
NOTE: THIS IS
YOUR TITLE
SLIDE.

If you use the
Walk-in Slide, you
may replace the
gray LANL logo
on the Title Slide
with your
organization’s
logo and delete
the NNSA logo/
management
statement.

If you DO NOT
use one of the two
the Walk-in Slide
options, you
MUST keep the
LANL and NNSA
logos and
management
statement on this
Title Slide.

Los Alamos National Laboratory

Imperative, Declarative, Functional and
Domain-Specific Programming… Oh My!

Patrick McCormick
March 25, 2016

LA-UR-16-22108

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

SOS 20 Workshop
March 22 - 25, 2016

Asheville, North Carolina

Los Alamos National Laboratory

2/9/16 | 2

NOTE:
This is the
lab color
palette. è Are we entering a new age of software

development for HPC?

Yes… I hope so…. Would like to think so...

But we still have a ways to go...

Los Alamos National Laboratory

2/9/16 | 3

NOTE:
This is the
lab color
palette. è The “Simple” set of Goals

•  Performance (fast)

•  Portability (run everywhere)
•  Fast… Standardized...

•  Productivity/Programmability
•  Easily, everywhere, and high-performance

•  What we are typically asking for is sequential
semantics with parallel execution…

Los Alamos National Laboratory

2/9/16 | 4

NOTE:
This is the
lab color
palette. è Is the key Cost Really Data Movement?

•  “Data movement is
expensive, compute
is free.”

• But...
•  Idle processors are

not free
•  Trinity: If you dump

data from memory to
disk you spend 10X
more power waiting on
the data to move than to
move the data!

•  So, no surprise, we
really want to keep
processors busy…

Courtesy Greg Asfalk (HP) and Bill Dally (NVIDIA)

Operation Energy (pJ)
64-bit integer operation 1
64-bit floating-point operation 20
256 bit on-die SRAM access 50
256 bit bus transfer (short) 26
256 bit bus transfer (1/2 die) 256
Off-die link (efficient) 500
256 bit bus transfer (across die) 1,000
DRAM read/write (512 bits) 16,000
HDD read/write O(106)

Los Alamos National Laboratory

2/9/16 | 5

NOTE:
This is the
lab color
palette. è

AsyncRecv(X);
DoWork(Y);
Sync();
F(X);

•  How	much	work	should	I	do?		
•  Is	this	performance	portable?	
•  When	does	forward	progress	

really	occur?	
•  What	if	I	have	more	work	and	

data	movement	happening	in	
DoWork?	
–  What	resources	are	in	use?	

Where	is	the	data?	Who	is	using	
it	and	how?	

•  Is	this	modular?	

Concept	from:		Mike	Bauer’s	Thesis	(Stanford),	
Legion:		Programming	Distributed	Heterogeneous	Architectures	with	Logical	Regions	

The Importance of Programming
Abstractions

Impera've,	explicit	data	
movement:	
•  Focus	on	control	flow,	explicit	
parallelism	and	low-level	data	
abstrac'ons	

Los Alamos National Laboratory

2/9/16 | 6

NOTE:
This is the
lab color
palette. è Simplifying the Challenge

“Domain-Specific” Languages

•  Why?
•  Improved productivity, better

maintainability, portability, validation,
improved optimizations, thus improved
reliability and performance

•  But…
•  Risks in terms of costs associated with

their design, implementation, adoption,
maintenance/longevity, and education…

•  What can be done to reduce the
risks/costs?

Los Alamos National Laboratory

2/9/16 | 7

NOTE:
This is the
lab color
palette. è “Standalone” Source-to-Source Compilation

DSL
Compiler

DSL
Source

C++
Source

C++
Compiler

a.out

•  Simplified compiler – heavy lifting done by “real” compiler
•  Great way to prototype…

•  But… Custom language maintenance issues
•  Domain knowledge/semantics lost in code generation…

•  DSL compiler optimizations can be undone by C++ compiler
•  Developer ends up with C++ tools...

Los Alamos National Laboratory

2/9/16 | 8

NOTE:
This is the
lab color
palette. è

a.out C++
Compiler

C++ Embedded DSLs

C++
“DSL”

Source

IR
Form

Middle &
Back End

DSL.h

•  Meta-programmed code generation - standardized
“goodness”

•  Underlying infrastructure can be complex and difficult (and
often not as opaque as we might like). Stuck w/ C++ semantics
and syntax…

•  Once again, domain knowledge/semantics lost in code
generation (after template expansion)…
•  Can be hard to optimze, match semantic goals due to host

language restrictions
•  Developer (and optimizer) ends up with expanded “goop”

Los Alamos National Laboratory

2/9/16 | 9

NOTE:
This is the
lab color
palette. è Can you Spare a Minute? More C++

EDSL worries…
safe::printf<_S("Hello %s!")>(”World!"); !

“Domain-specific Language Integration with Compile-time Parser Generator Library”, Zoltan
Porkolab and Abel Sinkovics, Proceeding GPCE '10 the ninth international conference on
Generative Programming and Component Engineering.

Compilation Times

Los Alamos National Laboratory

2/9/16 | 10

NOTE:
This is the
lab color
palette. è Domain-Aware Toolchains

•  We really want a fully supported toolchain – not just a set of
“front end” semantics and abstractions…
•  Allow the developer (and the compiler) to reason in terms of the

original abstractions (not the “goop”)

•  OpenMP implementations do/can have similar issues…

Clang infrastructure

front end

abstract syntax tree

DSL metadata

input
source

Domain-specific code regions
General-purpose code regions

llvm IR
executable

LLVM infrastructure

back endllvm IR

LLDB infrastructure Extended

DWARF

Los Alamos National Laboratory

2/9/16 | 11

NOTE:
This is the
lab color
palette. è Kokkos-Aware Clang

•  Code generation phase of Clang intercepts Kokkos
constructs prior to template expansion and implements
semantics-aware code generation
•  SC15 tutorial code:

•  Compile time is approx. 4.5 times faster
•  Code generation: parallel-for about 5% faster (GPUs), reductions

need to be optimized (about 2-3x slower at present)

Clang infrastructure

front end

abstract syntax tree

Kokkos Semantic metadata

Kokkos
source

Kokkos-specific code regions
General-purpose code regions

llvm IR
executable

LLVM infrastructure

back endllvm IR

LLDB infrastructure Extended

DWARF

Los Alamos National Laboratory

2/9/16 | 12

NOTE:
This is the
lab color
palette. è Due to Complexity we Often Only Look at one

Piece of the Puzzle…

•  How do we?
•  Interoperate across different models/abstractions, languages

and legacy code bases?

•  Build a set of useful and flexible tools for understanding
details in terms of the abstractions we’re developing with?

•  Get applications to adopt new approaches for programming?

