Robust Storage Management in the
Machine Room and Beyond

Presented by

Sudharshan Vazhkudail

Computer Science Research Group
Computer Science and Mathematics Division

In collaboration with

ORNL: John Cobb, Greg Pike
North Carolina State University: Xiaosong Ma, Zhe Zhang, Chao Wang, Frank Mueller

The University of British Columbia: Matei Ripeanu, Samer Al Kiswany
Virginia Tech: Ali Butt

OAK
RIDGE

National Laboratory

Problem space: Petascale storage crisis

» Data staging, offloading, and checkpointing are all affected by data
unavailability and 1/0 bandwidth bottleneck issues:
— Compute time wasted on staging at the beginning of the job.
— Early staging and late offloading waste scratch space.
— Delayed offloading renders result data vulnerable to purging.

— Checkpointing terabytes of data to a traditional file system results in an
I/O bottleneck.

— Storage failure:
* Significant contributor to system downtime and CPU underutilization (during
RAID reconstruction).

* Failures per year: 3—7% disks, 3—16% controllers, and up to 12% SAN switches;
10x the rate expected from vendor specification sheets (J. Gray and C.V. Ingen,
"Empirical measurements of disk failure rates and error rates," Technical Report
MSR-TR-2005-166, Microsoft, December 2005.)!

— Upshot:
e Uptime low:

— Due to job resubmissions.
— Since checkpoints and restarts are expensive.

* Increased job wait times due to staging/offloading and storage errors.
* Poor end-user data delivery options. OAK
*RIDGE

National Laboratory

Approach

* If you cannot afford a balanced system, develop
management strategies to compensate.

* Exploit opportunities throughout the HEC I/O stack:
— Parallel file system.

- Many unused resources: Memory, cluster node-local storage,
desktop idle storage (both in machine room and client-side).

— Disparate storage entities including archives and remote sources.

* Concerted use of aforementioned:

— Can be brought to bear upon urgent supercomputing issues, such
as staging, offloading, prefetching, checkpointing, data recovery,
I/O bandwidth bottleneck, and end-user data delivery.

OAK
RIDGE

National Laboratory

~

Approach (cont’'d.)

* View the entire HPC center as a system.
— New ways to optimize this system’s performance and availability.

Global
coordination Scheduler Center-wide storage/processing

Staging Offloading Checkpointing Prefetching

Novel aggregate storage

Storage Node-local disks Workstation/storage
abstractions server Parallel file ~ Tape archives
systems
Memory resources
IBP /home@NFS

_ _ Scalable I/O across the center
communication Collective Data Data Data

pathway downloads sessions shuffling sieving

OAK
FRIDGE

National Laboratory

4 Vazhkudai_FreeLoader_SCO7

Global coordination

* Motivation: Lack of global coordination between the
storage hierarchy and system software.

* As a start, need coordination between staging,
offloading, and computation:

— Problems with manual and scripted staging:

* Human operational cost, wasted compute time/storage, and
increased wait time due to resubmissions.

- How?
* Explicit specification of 1/O activities alongside computation in
a job script.
e Zero-charge data transfer queue.
* Planning and orchestration.

OAK
RIDGE

National Laboratory

~

Coordinating data and computation

 Specification of I/O activities in PBS job script:

- BEGIN STAGEIN

* retry=3; interval=20

* hsi -A keytab -k MyKeytab -l user “get /scratch/user/Destination: Input”
— END STAGEIN

- BEGIN COMPUTATION
* #PBS...

- END COMPUTATION
— BEGIN STAGEOUT ... END STAGEOUT

e Separate data transfer queue: Zero charge:
— Queuing up and scheduling data transfers.
— Treats data transfers as “data jobs.”
— Data transfers can now be charged, if need be!

* Planning and orchestration
— Parsing into individual stage-in, compute, and stage-out jobs.

— Dependency setup and management using resource manager primitives.

OAK
“*RIDGE

National Laboratory

Seamless data path

* Motivation: Standard data availability techniques designed with
persistent data in mind:

— RAID techniques can be time consuming; a 160-GB disk takes order
of dozens of minutes.

— Multiple disk failure within a RAID group can be crippling.

— 1/O node failovers are not always possible (thousands of nodes).

— Need novel mechanisms to address “transient data availability” that
complement existing approaches!

* What makes it feasible?
— Natural data redundancy in the staged job data.
— Job input data usually immutable.
— Network costs drastically decreasing each year.
— Better bulk transfer tools with support for partial data fetches.

* How?
— Augmenting FS metadata with “recovery hints” from job script.
— On-the-fly data reconstruction on another object storage target (OST).
— Patching from data source.

OAK
“*RIDGE

National Laboratory

Data recovery

* Embedding recovery metadata about transient job data into the Lustre
parallel file system:

- Extend Lustre metadata to include recovery hints.
— Metadata extracted from job script.
— “Source” and “sink” information becomes an integral part of transient data.

* Failure detection to check for unavailable OSTs.

* Reconstruction:
— Locate substitute OSTs and allocate objects.
- Mark data dirty in metadata directory service (MDS).
— Recover URI from MDS.
— Compute missing data range.

* Remote patching:
— Reducing multiple authentication costs per dataset.
— Automated interactive session with “Expect” for single sign-on.
— Protocols: hsi, GridFTP, NFS.

OAK
“*RIDGE

National Laboratory

Results

Machine room
Head node

Job script

Compute nodes

1. Stage data Job queue

2. Checkpoint setup
3. Compute job

1/0 nodes

Regular I/0
access to
staged data

e L e e e
Seamless I/O access
via “data path”

Iscratch
parallel file
system

Source copy of
dataset accessed
using ftp, scp,
GridFTP

Staging/offloading

1,000,000

:

[

» Better use of users’ compute time allocation and decreased job

turnaround time.

e Optimal use of center’'s scratch space, avoiding too early stage

in and delayed offloading.

 Reduces resubmissions due to result-data loss.
* Reduces wait time: Trace-driven simulation of LANL operational

data + LCF scratch data.

9 Vazhkudai_Freel

100,000 — A _1
- [Without reconstruction]
£ 10,000F 1
w B -
£ .]
= 1,000 F .
@

s 100l]

c = .
8 L

> : . . i

10F With reconstruction 3

1 B | 1]

4 8 16 32

Stripe count
OAK
PRIDGE

National Laboratory

New storage abstractions

* Checkpointing TB of data cumbersome; need better tools to address
the storage bandwidth bottleneck.

e Options:
— Machines can potentially be provisioned with solid-state memory.

- ~ 200 TB of aggregate memory in the PF machine; potential
“residual memory”:
* Tier 1 Apps (GTC, S3D, POP, CHIMERA) seldom use all memory.
e Checkpoint size is ~ 10% of the memory footprint.

— Many applications oversubscribe for processors in an attempt to plan
for failure:
* Use the oversubscribed processors!

* Checkpoint to memory can expedite these operations.

— Previous solutions are not concerted in their memory usage, creating
artificial load imbalance:
* Examples: J.S. Plank, K. Li, and M.A. Puening, “Diskless Checkpointing,”

IEEE Transactions on Parallel and Distributed Systems, 1998. 9(10): p. 972-986.

L.M. Silva, and J.G. Silva, “Using two-level stable storage for efficient
checkpointing,” IEE Proceedings - Software, 1998. 145(6): p. 198-202.

10 Vazhkudai_Freel

OAK
“*RIDGE

National Laboratory

stdchk: A checkpoint-friendly storage

e Aggregate memory-based storage abstraction:
— Split checkpoint images into chunks and stripe them.
— Parallel 1/0 across distributed memory.
— Redundantly mounted on PEs for FS-like access.
— Optimized, relaxed POSIX I/O interfaces to the storage.

— Lazy migration of images to local disk/archives, creating a seamless
data pathway.

* Unused/underutilized processors can perform this operation.

— Incremental checkpointing and pruning of checkpoint files.
* Compare chunk hashes from two successive intervals.
* Initial experiments suggest a 10-25% reduction in size for BLCR checkpoints.
* Purge images from previous interval once the current image is safely stored.
* File system is unable to perform such optimizations.

— Specification of checkpoint preparation in a job script.

OAK
“*RIDGE

National Laboratory

End-user data delivery:. An architecture
for eager offloading of result data

 Offloading result data equally important for local visualization and
interpretation.

» Storage system failure and purging of scratch space can cause loss of
result data; end-user resource may not be available for offload.

 Eager offloading:
- Equivalent to data reconstruction.

— Transparent data migration using “sink”/destination metadata as part of job
submission (done as part of global coordination).

— Data offloading can be overlapped with computation.

— Can failover to intermediate storage/archives for planned transfers in the future:
* Intermediate nodes specified by the user in the job script.
* A one-to-many distribution followed by a many-to-one download.
e A combination of bullet + landmarks (p2p + staged).

Erasure coded chunks for redundancy and fault tolerance.

Monitor offloads for bandwidth degradation and choose alternate paths accordingly.

OAK
“*RIDGE

National Laboratory

FreelLoader: Improving end-user
data delivery with client-side
collaborative caching

* Enabling trends:

Data Data
— Unused storage: More than 50% source-l l source-N

desktop Storage unused_ ftp://remote-source-1 gsiftp://remote-source-N Remote
- Immutable data: Data are Usua"y Download?.:sing differy/protocols Local

write-once, read-many with remote FreeLoader / 5

source copies P N

pies. oy e S

_ Connectl_\/lty: Well-connected, secure sripeonY [T 7,\“34 'J P t—

LAN settings. n e S 1P T -1

///»\\,,(CQ)(Scientific

application

FreeLoader

FreeLoader storage cloud \ client

* FreeLoader aggregate storage cache:
— Scavenges O(GB) of contributions

from desktops. 120 | O FreeLoader
— Parallel /0O environment across = 100 i B~ h “mll | W PVFS

loosely connected workstations, g 80 {1 [o 8 ¥ | Ll HPSS-Hot

aggregating /O as well as 5 6o } O HPSS-Cold

network BW. T 4 | = oo
— NOT a file system, but a low-cost, £ 5 _lL l

local storage solution enabling 0 | N

client-side caching and locality. S12MB A6B e OB B4GB O

RIDGE

13 Vazhkudai_F ler_SCO7) Netlonal Laborsory

Virtual cache: Impedance matching

on steroids!

e Can we host partial copies of datasets and yet serve client
accesses to the entire dataset?

- ~ FileSystem-BufferCache:Disk :: FreeLoader:RemoteDataSource.

* Benefits:

— Bootstrapping the
download process.

— Store more datasets.

— Allows for efficient
cache management.

— Persistent storage

and BW-only donors.

14 Vazhkudai_Freel

Scientific Data Cache

Persistent
storage +

I BW donors

2

Stripe
width § (w)

O

dataset-1

BW -
donors L. Data
I source
______ A
~ Patch: il
~ i
’5}]\ width ' (p) " Transparent
= ! S patching
S ‘ ~ ’D "' I
Parallel get ()) 3‘ TR
dataset-2 : h Source copy of dataset-N accessed

Bootstrapping
downloads using
“seeds” across w

1
I Source copy of dataset-1 accessed
http://source-1l/dataset-1

gsiftp://source-N/dataset-2

-
S S P NP I ''''' Data
A source

OAK
FRIDGE

National Laboratory

Contact

Sudharshan Vazhkudai

Computer Science Research Group
Computer Science and Mathematics Division
(865) 576-5547

vazhkudaiss@ornl.gov

http://www.csm.ornl.gov/~vazhkuda/Storage.html

15 Vazhkudai_FreeLoader_SC07

