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Problem space: Petascale storage crisis

» Data staging, offloading, and checkpointing are all affected by data
unavailability and 1/0 bandwidth bottleneck issues:
— Compute time wasted on staging at the beginning of the job.
— Early staging and late offloading waste scratch space.
— Delayed offloading renders result data vulnerable to purging.

— Checkpointing terabytes of data to a traditional file system results in an
I/O bottleneck.

— Storage failure:
* Significant contributor to system downtime and CPU underutilization (during
RAID reconstruction).

* Failures per year: 3—7% disks, 3—16% controllers, and up to 12% SAN switches;
10x the rate expected from vendor specification sheets (J. Gray and C.V. Ingen,
"Empirical measurements of disk failure rates and error rates," Technical Report
MSR-TR-2005-166, Microsoft, December 2005.)!

— Upshot:
e Uptime low:

— Due to job resubmissions.
— Since checkpoints and restarts are expensive.

* Increased job wait times due to staging/offloading and storage errors.
* Poor end-user data delivery options. OAK
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Approach

* If you cannot afford a balanced system, develop
management strategies to compensate.

* Exploit opportunities throughout the HEC I/O stack:
— Parallel file system.

- Many unused resources: Memory, cluster node-local storage,
desktop idle storage (both in machine room and client-side).

— Disparate storage entities including archives and remote sources.

* Concerted use of aforementioned:

— Can be brought to bear upon urgent supercomputing issues, such
as staging, offloading, prefetching, checkpointing, data recovery,
I/O bandwidth bottleneck, and end-user data delivery.
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Approach (cont’'d.)

* View the entire HPC center as a system.
— New ways to optimize this system’s performance and availability.

Global
coordination Scheduler Center-wide storage/processing

Staging Offloading Checkpointing Prefetching

Novel aggregate storage

Storage Node-local disks Workstation/storage
abstractions server Parallel file ~ Tape archives
systems
Memory resources
IBP /home@NFS

_ _ Scalable I/O across the center
communication Collective Data Data Data

pathway downloads sessions shuffling sieving
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Global coordination

* Motivation: Lack of global coordination between the
storage hierarchy and system software.

* As a start, need coordination between staging,
offloading, and computation:

— Problems with manual and scripted staging:

* Human operational cost, wasted compute time/storage, and
increased wait time due to resubmissions.

- How?
* Explicit specification of 1/O activities alongside computation in
a job script.
e Zero-charge data transfer queue.
* Planning and orchestration.
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Coordinating data and computation

 Specification of I/O activities in PBS job script:

- BEGIN STAGEIN

* retry=3; interval=20

* hsi -A keytab -k MyKeytab -l user “get /scratch/user/Destination: Input”
— END STAGEIN

- BEGIN COMPUTATION
* #PBS...

- END COMPUTATION
— BEGIN STAGEOUT ... END STAGEOUT

e Separate data transfer queue: Zero charge:
— Queuing up and scheduling data transfers.
— Treats data transfers as “data jobs.”
— Data transfers can now be charged, if need be!

* Planning and orchestration
— Parsing into individual stage-in, compute, and stage-out jobs.

— Dependency setup and management using resource manager primitives.
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Seamless data path

* Motivation: Standard data availability techniques designed with
persistent data in mind:

— RAID techniques can be time consuming; a 160-GB disk takes order
of dozens of minutes.

— Multiple disk failure within a RAID group can be crippling.

— 1/O node failovers are not always possible (thousands of nodes).

— Need novel mechanisms to address “transient data availability” that
complement existing approaches!

* What makes it feasible?
— Natural data redundancy in the staged job data.
— Job input data usually immutable.
— Network costs drastically decreasing each year.
— Better bulk transfer tools with support for partial data fetches.

* How?
— Augmenting FS metadata with “recovery hints” from job script.
— On-the-fly data reconstruction on another object storage target (OST).
— Patching from data source.
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Data recovery

* Embedding recovery metadata about transient job data into the Lustre
parallel file system:

- Extend Lustre metadata to include recovery hints.
— Metadata extracted from job script.
— “Source” and “sink” information becomes an integral part of transient data.

* Failure detection to check for unavailable OSTs.

* Reconstruction:
— Locate substitute OSTs and allocate objects.
- Mark data dirty in metadata directory service (MDS).
— Recover URI from MDS.
— Compute missing data range.

* Remote patching:
— Reducing multiple authentication costs per dataset.
— Automated interactive session with “Expect” for single sign-on.
— Protocols: hsi, GridFTP, NFS.
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Results

Machine room
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Compute nodes

1. Stage data Job queue
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» Better use of users’ compute time allocation and decreased job

turnaround time.

e Optimal use of center’'s scratch space, avoiding too early stage

in and delayed offloading.

 Reduces resubmissions due to result-data loss.
* Reduces wait time: Trace-driven simulation of LANL operational

data + LCF scratch data.
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New storage abstractions

* Checkpointing TB of data cumbersome; need better tools to address
the storage bandwidth bottleneck.

e Options:
— Machines can potentially be provisioned with solid-state memory.

- ~ 200 TB of aggregate memory in the PF machine; potential
“residual memory”:
* Tier 1 Apps (GTC, S3D, POP, CHIMERA) seldom use all memory.
e Checkpoint size is ~ 10% of the memory footprint.

— Many applications oversubscribe for processors in an attempt to plan
for failure:
* Use the oversubscribed processors!

* Checkpoint to memory can expedite these operations.

— Previous solutions are not concerted in their memory usage, creating
artificial load imbalance:
* Examples: J.S. Plank, K. Li, and M.A. Puening, “Diskless Checkpointing,”

IEEE Transactions on Parallel and Distributed Systems, 1998. 9(10): p. 972-986.

L.M. Silva, and J.G. Silva, “Using two-level stable storage for efficient
checkpointing,” IEE Proceedings - Software, 1998. 145(6): p. 198-202.
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stdchk: A checkpoint-friendly storage

e Aggregate memory-based storage abstraction:
— Split checkpoint images into chunks and stripe them.
— Parallel 1/0 across distributed memory.
— Redundantly mounted on PEs for FS-like access.
— Optimized, relaxed POSIX I/O interfaces to the storage.

— Lazy migration of images to local disk/archives, creating a seamless
data pathway.

* Unused/underutilized processors can perform this operation.

— Incremental checkpointing and pruning of checkpoint files.
* Compare chunk hashes from two successive intervals.
* Initial experiments suggest a 10-25% reduction in size for BLCR checkpoints.
* Purge images from previous interval once the current image is safely stored.
* File system is unable to perform such optimizations.

— Specification of checkpoint preparation in a job script.
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End-user data delivery:. An architecture
for eager offloading of result data

 Offloading result data equally important for local visualization and
interpretation.

» Storage system failure and purging of scratch space can cause loss of
result data; end-user resource may not be available for offload.

 Eager offloading:
- Equivalent to data reconstruction.

— Transparent data migration using “sink”/destination metadata as part of job
submission (done as part of global coordination).

— Data offloading can be overlapped with computation.

— Can failover to intermediate storage/archives for planned transfers in the future:
* Intermediate nodes specified by the user in the job script.
* A one-to-many distribution followed by a many-to-one download.
e A combination of bullet + landmarks (p2p + staged).

Erasure coded chunks for redundancy and fault tolerance.

Monitor offloads for bandwidth degradation and choose alternate paths accordingly.
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FreelLoader: Improving end-user
data delivery with client-side
collaborative caching

* Enabling trends:
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Virtual cache: Impedance matching

on steroids!

e Can we host partial copies of datasets and yet serve client
accesses to the entire dataset?

- ~ FileSystem-BufferCache:Disk :: FreeLoader:RemoteDataSource.

* Benefits:

— Bootstrapping the
download process.

— Store more datasets.

— Allows for efficient
cache management.

— Persistent storage

and BW-only donors.
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