
http://www.aiida.net

Giovanni Pizzi 
Theory and Simulation of Materials, EPFL, Switzerland

The ADES model and the AiiDA infrastructure  
for Computational Materials Science

MARVEL, MaX, etc..

•MARVEL - National Centre on
Computational Design and
Discovery of Novel Materials
(Switzerland)
• 2014 to 2026 (3 phases of 4 years)
• 39 PIs
• Hardware platform (@CSCS) +

Software platform and dissemination:
• AiiDA: materials informatics

platform
•Materials Cloud: dissemination

of tools, curated properties, data,
and workflows

• Domain-specific libraries

http://nccr-marvel.ch

http://nccr-marvel.ch
http://nccr-marvel.ch
http://nccr-marvel.ch

MARVEL, MaX, etc..

•MARVEL - National Centre on
Computational Design and
Discovery of Novel Materials
(Switzerland)
• 2014 to 2026 (3 phases of 4 years)
• 39 PIs
• Hardware platform (@CSCS) +

Software platform and dissemination:
• AiiDA: materials informatics

platform
•Materials Cloud: dissemination

of tools, curated properties, data,
and workflows

• Domain-specific libraries

•MaX - Materials Design at the
Exascale (Europe)
• one of the 3 EU H2020 e-Infra

Centres of Excellence dedicated to
materials

• 2015 to 2018 - EU thinking at
renewals/consolidation

• 10 groups, 5 Supercomputing
Centres, 5 codes: i-PI, Quantum
ESPRESSO, SIESTA, FLEUR, YAMBO

• Exascale through HPC and HTC, via
the creation of workflows and turn-
key solutions for the computation
of materials properties

http://nccr-marvel.ch http://max-center.eu

http://nccr-marvel.ch
http://nccr-marvel.ch
http://nccr-marvel.ch

H P � H N P N �
BZ

0

50

100

150

200

250

300

350

!
(c

m
�

1)

0.0%

GAP
QE888

QE444

Some current applications and workflows

Phonon-phonon
scattering in 2D Phonon hydrodynamics in 2D materials

1D metallic wires
at interfaces Engineering polar discontinuities in 2D

Functional
development

Development of a Koopmans’ compliant functional

Neural Network
potentials Generating databases for neural network potentials

Pseudopotential
database

Creation of a Standard Solid State 
Pseudopotentials library

Thermodynamical
properties of 2D
materials

Discovering 2D materials and creating a 
database of their thermodynamical properties

Paraelectric-ferroelectric transition in perovskites, ...  

H P � H N P N �
BZ

0

50

100

150

200

250

300

350

!
(c

m
�

1)

0.0%

GAP
QE888

QE444

Some current applications and workflows

Phonon-phonon
scattering in 2D Phonon hydrodynamics in 2D materials

1D metallic wires
at interfaces Engineering polar discontinuities in 2D

Functional
development

Development of a Koopmans’ compliant functional

Neural Network
potentials Generating databases for neural network potentials

Pseudopotential
database

Creation of a Standard Solid State 
Pseudopotentials library

Thermodynamical
properties of 2D
materials

Discovering 2D materials and creating a 
database of their thermodynamical properties

Paraelectric-ferroelectric transition in perovskites, ...  

Example 1: discovery of novel 2D materials

N.	Mounet	et	al.,	in	preparation,	
(also	-	S.	Lebesgue	et	al.,	PRX	(2013))

Example 2: Standard Solid State Pseudopotentials

I.	Castelli,	N.	Mounet,	and	N.	Marzari,	in	preparation	(2015)

Developing novel models for computational science

In collaboration with Robert Bosch 
RTC, Cambridge (MA)  
open-source BSD-like license

G. Pizzi et al., Comp. Mat. Sci. 
111, 218-230 (2016)

www.aiida.net

http://www.aiida.net

Materials informatics objectives

• Automation – thousands of calculations daily
• Provenance – we need to know how data were produced, and what

they were used for
• Reproducibility – we might go back to a simulation years later, and

redo it with new parameters/tools
• Data and metadata – key are “(generalized) structure” and “properties”
• Workflows –these are the “turn-key solutions” that generate calculated

properties
• Sharing - platforms to disseminate workflows, data, codes

AiiDA structure

The core of the code is the AiiDA API (Application Programming
Interface), a set of Python classes that exposes the users to the key
objects: Calculations, Codes, and Data.

Storing the provenance: Directed Acyclic Graphs

Nodes:
• Calculations
• Codes
• Data

Storing the provenance: Directed Acyclic Graphs

Nodes:
• Calculations
• Codes
• Data

DbAttribute table

node_pk key value

num_cpus7 48

queue_name7 “private”

submission_time7
May 2nd, 2014

13:46:07

energy8 -13.736229

energy_units8 “eV”

forces8 [[4.32, 3.22, 0.73]],
[2.23, -1.46, 0.22], ...]

pk=7
Calc

pk=8
Results

With 10millions+ nodes, we need 
appropriate techniques and database

backends to store and query the results!

In AiiDA: migration to SQLAlchemy +
JSONB fields, graph-oriented DBs

(Neo4j,TitanDB)

Environment in AiiDA: Workflows

step1

step2

step3

Calc Calc Calc Calc

Calc Calc

Calc

self.next(step2)

 self.next(step3)

Calc

Workflow1 Calculations in the
same step: run in

parallel

Different steps:  
run in serial;

relationships via a 
.next() method

Environment in AiiDA: Workflows

step1

step2

step3

Calc Calc Calc Calc

Calc Calc

Calc

self.next(step2)

 self.next(step3)

Calc

if not converged:
 self.next(step2)
else:

Workflow1 Calculations in the
same step: run in

parallel

Different steps:  
run in serial;

relationships via a 
.next() method

Python logic 
(if, for, ...) possible:

conditional loops,
convergence, ...

Environment in AiiDA: Workflows

step1

step2

step3

Calc Calc Calc Calc

Calc Calc

Calc

self.next(step2)

 self.next(step3)

Calc

if not converged:
 self.next(step2)
else:

Workflow1 Calculations in the
same step: run in

parallel

Different steps:  
run in serial;

relationships via a 
.next() method

Python logic 
(if, for, ...) possible:

conditional loops,
convergence, ...Calc

Calc Calc

stepA

stepB

self.next(stepB)

Workflow2

Within a step: also
subworkflows

Environment in AiiDA: Workflows

step1

step2

step3

Calc Calc Calc Calc

Calc Calc

Calc

self.next(step2)

 self.next(step3)

Calc

if not converged:
 self.next(step2)
else:

Workflow1 Calculations in the
same step: run in

parallel

Different steps:  
run in serial;

relationships via a 
.next() method

Python logic 
(if, for, ...) possible:

conditional loops,
convergence, ...Calc

Calc Calc

stepA

stepB

self.next(stepB)

Workflow2

Within a step: also
subworkflows

Wf3
...

Any nesting level

A real-life workflow example:
phonon dispersions

Main-Workflow
Structure

Relaxation

Dynamical
matrices

Interatomic
force constants

Phonon
dispersion

A real-life workflow example:
phonon dispersions

Main-Workflow

Su
b-

w
or

kfl
ow

s Structure
Relaxation

Dynamical
matrices

Interatomic
force constants

Phonon
dispersion

Relaxation #1

Relaxation #2

Relaxation #n

Structure cell converged

A real-life workflow example:
phonon dispersions

Main-Workflow

Su
b-

w
or

kfl
ow

s Structure
Relaxation

Dynamical
matrices

Interatomic
force constants

Phonon
dispersion

Relaxation #1

Relaxation #2

Relaxation #n

Restart
management

Restart (wall-time
exceeded, …)

PW vc-relax

PW vc-relax

PW vc-relax

several failure cases
handled automatically

Structure cell converged

A real-life workflow example:
phonon dispersions

Main-Workflow

Su
b-

w
or

kfl
ow

s Structure
Relaxation

Dynamical
matrices

Interatomic
force constants

Phonon
dispersion

Relaxation #1

Relaxation #2

Relaxation #n

Restart
management

Restart (wall-time
exceeded, …)

PW vc-relax

PW vc-relax

PW vc-relax

Parallelization

several failure cases
handled automatically

Structure cell converged

Initialize PH

PH on q-grid

Collect phonons

PH on q1

PH on q2

PH on qn

A real-life workflow example:
phonon dispersions

Main-Workflow

Su
b-

w
or

kfl
ow

s
Si

ng
le

 c
al

cu
la

tio
ns

Structure
Relaxation

Dynamical
matrices

Interatomic
force constants

Phonon
dispersion

Relaxation #1

Relaxation #2

Relaxation #n

Restart
management

Restart (wall-time
exceeded, …)

PW vc-relax

PW vc-relax

PW vc-relax

Parallelization

several failure cases
handled automatically

Structure cell converged

Initialize PH

PH on q-grid

Collect phonons

PH on q1

PH on q2

PH on qn

Outlook: App store model

App-store (@Apple) model for Plugins & Workflows, e.g.

• Computers: automatically setup a new cluster or supercomputer

• DB importers: load structures and data from COD, ICSD, …

• Calculations: find plugin to support your favorite software
(Quantum ESPRESSO, VASP, GPAW, Yambo, …)

• Turn-key solutions:  
workflows to  
compute a desired 
property, with 
dependencies 
(see pip install)

• …

Acknowledgements and level of effort

Giovanni
Pizzi

(EPFL)

Riccardo
Sabatini
(EPFL)

Andrea
Cepellotti

(EPFL)

Andrius 
Merkys
(Vilnius)

Nicolas
Mounet
(EPFL)

Th
e

Ai
iD

A
 te

am

Plugin contributors — Quantum ESPRESSO NEB: Marco Gibertini (EPFL); Quantum ESPRESSO DOS, PDOS;
Wannier90: Daniel Marchand (EPFL); CP2K: Aliaksandr Yakutovich (EMPA), Uli Schauer (ETHZ), Tiziano Müller, Andreas

Glosse, Patrick Seewald (UZH); FLEUR: Jens Broeder, Gregor Michalicek, Daniel Wortmann (Jülich); Exciting: Anton
Kozhevnikov (CSCS); YAMBO: Andrea Ferretti, Giovanni Borghi, Daniele Varsano (CNR-NANO), Gianluca Prandini

(EPFL); SIESTA: Victor Garcia Suarez (Uni Oviedo); i-PI: Venkat Kali (EPFL); VASP: Mario Zic (Trinity College Dublin).
Contributors — Prof. Christoph Koch, Jocelyn Boullier (EPFL); Valentin Bersier, Philippe Schwaller (THEOS EPFL);

Marco Dorigo (ICAMS - Bochum); Eric Hontz (MIT & Bosch RTC)
Early beta testers — Giovanni Borghi, Ivano Castelli, Marco Gibertini (THEOS EPFL); Prateek Mehta (Bosch RTC)

Boris
Kozinsky
(BOSCH)

Martin 
Uhrin
(EPFL)

Spyros 
Zoupanos

(EPFL)

Nicola
Marzari
(EPFL)

Snehal 
Waychal

(EPFL)

Leonid 
Kahle
(EPFL)

Our workflow requirements 
(implemented in AiiDA)

• Easy to write a new plugin for scientists 
(possibly in Python with access to libraries as numpy, spglib, …)

Our workflow requirements 
(implemented in AiiDA)

• Easy to write a new plugin for scientists 
(possibly in Python with access to libraries as numpy, spglib, …)

• Easy to build on existing plugins and extend functionality

Our workflow requirements 
(implemented in AiiDA)

• Easy to write a new plugin for scientists 
(possibly in Python with access to libraries as numpy, spglib, …)

• Easy to build on existing plugins and extend functionality

• Integrated management of remote calculations on
supercomputers

Our workflow requirements 
(implemented in AiiDA)

• Easy to write a new plugin for scientists 
(possibly in Python with access to libraries as numpy, spglib, …)

• Easy to build on existing plugins and extend functionality

• Integrated management of remote calculations on
supercomputers

• On-the-fly storage of full provenance in the graph database

Our workflow requirements 
(implemented in AiiDA)

• Easy to write a new plugin for scientists 
(possibly in Python with access to libraries as numpy, spglib, …)

• Easy to build on existing plugins and extend functionality

• Integrated management of remote calculations on
supercomputers

• On-the-fly storage of full provenance in the graph database

• “Dynamic” workflows: graph not decided at the start, but
depends on intermediate results 
(e.g. convergence workflows, …)

Our workflow requirements 
(implemented in AiiDA)

• Easy to write a new plugin for scientists 
(possibly in Python with access to libraries as numpy, spglib, …)

• Easy to build on existing plugins and extend functionality

• Integrated management of remote calculations on
supercomputers

• On-the-fly storage of full provenance in the graph database

• “Dynamic” workflows: graph not decided at the start, but
depends on intermediate results 
(e.g. convergence workflows, …)

Current efforts:
• Implement plugins and workflows for various codes and materials science applications

• Improve the workflow interface to scale up and to make them easier to develop and debug

• Allowing reuse of results of existing calculations in the DB (if calculations give the same
results given the same inputs)

