threshold values for t, a receiver operating
characteristic (ROC) curve can be constructed as
a plot of sensitivity (TPR) against (1-specificity)
(FPR) pairs. An ROC curve, that is towards the
upper left in the (0,1)x(0,1)-space and lies above
the diagonal line connecting (0,0) and (1,1),
represents higher diagnostic accuracy. If we let




F; be the distribution function of the continuous-
scale T for a patient with D=d, then the ROC
curve of T can be formally written ROC(p)=1-
F1(Fo(1-p)), where p is the FPR corresponding
to a cutoff point t in the domain of the
distribution function F.

There are several other epidemiological terms
frequently used in the ROC literature. The
probability of disease is called the prevalence or
prior probability. The ratio of TPR and FPR is
the likelihood ratio positive, and the ratio of
TNR and FNR is the likelihood ratio negative.
The probability of disease given a positive test
result is the predictive value positive, and the
probability of non-disease given a negative test
result is the predictive value negative.

Characteristics and Summery Accuracy

M easures

(1) Confidence intervals and bands: A vertical
(or horizontal) confidence interval for TPR (or
FPR) for a specified FPR (or TPR) may be
constructed, often first in an unrestricted space
(e.g., a probit or logit space) and then
transformed back to ROC space. The reason for
the transformation is to improve the
performance of large-sample approximation [3,
4]. Schéfer [6] constructed vertical
nonparametric confidence bounds based directly
on the standard errors obtained by Greenhouse
and Mantel [7] rather than using the above
transformation. Confidence rectangles (and
also ellipses) based on the nonparametric
Greenhouse and Mantel formula are proposed
and constructed instead [4]. Confidence regions
based on distribution-free tolerance intervals
were also proposed [8]. Simultaneous inference
is desired when sensitivity is examined over a
range of specificities (or vice versa). Ma and
Hall [9] constructed Working-Hotelling type
confidence bands for an ROC curve by mapping
out Working-Hotelling bands for a regression
line in probit space, using a binormal parametric
model. Komogolrov-Smirnov type fixed-width
nonparametric bands are developed by Campbell
[3]. Nonparametric regional confidence bands
were constructed [10].

(2) Area and Partial Area under the Curve: The
area under the curve (AUC) is a popular

summary measure of diagnostic accuracy. It
ranges from 0.5 for accuracy equal to chance to
1.0 for perfect accuracy. The area may even
range from O to 0.5 for corresponding test
accuracy worse than chance [11]. The full area
under the curve corresponds to the probability of
a pair of independent non-diseased and diseased
measurement values being in the correct order,
i.e., P(X<Y). For continuous diagnostic data,
the nonparametric estimate of AUC is the Mann-
Whitney U statistic [12], namely the proportion
of all possible pairs of non-diseased and
diseased test subjects for which the diseased
result is higher than the non-diseased one, plus
half the proportion of ties. The area is a simple
and convenient overall measure of diagnostic
test accuracy. But it gives equal attention to the
full range of TPR and FPR, whereas only
limited ranges may be of practical interest.
Also, areas under two ROC curves that cross
provide little discriminating information. Thus,
partial area is sometimes preferred. It is the area
under the ROC curve between two fixed apriori
values for specificities [13].

(3) Point of Intersection: Moses et al. [14]
proposed a point of intersection of the ROC
curve and the line on which the sum of any FPR
and TPR pair is 1, i.e., a diagonal line from (1,0)
to (0,1). In other words, this is the ROC point at
which the sensitivity and specificity are equal.
This common sensitivity value also reflects test
accuracy, the higher the more accurate. For
example, 1 represents a perfect test (i.e., the gold
standard), and 0.5 a test with accuracy no better
than flipping a coin.

(4) Optimal Intercept: Phelps and Mushlin [15]
obtained an alternative utility-prior-probability
based measure named optimal intercept. It is the
intercept of a line tangent to the ROC curve with
the optimal slope, which gives the Bayes
solution to the underlying decision problem
reflecting patient utilities and prior probabilities.

Methods for Estimation

(1) Nonparametric: The crudest method for
creating an ROC plot involves plotting pairs of
TPR vs. FPR at all possible values for the
decision threshold, where TPR and FPR are
calculated using the empirical survival



distribution function for the diseased and non-
diseased subjects. This method is usually
referred to as the empirical or nonparametric
method because no parameters are needed to
model the behavior of the plot, and the unknown
underlying distributions for the two groups are
left unstructured [16]. This approach has the
advantage of being free of structural
assumptions. However, the empirical ROC
curve is usually unsmooth and has a jagged
form. Since the true ROC curve is a smooth
function, the efficiency of the empirical ROC
curve is reduced relative to a smoothed ROC
curve if the smoothing is done correctly.
Smooth nonparametric ROC curves were
derived from estimates of density or distribution
functions of the two test distributions [4, 17,18,
19, 53]. The degree of smoothness is
determined by the choice of kernel and
bandwidth.

(2) Parametric: As an alternative to the
nonparametric approach, a parametric model
may be assumed, which has the further
advantage of allowing incorporation of
covariates into ROC curve fitting. Zweig and
Campbell [16] discussed various possible
parametric forms. For ordinal (rating) data,
instead of continuous data, popular methods
assume a binormal model for a latent
measurement scale. ~ Computer procedures,
based on maximum likelihood estimation, were
developed by Dorfman and Alf [20]; Metz and
colleagues [21], and Zou and Hall [22].

(3) Semiparametric: Semiparametric models are
also being considered [19, 22-23].  These
models assume that there exists a monotone
transformation of the measurement scale that
simultaneously makes both non-diseased and
diseased distributions normal. These methods
are less sensitive to non-normality than the
direct parametric method.

(4) Regression: Regression analysis approaches
under ordinal regression methodology were
developed by Torsteson and Begg [23].
Generalized linear models (GLM) methods,
incorporating covariates were proposed by Pepe
[24-26].

Methods for Comparison

An important problem in ROC analysis concerns
the comparison of two (or more) diagnostic
tests. In a diagnostic accuracy study, if such a
test is repeated under several occasions, or
different tests are administered onto the same set
of subjects, then the test results are typically
correlated. A less common design is to enroll
two different groups of subjects for these tests,
resulting in two independent sets of results. In
comparison, the correlated design is much
efficient because it controls for subject-to-
subject variation. A possible scenario would be,
for example, that a test on the same set of
subjects is analyzed by two similar types of
laboratory instruments or by two slightly
different operators, or taken at different points of
time such as at the baseline or a few hours later.

Greenhouse and Mantel [7] and Linnet [27]
compared the sensitivity values at a common
fixed level of specificity. DelLong et al. [28]
compared areas based on correlated U-statistics.
Beam and Wieand [29] compared the
performances of correlated tests, one of which
was a discrete test and the rest continuous tests
based on sensitivities at a fixed specificity that
corresponds to a natural threshold of the discrete
test. An approximation procedure was
developed by Hanley and McNeil [30] using
Pearson correlation coefficients to estimate the
correlation of the two full areas. Wieand et al.
[31] proposed a family of nonparametric
comparisons based on a weighted average of
Sensitivities, in which both the area under the
ROC curve and the sensitivity at any given
specificity became special cases. Venkatraman
and Begg [32, 33] compared two diagnostic tests
using a statistical permutation test. A likelihood
ratio test for testing the equivalence of correlated
ROC curves by discretizing the continuous
measurement scales was developed by Metz et
al. [34]. The authors applied standard methods
for fitting parametric bivariate binormal ROC
curves to ordinal data by discretizing the
continuous bivariate test data under many
categories. Emil et al. [35,36] developed
nonparametric methods for comparing the
sensitivities at a given specificity or the average
of sensitivities over a range of specificity-values
using repeated diagnostic markers. Furthermore,



generalized estimating equations (GEE)
framework for repeated ordinal categorical
diagnostic data was developed by Toledano and
Gatsonis [37-39] using multiplicative ordinal
regression models. Finally, regression analysis
approaches under generalized linear models
(GLM) methods for binary gold standard data
were proposed by Pepe [24-26].

Verification Bias and Imperfect Gold
Standard Bias

To provide an unbiased estimator for the test’s
accuracy, we need to determine the disease
status for each patient (present or absent)
independent of the patient's test result. The
procedure that establishes the patient's disease
status is referred to as a gold standard. The gold
standard could be based on surgery, autopsy, or
clinical assessments. Two major problems
relating to the gold standard are: (1) verification
bias, and (2) imperfect gold standard bias.
Verification bias occurs when only some of the
patients with test results received the gold
standard and the decision to verify a patient
depends on the patient’s test results. The bias
caused by estimating the test’s accuracy for
those with only verified disease status is called
the verification bias [40]. Imperfect gold
standard bias occurs when an imperfect standard
is used in the place of the gold standard in
estimation of the test’s accuracy.

Parametric adjustment methods for verification
bias have been proposed, for example, by
assuming that the verification process depends
only on the diagnostic test results [40-42].
Alternatively, Zhou [43] focused on the positive
and negative predictive values. A nonparametric
unbiased estimate of the trapezoidal AUC was
by Zhou [44]. Toledano and Gatsonis [39]
developed an ordinal regression approach for
estimating multiple correlated ROC curves using
the GEE methodology when a key covariate is
missing. Rodenberg and Zhou [45] used an EM
algorithm for adjustment of ROC curve when
covariates affect the verification process.

Additional Resources

Designing an ROC Study. A review article on
sample size calculations in ROC studies was by
Obuchowski [46]. Sample size tables can be

found in Obuchowski and McClish [47] and in
Obuchowski [48].

Recent Review Articles. There were 91 review
articles found by using Medline as a search
engine with the key phrase “ROC curve.” For
example, see Shapiro [49] for an overview of the
ROC analysis, Beam [50] for the presence of
clustered data, Zhou [51] for correction of
verification bias, Hui and Zhou [54] for
correction of imperfect gold standard bias, and
Raockett et al [52] for ROC in meta-analysis.
Software Programs. For general analytical or
sample size calculation purposes, free Fortran
software programs are downloadable from the
WWW address, http://www-
radiology.uchicago.edu/krl/ toppagell.htm, of
Metz and colleagues of the University of
Chicago.
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ASA 2001 Joint Statistical Meetings
By Jacqueline M. Hughes-Oliver, Publications
Officer

Start planning your schedule for the 2001 Joint
Statistical Meetings, and make sure to include
slots for the Section of Statistics in
Epidemiology's four Invited Sessions. SIE's
2001 Program Chair, Xiao-Hua (Andrew) Zhou,
has organized an exciting slate of activities.

The Invited Session ““Correlated errors, Biased
Instruments, and Measurement Error Correction
in Nutritional Epidemiology" is organized by
Donna Spiegelman (SIE 2001 Section Chair) to
highlight new research results when the original
error-prone measurement is validated by one or
more additional instruments, some of which may
be biased, have correlated systematic within-
person errors, and have correlated random
errors. Ross Prentice, from Fred Hutchinson
Cancer Research Center, will talk about
biomarkers and self-report data in the context of
nutrient consumption and chronic disease
associations. Raymond Carroll, from Texas
A&M University, will discuss new measurement
error models and the power of food frequency
questionnaires. Donna Spiegelman, from
Harvard School of Public Health, will present
competing models for correlated data in dietary
validation studies. The discussant for this
session is Rudolph Kaaks, from the International
Agency on Research on Cancer in Lyons,
France.

Organized by Xiao-Hua (Andrew) Zhou, the
Invited Session ““Methods for Assessing Quality
and Costs of Health Care" will highlight new
developments in assessing quality and costs of
our national health care. Steven Cohen, from
the Agency for Healthcare Research and
Quality, will discuss design and estimation
innovation in the Medical Expenditure Panel
Survey. S.L.. Normand, from Harvard Medical
School, will talk about design and analysis of
health care quality studies, particularly for
assessing chronic cardiovascular care in the U.S.
Wanzhu Tu, from Indiana University, will
present bootstrap multiple comparison methods
for analysis of cost data. Xiao-Hua Zhou, from

Indiana University, will be the discussant for
this session.

Olivia Carter-Pokras, from Centers for Disease
Control, has organized a panel titled " Improving
Data on  Racial/Ethnic  Groups," with
distinguished panelists Raynard Kingston from
Centers for Disease Control, Rose Maria Li from
the National Institute on Aging, David Williams
from University of Michigan, and Beatrice
Rouse from SAMHSA. This invited panel
session  will examine wuseful ways of
incorporating communities, especially racial and
ethnic groups, into the research process to
improve data on racial and ethnic groups.
Panelists will describe success stories involving
the communities studied, including the informed
consent process, recruitment of individuals into
a study, data collection, analysis, interpretation,
and dissemination of findings back to the
community.

The Invited Session ““Myths, Lies and Statistics"
will have a panel of four outstanding speakers to
discuss several areas where there is often
misunderstanding, including behavioral risk
factors and substance use, testing and
intelligence, and health insurance coverage
versus health care and wealth distribution. This
panel is organized by Gladys Reynolds of the
Centers for Disease Control and contains
panelists Jeff Cronhite from The National
Institute of Standards and Technology, Gladys
Reynolds, Juarlyn Gaiter from the Centers for
Disease Control and Prevention, and Robert
Robinson from the Centers for Disease Control
and Prevention.



Statistics in Epidemiology Section Sponsored Activities in Atlanta:

Multiple Imputation for Missing Data Continuing ~ |Sunday, August 5"
Education 8:00 AM to 4:00 PM
Myths, Lies and Statistics Invited Sunday, August 5"
Panel 2:00 PM to 3:50 PM
Survival Analysis in Epidemiological Contributed ~ |Sunday, August 5"
Studies Papers 2:00 PM to 3:50 PM
Methods for Met-Analysis and Disease | Contributed  |Monday, August 6"
Mapping Papers 8:30 AM to 10:20 AM

Correlated Errors, Biased Instruments and |Invited Monday, August 6"
Measurement Error Correction in Papers 10:30 AM to 12:20 PM
Nutritional Epidemiology
Bayesian Methods in Medical Studies Contributed |08/06/2001
Papers 2:00 PM to 3:50 PM
Improving Data on Racial/Ethnic Groups | Invited Tuesday, August 7"
Panel 8:30 AM to 10:20 AM
Statistical Issues in Medical Device Topic Tuesday, August 7"
Clinical Studies Contributed [8:30 AM to 10:20 AM
Papers
Estimating the Accuracy of Screening Contributed |Tuesday, August 7"
Tests and Prevalence Rates Papers 8:30 AM to 10:20 AM
Methods for Assessing Quality and Costs |Invited Wednesday, August 8"
of Health Care Papers 8:30 AM to 10:20 AM
Analysis of Nhanes and Other Large Topic Wednesday, August 8"
Epidemiologic Studies Contributed |8:30 AM to 10:20 PM
Papers
Estimating Treatment Effects in Contributed |Wednesday, August 8"
Observational Studies Papers 2:00 PM to 3:50 PM
Section on Statistics in Epidemiology |Committee / |Wednesday, August 8"
Members Meeting Business 5:30 PM to 7:00 PM
Methods for Missing Data and Logistic Contributed |Thursday, August 9"
Regression Papers 8:30 AM to 10:20 AM




2001 Section Officers

Section Chair:

Donna Spiegelman
(stdls@channing.harvard.edu)
Harvard School of Public Health

Section Chair Elect:
Raymond Hoffmann

(hoffmann @mcw.edu)
Medical College of Wisconsin

Past Section Chair:

Deborah Dawson

(dvd2 @po.cwru.edu)

Case Western Reserve University

Program Chair:

Xiao Hua (Andrew) Zhou
(azhou @iupui.edu)

Indiana University School of
Medicine

Statistics in Epidemiology Newsletter
Raymond Hoffmann, Editor
c¢/o American Statistical Association

1429 Duke Street

Alexandria, VA 22314-3415

Program Chair Elect:
Kung-Jong Lui
(kjl@rohan.sdsu.edu)

San Diego State University

Secretary/Treasurer:
Maya R. Sternberg

(mrs7 @cdc.gov)

Center for Disease Control

Publications Officer:
Jacqueline M. Hughes-Oliver
(hughesol @stat.ncsu.edu)
North Carolina State University

Section Representatives:
Ralph d’Agostino, Jr.
(rdagosti @wfubmc.edu)
Wake Forrest University

Alula Hadgu
(axhl@cdc.gov)

Center for Disease Control

Web Page Editor:

Ed Frome

(FromeEL @ornl.gov)

Oak Ridge National Laboratory

Newsletter Editors:
Raymond Hoffmann

(hoffmann @mcw.edu)
Medical College of Wisconsin

Deborah Dawson
(dvd2 @po.cwru.edu)
Case Western Reserve University

Assistant Editor:
Paul Hoffmann
Marquette University

Non-Profit Org.
U.S. Postage
Pald
Alexandria, Virginia
Permit No. 351




