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• ECL 5/4 NAND 
gate ICs (95%)

• 75K gates.  (3400 PCBs!)
• RISC design
• Vector ISA
• Memory latency 11 clocks

Cray 1, 1976 Intel Pentium, 1993

• CMOS VLSI IC
• 3M transistors
• CISC design
• Scalar ISA
• Deep pipelines, 

complex predictions 

Intel Pentium 4 Cedar Mill, 2006

• 184M transistors!
• Very CISC design
• 31-stage pipeline
• 3.6 GHz in 65nm
• Last of its breed….
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Technology Drives Architecture
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And then Dennard scaling ended…
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Power constrained

Communication much more expensive than Computation
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New Processor Landscape
Driven by power efficiency

GPU computing (Nvidia Kepler)
Large # of much simpler processors

Vector Computing (Intel Xeon Phi)
Parallelism with low complexity & control overhead
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Multicore
Stop making it worse



C O M P U T E      |      S T O R E      |      A N A L Y Z E

On-Package Memory Can Restore Balance
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● Standard DDR memory BW has not 
kept pace with CPUs

● Expect processors to adopt stacked, 
on-package memory

● HBM:
● 10x higher BW, 10x less energy/bit
● Much lower latency
● Costs ~2x DDR4 per bit
● JDEC standard with multiple sources
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May drive us to smaller, simpler nodes that 
are balanced with on-package memory
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Deeper Memory and Storage Hierarchy
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Cold storage 
moving to disk

Primary storage 
moving to Flash

New technologies coming
to bridge memory-Flash gap

PCM ReRAM STT-MRAM3D Xpoint

Node memory 
moving on package

Storage only?
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Storage Will Scale
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● APEX requirement: Time to checkpoint 80% memory < (0.005)*JMTTI
● Extrapolate to Exascale sytem:
● Assume saving 80% of 32 PB of memory and a JMTTI of 10 hours
⇒ requires checkpoint bandwidth of ~150 TB/s   (doable with distributed Flash)

● Primary resiliency issue is dealing with undetected errors…

● Storage latencies dropping faster than compute increasing
● Flash O(100) faster than  disk
● NVRAM is O(100) faster than Flash

● But there’s lots of work to do on storage architecture..
● Reducing software overheads for Flash and NVRAM timescale
● Metadata scaling and resiliency (relax Posix consistency?)
● Namespace flexibility
● Support for non-POSIX file systems (KVS, NoSQL, Spark RDDs, etc.)
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Cost- and Power-Efficient Networks

● Cray pioneered the use of high radix routers in HPC
● Became optimal due to technology shift

● Faster signaling permits narrower links
● Reduced network diameter (number of hops)
⇒ Lower latency and cost

● But… higher radix network require longer cable lengths

First 64 port router
Cray X2 (2005)
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● Optics enables longer cable lengths
● Now cost-effective above a few meters (and dropping)
● Cost, bandwidth and power are insensitive to cable length

● Future systems will based on hybrid, electrical-optical networks
● Cost-effective, scalable global bandwidth
● Very low network diameter (small number of hops) ⇒ very energy efficient
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Example Dragonfly Network with a 64-port Switch
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● Scales to 279K endpoints, with a network diameter of 3 hops!
● Only a single hop over a long (optical) link
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● Narrow links allow sliced network for configurable bandwidth
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Next-Gen Shasta System Infrastructure

Copyright 2016 Cray Inc. 10

● Single system with choice of:
● Cabinet type and cooling infrastructure
● Processor type
● Software stack
● Interconnect

● Extensible to Exascale and Beyond
● Power & cooling headroom
● Network and processor configurability

Group	0 Group	1 Group	2 Group	3 Group	4 Group	5 Group	6 Group	7

Flexible	compute High	density	compute
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Summary of Future Machines
● Computers are not getting faster…

● Vertical locality much more important than horizontal locality

just wider

Dimension Latency Hit Bandwidth Hit Energy Hit
Within node ~200x ~200x > 500x

* If include local NVM, within node grows, across nodes shrinks

● Parallelism is multi-dimensional (and heterogeneous?)
● Vectorization + threading + multi-node
● Processors optimized for serial performance or power efficiency  (not both)

● O(EF) with O(GHz) clocks à O(B) way parallelism!

● Interconnects won’t look that different than today
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Across nodes ~25x ~8x ~5x
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Implications for Programmers

● May need to move to more threading on the node
● All-MPI often won’t deliver maximum performance

● Must vectorize low-level loops
● 8-30x performance improvement on array operations

● Must avoid serial scalar code
● Inherently slower and less power-efficient
● On “accelerated” nodes, either

● creates traffic between accelerator and host, or
● runs 3-4x slower than on a serial-optimized core

● Must pay a lot more attention to locality within node
● Think about data placement and movement
● Consider “sub-optimal” algorithms that limit data motion
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Would like to code for future machines in a 
portable way

● Spatial and Temporal Portability

● Separation of labor
● Programmer exposes parallelism and locality
● Compiler, tools, and runtime map onto specific hardware
● Optimized libraries for various platforms

Future
processors
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● Future HPC Programming Model: MPI + OpenMP

● Can we make this easier?
● Threading, vectorization, data placement

● Recent poll at NERSC found 80% of apps use single level of parallelism

● Why & when to convert to hybrid programming model?
● When code becomes network bound
● Load balancing and synchronization overheads become large
● Excessive memory used by straight MPI
● To take advantage of hybrid compute nodes

● Programming tools are going to be critical
● Exposing parallelism (especially higher in call chain)
● Data placement and movement in the memory hierarchy

Bold Prediction:
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Beyond Classic HPC
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Merging of HPC and Data Analytics
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Urika-GD
Graph 

analytics Urika-XA
BDAS 

(Hadoop, Spark)
NoSQL

“Athena”
BDAS + 

Graph analytics + 
HPC

Aries ntwk & CGE

HPC + Analytics workflows

Why combine HPC and Analytics solutions in a single box?

HPC underneath the covers
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Thank You

Questions?
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