
ORNL is managed by UT-Battelle

for the US Department of Energy

Managing the Memory
Hierarchy

Jeffrey S. Vetter

Sparsh Mittal, Joel Denny,
Seyong Lee

http://ft.ornl.gov vetter@computer.org

Presented to

SOS20

Asheville

24 Mar 2016

http://ft.ornl.gov/
mailto:vetter@computer.org

2

Exascale architecture targets circa 2009
2009 Exascale Challenges Workshop in San Diego

System attributes 2009 “Pre-Exascale” “Exascale”

System peak 2 PF 100-200 PF/s 1 Exaflop/s

Power 6 MW 15 MW 20 MW

System memory 0.3 PB 5 PB 32–64 PB

Storage 15 PB 150 PB 500 PB

Node performance 125 GF 0.5 TF 7 TF 1 TF 10 TF

Node memory BW 25 GB/s 0.1 TB/s 1 TB/s 0.4 TB/s 4 TB/s

Node concurrency 12 O(100) O(1,000) O(1,000) O(10,000)

System size (nodes) 18,700 500,000 50,000 1,000,000 100,000

Node interconnect BW 1.5 GB/s 150 GB/s 1 TB/s 250 GB/s 2 TB/s

IO Bandwidth 0.2 TB/s 10 TB/s 30-60 TB/s

MTTI day O(1 day) O(0.1 day)

Attendees envisioned two possible architectural swim lanes:

1. Homogeneous many-core thin-node system

2. Heterogeneous (accelerator + CPU) fat-node system

3

• Multimode memories
– Fused, shared memory

– Scratchpads

– Write through, write back, etc

– Virtual v. Physical, paging strategies

– Consistency and coherence protocols

• 2.5D, 3D Stacking

• HMC, HBM/2/3, LPDDR4, GDDR5,

WIDEIO2, etc

• New devices (ReRAM, PCRAM, Xpoint)

Memory Systems

http://gigglehd.com/zbxe/files/attach/images/1404665/988/406/011/788d3ba1967e2db3817d259d2e83c88e_1.jpg

https://www.micron.com/~/media/track-2-images/content-images/content_image_hmc.jpg?la=en

H.S.P. Wong, H.Y. Lee, S. Yu et al., “Metal-oxide RRAM,” Proceedings of the IEEE, 100(6):1951-70, 2012.

J.S. Vetter and S. Mittal, “Opportunities for Nonvolatile Memory Systems in Extreme-Scale High Performance

Computing,” CiSE, 17(2):73-82, 2015.

http://gigglehd.com/zbxe/files/attach/images/1404665/988/406/011/788d3ba1967e2db3817d259d2e83c88e_1.jpg
https://www.micron.com/~/media/track-2-images/content-images/content_image_hmc.jpg?la=en

4

Current ASCR Computing At a Glance

System attributes
NERSC

Now

OLCF

Now

ALCF

Now
NERSC Upgrade OLCF Upgrade ALCF Upgrades

Planned Installation Edison TITAN MIRA
Cori

2016

Summit

2017-2018

Theta

2016

Aurora

2018-2019

System peak (PF) 2.6 27 10 > 30 150 >8.5 180

Peak Power (MW) 2 9 4.8 < 3.7 10 1.7 13

Total system memory 357 TB 710TB 768TB

~1 PB DDR4 + High

Bandwidth Memory

(HBM)+1.5PB

persistent memory

> 1.74 PB DDR4 +

HBM + 2.8 PB

persistent memory

>480 TB DDR4 +

High Bandwidth

Memory (HBM)

> 7 PB High Bandwidth

On-Package Memory

Local Memory and

Persistent Memory

Node performance (TF) 0.460 1.452 0.204 > 3 > 40 > 3 > 17 times Mira

Node processors
Intel Ivy

Bridge

AMD

Opteron

Nvidia

Kepler

64-bit

PowerPC

A2

Intel Knights Landing

many core CPUs

Intel Haswell CPU in

data partition

Multiple IBM

Power9 CPUs &

multiple Nvidia

Voltas GPUS

Intel Knights Landing

Xeon Phi many core

CPUs

Knights Hill Xeon Phi

many core CPUs

System size (nodes)
5,600

nodes

18,688

nodes
49,152

9,300 nodes

1,900 nodes in data

partition

~3,500 nodes >2,500 nodes >50,000 nodes

System Interconnect Aries Gemini 5D Torus Aries
Dual Rail

EDR-IB
Aries

2nd Generation Intel

Omni-Path Architecture

File System

7.6 PB

168 GB/s,

Lustre®

32 PB

1 TB/s,

Lustre®

26 PB

300 GB/s

GPFS™

28 PB

744 GB/s

Lustre®

120 PB

1 TB/s

GPFS™

10PB, 210 GB/s

Lustre initial

150 PB

1 TB/s

Lustre®

Complexity α T

Steve Binkley, Dec 2015

5

Notional Future Architecture

Interconnection

Network

SAN
Storage

6

GPU Users: we don’t want no stinking ECC!

R.C. Walker and R.M. Betz, “An investigation of the effects of error correcting code on GPU-accelerated molecular dynamics simulations,” Proc. Conference on

Extreme Science and Engineering Discovery Environment: Gateway to Discovery, 2013, pp. 8,

7

Blackcomb: Hardware-Software Co-design for Non-
Volatile Memory in Exascale Systems (since 2010)

 Rearchitect servers and clusters, using nonvolatile
memory (NVM) to overcome resilience, energy,
and performance walls in exascale computing:

 Ultrafast checkpointing to nearby NVM

 Redesign the memory hierarchy for exascale, using new
memory technologies

 Replace disk with fast, low-power NVM

 Enhance resilience and energy efficiency

 Provide added memory capacity

ApproachObjectives

Jeffrey Vetter, ORNL

Robert Schreiber, HP Labs

Trevor Mudge, University of Michigan

Yuan Xie, Penn State University

FWP #ERKJU59

 Identify and evaluate the most promising (NVM)
technologies – STT, PCRAM, memristor.

 Explore assembly of NVM and CMOS into a storage +
memory stack.

 Propose an exascale HPC system architecture that builds
on our new memory architecture.

 New resilience strategies in software.

 Test and simulate, driven by proxy applications.

http://ft.ornl.gov/trac/blackcomb

• A comprehensive tool which models both 2D and 3D caches
designed with five prominent memory technologies: SRAM,
eDRAM, PCM, STT-RAM and ReRAM

• Covers both conventional and emerging memory technologies

• Models 22nm to 180nm and facilitates design-space exploration

NVSim, Destiny

 Familiar and portable programming interfaces

 Provide checks for correctness and efficiency

 Understand application requirements

NVL-C

Matthew Poremba, Sparsh Mittal, Dong Li, Jeffrey S Vetter and Yuan Xie, "DESTINY: A Tool for Modeling

Emerging 3D NVM and eDRAM caches", Design Automation and Test in Europe (DATE), 2015.

#include <nvl.h>

struct list {

int value;

nvl struct list *next;

};

void remove(int k) {

nvl_heap_t *heap

= nvl_open("foo.nvl");

nvl struct list *a

= nvl_get_root(heap, struct list);

#pragma nvl atomic

while (a->next != NULL) {

if (a->next->value == k)

a->next = a->next->next;

else

a = a->next;

}

nvl_close(heap);

}

http://ft.ornl.gov/trac/blackcomb

8

NVRAM Technology Continues to Improve –
Driven by Market Forces

http://www.eetasia.com/STATIC/ARTICLE_IMAGES/201212/EEOL_2012DEC28_STOR_MFG_NT_01.jpg

http://www.eetasia.com/STATIC/ARTICLE_IMAGES/201212/EEOL_2012DEC28_STOR_MFG_NT_01.jpg

9

Comparison of Emerging Memory Technologies

Jeffrey Vetter, ORNL

Robert Schreiber, HP Labs

Trevor Mudge, University of Michigan

Yuan Xie, Penn State University

SRAM DRAM eDRAM 2D

NAND

Flash

3D

NAND

Flash

PCRAM STTRAM 2D

ReRAM

3D

ReRAM

Data Retention N N N Y Y Y Y Y Y

Cell Size (F2) 50-200 4-6 19-26 2-5 <1 4-10 8-40 4 <1

Minimum F demonstrated

(nm)

14 25 22 16 64 20 28 27 24

Read Time (ns) < 1 30 5 104 104 10-50 3-10 10-50 10-50

Write Time (ns) < 1 50 5 105 105 100-300 3-10 10-50 10-50

Number of Rewrites 1016 1016 1016 104-105 104-105 108-1010 1015 108-1012 108-1012

Read Power Low Low Low High High Low Medium Medium Medium

Write Power Low Low Low High High High Medium Medium Medium

Power (other than R/W) Leakage Refresh Refresh None None None None Sneak Sneak

Maturity

http://ft.ornl.gov/trac/blackcomb

Intel/Micron Xpoint?

http://ft.ornl.gov/trac/blackcomb

10

Caches

Main Memory

I/O Device

HDD

• Newer technologies improve

– density,

– power usage,

– durability

– r/w performance

• In scalable systems, a variety
of architectures exist

– NVM in the SAN

– NVM nodes in system

– NVM in each node

As NVM improves, it is working its way toward
the processor core

11

Opportunities for NVM in Emerging Systems

• Burst Buffers, C/R

• In-mem
tables

• In situ visualization

J.S. Vetter and S. Mittal, “Opportunities for Nonvolatile Memory Systems in Extreme-Scale High-Performance Computing,”

Computing in Science & Engineering, 17(2):73-82, 2015, doi:10.1109/MCSE.2015.4.

http://ft.ornl.gov/eavl

[Liu, et al., MSST 2012]

http://ft.ornl.gov/eavl

Programming NVM
Systems

13

• Active area of research

– See survey

• Architectures will vary dramatically

– How should we design the node?

– Portable across various NVM architectures

• Performance for HPC scenarios

– Allow user or compiler/runtime/os to
exploit NVM

– Asymmetric R/W

– Remote/Local

• Security

• Assume lower power costs under normal
usage

• Correctness and durability

– Enhanced ECC for NVM devices

– A crash or erroneous program could
corrupt the NVM data structures

– Programming system needs to provide
support for this model

• ACID

– Atomicity: A transaction is “all or nothing”

– Consistency: Takes data from one consistent
state to another

– Isolation: Concurrent transactions appears
to be one after another

– Durability: Changes to data will remain
across system boots

Design Goals for NVM Programming Design

10.1109/TPDS.2015.2442980

MPI and OpenMP do not solve this problem.

14

NVL-C: Portable Programming for NVMM

– Minimal, familiar, programming interface:

– Minimal C language extensions.

– App can still use DRAM.

– Pointer safety:

– Persistence creates new categories of

pointer bugs.

– Best to enforce pointer safety constraints at

compile time rather than run time.

– Transactions:

– Prevent corruption of persistent memory in

case of application or system failure.

– Language extensions enable:

– Compile-time safety constraints.

– NVM-related compiler analyses and

optimizations.

– LLVM-based:

– Core of compiler can be reused for other

front ends and languages.

– Can take advantage of LLVM ecosystem.

#include <nvl.h>

struct list {

int value;

nvl struct list *next;

};

void remove(int k) {

nvl_heap_t *heap

= nvl_open("foo.nvl");

nvl struct list *a

= nvl_get_root(heap, struct list);

#pragma nvl atomic

while (a->next != NULL) {

if (a->next->value == k)

a->next = a->next->next;

else

a = a->next;

}

nvl_close(heap);

}

J. Denny, S. Lee, and J.S. Vetter, “NVL-C: Static Analysis Techniques for Efficient, Correct Programming of Non-Volatile

Main Memory Systems,” in ACM High Performance Distributed Computing (HPDC). Kyoto: ACM, 2016

15

Target Executable

NVL-C: Reliable Programming for NVM

– NVL-C is a novel NVM programming
system that extends C.

– Currently supports multiple
namespaces, dynamic allocations,
and transactions.

– Critical compiler components are
implemented as reusable LLVM
extensions.

– Future work:

– NVL-Fortran, NVL-C++, etc.

– Target other persistent memory
libraries.

– Contribute components to LLVM
project.

Target Objects

...

ARES HLIR

LLVM IR +
Metadata, Intrinsics,

Run-time calls

OpenARC Other Compiler

Front Ends

ARES LLVM

Passes

LLVM

NVL-C
Other NVL

Languages

libnvlrt-pmemobj

libpmemobj

NVL Runtime

system

linker

16

• Applications extended with NVL-C

• Compiled with NVL-C

• Executed on Fusion ioScale

• Compared to DRAM

• Various levels of optimization

Preliminary Results

LULESH XSBENCH

A Word on ECC

Mixed Mode Memories Require User Control

• ABFT algorithms guard important data structures in no-ecc area

• Normal/extended ECC guards critical data structures

• Potential power, performance, cost improvement with different
memories

• User places data in appropriate location

fa
u

lt
 s

it
e

lo
c
a
ti

o
n

interrupt to OS

OS

Application+ABFT

address mapping

scheme

D. Li, C. Zizhong, W. Panruo, and J.S. Vetter, “Rethinking Algorithm-Based Fault Tolerance with a Cooperative Software-Hardware Approach,”

Proc. ACM/IEEE SC13: International Conference for High Performance Computing, Networking, Storage and Analysis, 2013,

19

Overall Observations and Implications

• “Exciting” times in computer architecture
– Heterogeneous cores

– Multimode memory systems

– Fused memory systems

– I/O architectures

– Error correction

– Changing system balance

• Uncertainty, Ambiguity
– How do we design future systems so that they are faster than current

systems on mission applications?
• Entirely possible that the new system will be slower than the old system!

– How do we provide some level of performance portability for
applications teams?

– How do we understand reliability and performance problems?

• Managing complexity is our main challenge!

20

Session Questions

• - What’s the role of the OS and runtime system(s) in managing the memory

hierarchy?

• - What application interfaces are needed to help manage the memory hierarchy?

• - What level of detail should the OS expose about the memory hierarchy?

• - To what level of the software stack should the OS expose details of the memory

hierarchy?

• - What memory management functions should the runtime system contain?

• - How flexible or adaptable do memory management policies need to be?

21

• Contributors and Sponsors

– Future Technologies Group:
http://ft.ornl.gov

– US Department of Energy Office of Science

• DOE Vancouver Project:
https://ft.ornl.gov/trac/vancouver

• DOE Blackcomb Project:
https://ft.ornl.gov/trac/blackcomb

• DOE ExMatEx Codesign Center:
http://codesign.lanl.gov

• DOE Cesar Codesign Center:
http://cesar.mcs.anl.gov/

• DOE Exascale Efforts:
http://science.energy.gov/ascr/research/co
mputer-science/

– Scalable Heterogeneous Computing
Benchmark team: http://bit.ly/shocmarx

– US National Science Foundation Keeneland
Project: http://keeneland.gatech.edu

– US DARPA

– NVIDIA CUDA Center of Excellence

Acknowledgements

http://ft.ornl.gov/
https://ft.ornl.gov/trac/vancouver
https://ft.ornl.gov/trac/blackcomb
http://codesign.lanl.gov/
http://cesar.mcs.anl.gov/
http://science.energy.gov/ascr/research/computer-science/
http://bit.ly/shocmarx
http://keeneland.gatech.edu/

