/ff"
\\W JWISCONSIN

OPPORTUNITIES FOR
SOFTWARE MINING
AND ANALYTICS IN

FUTURE HPC
SOFTWARE
DEVELOPMENT

Vivek Sarkar
Rice University

SOS20 Workshop, 03/16

Challenges for Exascale & Extreme Scale Systems

= Characteristics of Extreme Scale systems in the next decade

= Massively multi-core (~ 100’s of cores/chip)
= Performance driven by parallelism, constrained by energy & data movement

= Subject to frequent faults and failures
= Many Classes of Extreme Scale Systems

dand>0Id

©

Mobile, < 10 Watts, Terascale Embedded, Petascale Departmental, Exascale Data Center
0(107) concurrency 100’s of Watts, 100’s of KW, > 1MW,
0(10°) concurrency 0(10%) concurrency O(10°) concurrency

Key Challenges
= Concurrency
= Energy efficiency References:
= Locality - DARPA Exascale Study, 2008 \
-‘ RICE = Resiliency 9 » DARPA Exascale Software study, 2009 ﬁ

)
b5

Rice Habanero Extreme Scale Software Project

-

Parallel Applications

I

Unified execution model with
semantic guarantees:

1) Lightweight asynchronous tasks and
data transfers

= Creation: async tasks, future tasks,
data-driven tasks

= Termination: finish, future get, await
= Data Transfers: asyncPut, asyncGet

2) Locality control for task and data
distribution

= Computation and Data Distributions:
hierarchical places, global name space

3) Inter-task synchronization operations
= Mutual exclusion: isolated, actors

= Collective and point-to-point
operations: phasers, accumulators

Habanero
Programming
Languages
(built on C/C++)

Habanero Compiler
& PIR

(Built on LLVM)

Habanero Runtime
System
(Built on MPI,

GASNet, OCR,
OpenSHMEM)

Two-level programming model
Data Flow Graph Language for
Domain Experts
+
Task-Parallel Languages & Libraries
for Parallelism-aware Developers:
HC-MPI, Heterogeneous HC,
OpenMP 4.5, Habanero-C++,
Habanero-UPC++, Asynchronous
OpenSHMEM, ...

Mainstream
Parallelism-Oblivious

(doe) Developers

Parallelism-Aware
Developers

(Stephanie)

Extreme Scale Platforms

(Doug) v
Con

ency Experts

3

http://habanero.rice.edu

Automatic data layout optimization using the TALC tool

User Inputs Source Program
Safety/Error
Checks
_ Automatic y
- F _'f‘?'d _ - Layout Data Layout
pecification Generator Transformation
Machine Profiled Loop Layout C;ptimized

Characteristics

Counts

Source Program

Runtime

Vendor Compiler

#pragma omp parallel for private(jj,ii,i)
for (kk = kmin; kk < kmax; kk++) {
for (jj = jmin; jj < jmax; jj++) {

for (ii = imin; ii < imax; ii++) {

i=ii+jj*jp+kk* kp;

b[i] = dbl[i] * xdbl[i] +dbcl[i] * xdbc[i] + dbr[i] * xdbr[i] +
dcl[i] * xdcl[i] + dcc[i] * xdcc][i] + der[i] * xder[i] +
dflfi] * xdfl[i] + dfc[i] * xdfc[i] + dfr[i] * xdfr[i] +

cbl[i] * xcbl[i] + cbc][i] * xcbc[i] + cbrl[i] * xcbr[i] +
ccl[i] * xccl[i] + ccc[i] * xccc[i] + cerli] * xcer[i] +
cfl[i] * xcfl[i] + cfc[i] * xcfc[i] + cfr[i] * xcfr[i] +

Library Patgam ubl[i] * xubl[i] + ubc[i] * xubcli] + ubr{i] * xubr[i] +
Y ucl[i] * xucl[i] + ucc[i] * xucc][i] + ucr[i] * xucr[i] +
Executable uflfi] * xufl[i] + ufc[i] * xufc[i] + ufr[i] * xufrfi] ;
Program }
IRSmk performance relative to default 27x1 layout (bigger is better) }}
Platform 27 x1 | 9x3 | 3x9 | 1x27
IBM POWERY7 1.00 4.66 4.66 4.71
AMD APU 1.00 1.26 1.38 1.40
Intel Sandybridge 1.00 1.06 1.10 1.10
- IBM BG/Q 1.00 1.65 2.14 2.20

“Data Layout Optimization for Portable Performance.” K. Sharma, |. Karlin, J. Keasler, J. McGraw, V.Sarkar, EuroPar

Ty

Data Layout Transformations are important for GPUs too ...

w
o
o

27.1 AOS SOAOS

Q. 25.0
=
b5
o] 20.0
&
v 150 12.0
=
% 10.0 ey 74 -
e 5o 4.3 3.4 4.0 3.6 4.2

0.0

AMD CPU INTEL CPU AMD GPU INTEL GPU NVIDIA GPU
Speedup Relative to default SoA Layout

» CPUs benefit from spatial locality » GPUs benefit from coalescing

— AoS (Array of Structures) —S0A (Structure of Arrays)

“Automatic Data Layout Generation and Kernel Mapping for CPU+GPU Architectures”. Deepak Majeti, Kuldeep Meel, Raj
Barik and Vivek Sarkar. 25th International Conference on Compiler Construction (CC 2016), March 2016.

Common LLVM-based Communication Optimization
Framework for Multiple Languages

Chapel-
Chapel
Programs * LLVM
_ frontend
UPC++ UPCi+-
Programs - LM) (VMR LLVM-based
_:{____- - f_ro_nt_en_d_ (use address) Communication L
L X10 | Y10-LLVM 1| space feature) Optimization Pass
i Program_s_‘ﬂ' frontend | ' Passes
Y W‘ CAF-LLVM , /4
i Programs ! frontend |
5 == Ly — = J

‘LLVM-based Communication Optimizations for PGAS Programs,” Akihiro Hayashi,

Jisheng Zhao, Michael Ferguson, Vivek Sarkar.
o

Performance improvement due to Communication

Optimization for Jacobi example in UPC++

® w/o Comm. Opt.
w/ Comm. Opt.

Integrating Inter-node Communication with Intra-node
Task Scheduling

00 o000
Inter-Node ...O ... B . Communication Workers
Intra-Node mediate between
. communication runtime and
Example: Communication Worker ,
R B node runtime
finish{ Insert new 1_—
. Communication Communication Task
async s1; Task Push MContinuation Status
MPI_Isend(..); Type
MPI_Irecv(.., &req); Continuation
async await(req) S2;
S3;
}
Steal
Continuations
Computation Computation 000 Computation
Worker Worker Worker

“Integrating Asynchronous Task Parallelism with MPI1.” Sanjay Chatterjee, Sagnak Tasirlar, Zoran Budimlic, Vincent
Cave, Milind Chabbi, Max Grossman, Yonghong Yan, Vivek Sarkar. IPDPS 2013.

Weak Scaling Result for Habanero-UPC++ version of
LULESH on NERSC Edison system

1e+06 : /
100000 -

10000 -

1000

Performance (FOM z/sec)

100 | | | |
1 8 64 216 512

HabaneroUPC++ Places

1 worker/place —*— 8 worker/place
—*— 4 worker/place —H— 12 worker/place

“HabaneroUPC++: A Compiler-free PGAS Library.” Vivek Kumar, Yili Zheng, Vincent Cave, Zoran Budimli¢, Vivek
Sarkar. PGAS 2014.

Open Community Runtimes (OCR) Building Blocks

= Data Blocks (DBs)

= contains semantically-meaningful metadata that runtime can use

= relocatable by runtime for power, reliability, ...

= accessed via globally unique ids (GUIDs)

= allows exploitation of heterogeneous memories (NUMA, scratchpads, ...)
= Event-driven tasks (EDTSs)

= Can be processes, threads, functions, codelets...

= An EDT can contain internal data parallelism

u8 ocrEdtCreate(ocrGuid_t * guid, ocrGuid_t templateGuid, u32 paramc, u64* paramv,
u32 depc, ocrGuid_t *depv, u16 properties, ocrGuid_t affinity, ocrGuid_t *outputEvent);

= Events (Dependences)
= specified explicitly as contingencies on which EDTs are initiated
= several types of dependences
= dependences are specified as GUIDs throughout the system

% RICE 10

L

Can we improve productivity by capturing “institutional

knowledae” related to performance portability?
Sources of
heterogeneity:
* Processors
* Memory
* Interconnect

Server Systems
Programmers
) spend significant
Desktop/Laptop gmountgof time
Processors Compiler tuning

* — performance for
PRICE Source Code different platforms

DARPA program on Mining and Understanding

Software Enclaves (MUSE)
]

1 Goal: Apply principles of Big Data Analytics to a
large corpus of Open-Source Software

- . anomalous expected
v : -

o L] Observations
. E ; W[M"' i —
Programs -y P
Open

Source Code, | - . Infera:nces
e Analytics .
+
Program Properties,
Behaviors, and Vulnerabilities

0 Core idea: treat programs (semantic objects extracted from programs) as data
1 Source:

http: / /www.darpa.mil /Our Work /120 /Programs/
Mining and Understanding Software Enclaves (MUSE).aspx

SH PLINY

Probability
Distribution
function

counf

\
7 ||
/

[
RI(:E GRAMMATECH | (%)}
O\ et/

Pliny Team

WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

Rice: Vivek Sarkar (Pl), Swarat Chaudhuri, Chris Jermaine (Faculty),
Michael Burke, Philippe Charles, Carlos Monroy, Kia Teymourian,
Jisheng Zhao (Research Scientists), Tiago Cogumbreiro, Hassan Eldib,
Vijayaraghavan Murali (Postdoctoral Researchers), John Feser, Yanxin
Lu, Afsaneh Rahbar, Rishi Surendran (PhD Students)

Grammatech: David Melski (VP of Research), Denis Gopan, Vineeth
Kashyap (Senior Scientists), Duc Nguyen, Anurag Singh (Software
Engineer)

UT Austin: Isil Dillig, Thomas Dillig (Faculty), Ruben Martins
(Postdoctoral Researcher), Yu Feng, Arati Kaushik, Yuepeng Wang,
Navid Yaghmazadeh (PhD Students)

UW Madison: Ben Liblit, Thomas Reps (Faculty), Jason Breck, David
Bingham Brown (PhD Students)

SH PLINY 13

The Pliny vision

qé Magic in
GO 5 9 the
= cloud! |

Developer

Goal: use the cloud to enable
order-of-magnitude * Debugging
improvements in developer * Repair |
productivity and software quality * Program Synthesis

SH PLINY 14

Using Big Code to Realize the Pliny Vision

T e

Developer

Interactive
mode

P

Pliny user interface

/ GitHub I

?

K IRVINE /

S PLINY

Batch mode

,

Code
corpora

Pliny Language
Framework

Pliny Reasoning
Framework
(Small Data +
Big Compute)

Pliny
Statistical
Database
(Big Data
_ + Big Compute)
\

Early Publicity on Wired.com

The $11M Tool That Could Help Computers Write
Their Own Code

BY KLINT FINLEY 11.07.14 | 6:30 AM | PERMALINK

Eishare 148 W Tweet (266| 3+1 04| [[IEY 81 Pinit

0 “... The PLINY team will begin by analyzing open source code from around the web,
drawing on code hosting services like GitHub and Sourceforge, along with various major
open source projects, such as those managed by the Apache Foundation. Eventually,
though, he envisions a corporate version that will index all of a company’s own
proprietary software projects. The team is also building a custom database system
specifically designed for the purpose of storing and analyzing code. The new database
will give them ways to structure and prioritize the code it indexes. This could help with
the code quality issue. Projects known for exceptionally good good could be prioritized,
or perhaps code written by specific people would be given preference. The end result
could be something that looks an awful like Google’s autocomplete—only more useful.”

01 Source: http://www.wired.com/2014/11 /darpa-pliny/

SH PLINY 16

The Pliny approach: Batch mode

73\

UNIVERSITY of

_ [RVINE

/

SH PLINY

Pliny Language
Framework

Features

Pliny Statistical
Framework

Learning from \

program abstractions
<]

17

The Pliny Statistical Framework
L

Large-scale machine learning on program features

* k-nearest neighbors
» Markov random fields
 HMMs and generalizations

SH PLINY

18

The Pliny approach: Interactive mode

- Statistical database
3\ (Inference on
V) rogram abstractions
oW S‘ﬂao c\‘\a\O%Q P g\))
(eal® 4x0\d°
AR

W
o0
> © % | Features
S O
Underspecified ?‘—f% Goals Reasoning framework
task ;'% <:> (Combinatorial search
£ | + Deduction)
oy, Y |
eveloper
P Feedback/
Interaction

SH PLINY

C
wor \® Query Guidance
Specifications
(features) . L
Algorithmic insights

19

The Pliny reasoning framework

]
Functional synthesis
problem Find a mathematical function that...
@ 1. ... satisfies a set of logical constraints
2. ...can be expressed in a syntactic
t _ space built from corpus components
AllayALEE Il 3. ...is optimal by a set of quantitative
framework o
criteria
@ Combinatorial search
+
Solution to Automated deduction

synthesis instance

SH PLINY

20

he Pliny Database and
Compute Engine (PDB)

. PDB

class Foo : publiec
PDBStoredDataType(. -
int a; PDBClient::addData()
int b;)

| éloud-bascd
cluster

}s

node 4 ‘f
,JI

OO
wied || |

class Bar : public
PDBStoredDataType({

int e; PDBClient: :addData /() Al f—
int d;) \

}s

Data Insertion _- —

PDBClient: :runQuery ()

QUCI‘ICS, claes MyQue;'y T publie
PDBQueryExecutor {

UpdateS’ operator +=;
Deletes 1) void aggregate ();

+ Flexible object model, no distinction between RAM/network/
secondary storage layout

SH PLINY 21

Example: Learning APl specifications

* Android: “Dialog boxes typically contain at least one button
Oor a message”

« POSIX: “Always read only from a file that has been opened”

Learn from sequences of calls,
and constraints among their arguments,
generated from real code

22

o> melen1 main() {
Call sequences |°° Parlp2] Feature .
i ith »?) '\~~~ = °° =~ . Extraction
(possibly with ?7?) foo[p1] bar[p2] | . 2?
""""""""""""""" bar()
Query }
Feature New program
Extraction

(possibly has ?7?)

foo[p1] bar[p2] Inference
== -- -- -- -- 1 Machine

foo[p3] bar[p2] > /l
L . Learning

-- foo[pl] -- | . ‘

v

Call sequences with —

property states Statistical models MREs Probability distribution
of call sequences for each sequence

with property states

Sampling

?? =foo, ..

iin foo[p1] <

Final Prediction/Bug report &

A

Learning API specifications

Corpus Programming | Number of | Lines of code| Size of
Language packages corpus

www.debian.org

C 3500 256 million 200 GB wiki.debian.org
deblan (preprocess) (source+ /Debtags
compiled)
I&Eﬁ?&ﬁf L sourcerer.ics.u
IRVINE Java 74,000 630 million 433 GB ci.edu
(source+jar)
Sourcerer
W Java 2500 N/A 2868 mem
cn=3015 (APK (APK only)

www.fdroid.org

bytecode)

24

Learning API specifications (Rice)

2 1l 46% Tl 3:33 pm

* Android Dialog box API
e 2500 packages, 75,000
sequences

* Training time: 6 hours on 3.2GHz
x 20 cores

* Finding Ul bugs in the wild

* Example: Google Play Store app
“List My Apps” (50k downloads,
4.3/5 stars) found to violate
Dialog box API spec

* Displayed dialog box without any
content to select

* Inference time: 5-10 secs

Pliny’s Open Architecture

PDB’s open
API can be

extractors
for different
languages
and differen
similarity
metrics

&H PLINY

used by .
different featum

PDB:
24/7 Pliny
Statistical
Database &
Analytics

Platform
(Bis Data +

D:n- \A"\ll-'-A\

mall Data + Big Compute)

amework

liny Reasoning

Pliny
= Reasoning
s Framework
can leverage a
_wide range
of languages,
= solvers, and

user
interfaces

PDB supports a wide range of user-programmable
analytics ranging from data mining to machine learning &g

Examples of Pliny’s Open Architecture

WALA |

[

Language-specific

javac \

Language-agnostic

Source

Language specnflc
feature extractor

Similarity Metrics

Code Fragments + Features

1
' H_l <elem, f1, f2, >J

Code

N

Clang/Clan

ces

LLVM IR .bc 1\

/ /
}tp Front End l}epresenttd using

Seque
Sets
Maps

LLVM '\,

Trees

SH PLINY

N\

Pliny Lightweight
C/C++ Parser

Jaccard " Min-cost |
. Index (Sets) | ‘ Mapping ’ Measure similarity between
. . e X Sequences
. = osine
‘., Edit Distance ‘ similarity ’ iﬂets
aps
“ Tree Edit ‘ ‘ ’ Trees
. Distance \)
Pliny .? . .
N Analytics (Queries)
Example
Similar Code Search
Query
C/C++
Results

_ C/C++ ‘J C/C++J C/C++ J ,

27

How can Similarity-Based Tools like Pliny Assist

Porting of Applications to Exascale Platforms?
]

Magic in
the
 cloud! |

~—

Developer

Pliny user interface

* Inputs: Program under
development, performance tests How to extend the following to

« Outputs: |dentification of similar ~ aid performance portability?
codes w/ transformations, * Debugging
selection of best transformations ¢ Repair

SH PLINY * Program Synthesis 28

Debugging, Repair, Synthesis for Performance

0 Debugging: identify program points that do not match
preferred transformations in code corpora (use profile
information to focus on program regions of interest)

0 Repair: identify local fixes to repair the performance
“bug$77

0 Synthesis: generate transformed versions of the program
by implementing transformations suggested by similar
codes in the corpus for similar platforms

Effectiveness of all of these techniques will depend on
availability of code corpora with some /most well-tuned
kernels/modules

SH PLINY

Other opportunities

0 Add performance information from LCF runs of different
codes

Give more weightage in similarity search to codes that are
executed more often?

0 Extend with use of natural language features from
StackOverflow-like forums in similarity search

0 Explore functionalities provided by past projects like
Klonos

e.g., classification of subroutines in CESM climate code

1 Leverage provenance information to tailor support for
different application domains and different platforms

D [] [] L]

S

S# PLINY

a7

Pliny Summary

0 We are building a new “big code” system from scratch
for extracting and storing code features, mining them
for information, and leveraging the mined data for
program synthesis, verification, debugging, and repair

1 We have completed multiple demonstrations of the
initial Pliny components working together

11 Our implementation is based on an open architecture,
and we look forward to exploiting this technology to
address performance tuning /portability challenges in a
new age of software development for HPCI

SH PLINY

31

