
Presented by

Robust Storage Management in the
Machine Room and Beyond

Sudharshan Vazhkudai

Computer Science Research Group

Computer Science and Mathematics Division

In collaboration with
 ORNL: John Cobb, Greg Pike

 North Carolina State University: Xiaosong Ma, Zhe Zhang, Chao Wang, Frank Mueller

 The University of British Columbia: Matei Ripeanu, Samer Al Kiswany

 Virginia Tech: Ali Butt

2 Vazhkudai_FreeLoader_SC07

Problem space: Petascale storage crisis

• Data staging, offloading, and checkpointing are all affected by data

unavailability and I/O bandwidth bottleneck issues:

Compute time wasted on staging at the beginning of the job.

Early staging and late offloading waste scratch space.

Delayed offloading renders result data vulnerable to purging.

Checkpointing terabytes of data to a traditional file system results in an

I/O bottleneck.

Storage failure:

• Significant contributor to system downtime and CPU underutilization (during

RAID reconstruction).

• Failures per year: 3–7% disks, 3–16% controllers, and up to 12% SAN switches;

10x the rate expected from vendor specification sheets (J. Gray and C.V. Ingen,

"Empirical measurements of disk failure rates and error rates," Technical Report

MSR-TR-2005-166, Microsoft, December 2005.)!

Upshot:

• Uptime low:

Due to job resubmissions.

Since checkpoints and restarts are expensive.

• Increased job wait times due to staging/offloading and storage errors.

• Poor end-user data delivery options.

3 Vazhkudai_FreeLoader_SC07

Approach

• If you cannot afford a balanced system, develop

management strategies to compensate.

• Exploit opportunities throughout the HEC I/O stack:

Parallel file system.

Many unused resources: Memory, cluster node-local storage,

desktop idle storage (both in machine room and client-side).

Disparate storage entities including archives and remote sources.

• Concerted use of aforementioned:

Can be brought to bear upon urgent supercomputing issues, such

as staging, offloading, prefetching, checkpointing, data recovery,
I/O bandwidth bottleneck, and end-user data delivery.

4 Vazhkudai_FreeLoader_SC07

Support for Existing

Storage Elements

Global

coordination

layer

Staging Offloading Checkpointing Prefetching

Scheduler Center-wide storage/processing

Service agents

Storage

abstractions

layer

Node-local disks Workstation/storage

server

Memory resources

Data

communication

pathway

Novel aggregate storage

Parallel file

systems

Tape archives

Scalable I/O across the center

Collective

downloads

Data

sessions

Data

shuffling

Data

sieving

IBP /home@NFS

Approach (cont’d.)

• View the entire HPC center as a system.

New ways to optimize this system’s performance and availability.

5 Vazhkudai_FreeLoader_SC07

Global coordination

• Motivation: Lack of global coordination between the

storage hierarchy and system software.

• As a start, need coordination between staging,

offloading, and computation:

Problems with manual and scripted staging:

• Human operational cost, wasted compute time/storage, and

increased wait time due to resubmissions.

How?

• Explicit specification of I/O activities alongside computation in

a job script.

• Zero-charge data transfer queue.

• Planning and orchestration.

6 Vazhkudai_FreeLoader_SC07

Coordinating data and computation

• Specification of I/O activities in PBS job script:

BEGIN STAGEIN

• retry=3; interval=20

• hsi -A keytab -k MyKeytab -l user ‘‘get /scratch/user/Destination: Input’’

END STAGEIN

BEGIN COMPUTATION

• #PBS...

END COMPUTATION

BEGIN STAGEOUT ... END STAGEOUT

• Separate data transfer queue: Zero charge:

Queuing up and scheduling data transfers.

Treats data transfers as “data jobs.”

Data transfers can now be charged, if need be!

• Planning and orchestration

Parsing into individual stage-in, compute, and stage-out jobs.

Dependency setup and management using resource manager primitives.

7 Vazhkudai_FreeLoader_SC07

Seamless data path

• Motivation: Standard data availability techniques designed with

persistent data in mind:
RAID techniques can be time consuming; a 160-GB disk takes order

of dozens of minutes.

Multiple disk failure within a RAID group can be crippling.

I/O node failovers are not always possible (thousands of nodes).

Need novel mechanisms to address “transient data availability” that

complement existing approaches!

• What makes it feasible?
Natural data redundancy in the staged job data.

Job input data usually immutable.

Network costs drastically decreasing each year.

Better bulk transfer tools with support for partial data fetches.

• How?
Augmenting FS metadata with “recovery hints” from job script.

On-the-fly data reconstruction on another object storage target (OST).

Patching from data source.

8 Vazhkudai_FreeLoader_SC07

Data recovery

• Embedding recovery metadata about transient job data into the Lustre

parallel file system:

Extend Lustre metadata to include recovery hints.

Metadata extracted from job script.

“Source” and “sink” information becomes an integral part of transient data.

• Failure detection to check for unavailable OSTs.

• Reconstruction:

Locate substitute OSTs and allocate objects.

Mark data dirty in metadata directory service (MDS).

Recover URI from MDS.

Compute missing data range.

• Remote patching:

Reducing multiple authentication costs per dataset.

Automated interactive session with “Expect” for single sign-on.

Protocols: hsi, GridFTP, NFS.

9 Vazhkudai_FreeLoader_SC07

Results

• Better use of users’ compute time allocation and decreased job

turnaround time.

• Optimal use of center’s scratch space, avoiding too early stage

in and delayed offloading.

• Reduces resubmissions due to result-data loss.

• Reduces wait time: Trace-driven simulation of LANL operational

data + LCF scratch data.

M
e
a
n
 w

a
it
 t
im

e
 (

s
)

Stripe count
4 8 16 32

1,000,000

100,000

10,000

1,000

100

10

1

Without reconstruction

With reconstruction

Data

source

/scratch

parallel file

system

/home

Machine room

Head node Compute nodes

End user

Staging/offloading

NFS

access hsi

access

Archive
Seamless I/O access

via “data path”

Regular I/O

access to

staged data

I/O nodes
Source copy of

dataset accessed

using ftp, scp,

GridFTP

Job queue

Data queue1,2

3 after 1,

4 after 3

Job script

Planner

1. Stage data

2. Checkpoint setup

3. Compute job

4. Offload data

10 Vazhkudai_FreeLoader_SC07

New storage abstractions

• Checkpointing TB of data cumbersome; need better tools to address

the storage bandwidth bottleneck.

• Options:

Machines can potentially be provisioned with solid-state memory.

~ 200 TB of aggregate memory in the PF machine; potential

“residual memory”:

• Tier 1 Apps (GTC, S3D, POP, CHIMERA) seldom use all memory.

• Checkpoint size is ~ 10% of the memory footprint.

Many applications oversubscribe for processors in an attempt to plan

for failure:

• Use the oversubscribed processors!

• Checkpoint to memory can expedite these operations.

Previous solutions are not concerted in their memory usage, creating

artificial load imbalance:

• Examples: J.S. Plank, K. Li, and M.A. Puening, “Diskless Checkpointing,”

IEEE Transactions on Parallel and Distributed Systems, 1998. 9(10): p. 972-986.

L.M. Silva, and J.G. Silva, “Using two-level stable storage for efficient

checkpointing,” IEE Proceedings - Software, 1998. 145(6): p. 198-202.

11 Vazhkudai_FreeLoader_SC07

stdchk: A checkpoint-friendly storage

• Aggregate memory-based storage abstraction:

Split checkpoint images into chunks and stripe them.

Parallel I/O across distributed memory.

Redundantly mounted on PEs for FS-like access.

Optimized, relaxed POSIX I/O interfaces to the storage.

Lazy migration of images to local disk/archives, creating a seamless

data pathway.

• Unused/underutilized processors can perform this operation.

Incremental checkpointing and pruning of checkpoint files.

• Compare chunk hashes from two successive intervals.

• Initial experiments suggest a 10–25% reduction in size for BLCR checkpoints.

• Purge images from previous interval once the current image is safely stored.

• File system is unable to perform such optimizations.

Specification of checkpoint preparation in a job script.

12 Vazhkudai_FreeLoader_SC07

End-user data delivery: An architecture
for eager offloading of result data

• Offloading result data equally important for local visualization and

interpretation.

• Storage system failure and purging of scratch space can cause loss of

result data; end-user resource may not be available for offload.

• Eager offloading:

Equivalent to data reconstruction.

Transparent data migration using “sink”/destination metadata as part of job

submission (done as part of global coordination).

Data offloading can be overlapped with computation.

Can failover to intermediate storage/archives for planned transfers in the future:

• Intermediate nodes specified by the user in the job script.

• A one-to-many distribution followed by a many-to-one download.

• A combination of bullet + landmarks (p2p + staged).

• Erasure coded chunks for redundancy and fault tolerance.

• Monitor offloads for bandwidth degradation and choose alternate paths accordingly.

13 Vazhkudai_FreeLoader_SC07

FreeLoader: Improving end-user
data delivery with client-side
collaborative caching
• Enabling trends:

Unused storage: More than 50%

desktop storage unused.

Immutable data: Data are usually

write-once, read-many with remote

source copies.

Connectivity: Well-connected, secure

LAN settings.

• FreeLoader aggregate storage cache:

Scavenges O(GB) of contributions

from desktops.

Parallel I/O environment across

loosely connected workstations,

aggregating I/O as well as

network BW.

NOT a file system, but a low-cost,

local storage solution enabling

client-side caching and locality.
0

20

40

60

80

100

120

512 MB 4 GB 32 GB 64 GB
Dataset size

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

FreeLoader

PVFS

HPSS-Hot

HPSS-Cold

RemoteNFS

waet-nchi

14 Vazhkudai_FreeLoader_SC07

Virtual cache: Impedance matching
on steroids!

•Can we host partial copies of datasets and yet serve client

accesses to the entire dataset?

~ FileSystem-BufferCache:Disk :: FreeLoader:RemoteDataSource.

•Benefits:

Bootstrapping the

download process.

Store more datasets.

Allows for efficient

cache management.

Persistent storage

and BW-only donors.

Data

source

Data
source

Persistent

storage +
BW donors

Stripe

 width (w)

Patch

 width (p)

Parallel get ()

dataset-1

Parallel get ()

dataset-2

BW

donors

p

R
w

Transparent

patching

Source copy of dataset-N accessed

gsiftp://source-N/dataset-2

Source copy of dataset-1 accessed

http://source-1/dataset-1

Bootstrapping

downloads using

“seeds” across w

Scientific Data Cache

15 Vazhkudai_FreeLoader_SC07

Contact

Sudharshan Vazhkudai

Computer Science Research Group

Computer Science and Mathematics Division

(865) 576-5547

vazhkudaiss@ornl.gov

http://www.csm.ornl.gov/~vazhkuda/Storage.html

15 Vazhkudai_FreeLoader_SC07

