Parallel Discrete Event Simulation (PDES) at ORNL

Presented by

Kalyan S. Perumalla, Ph.D.
Modeling & Simulation Group
Computational Sciences & Engineering
PDES: Selected application areas

- **Network simulation**
 - Internet protocols, security, P2P designs, ...

- **Traffic simulation**
 - Emergency planning/response, environmental policy analysis, urban planning, ...

- **Social dynamics simulation**
 - Operations planning, foreign policy, marketing, ...

- **Sensor simulations**
 - Wide area monitoring, situational awareness, border surveillance, ...

- **Organization simulations**
 - Command and control, business processes, ...

Emergencies

Global and local events

Current and future defense systems

Protection and awareness systems
High-performance PDES kernel requirements

- **Global time synchronization**
 - Total time-stamped ordering of events
 - Paramount for accuracy

- **Fast synchronization**
 - Scalable, application-independent, time-advance mechanisms
 - Critical for real-time and as-fast-as-possible execution

- **Support for fine-grained events**
 - Minimal overhead relative to event processing times
 - Application computation is typically only 5 µs to 50 µs per event

- **Conservative, optimistic, and mixed modes**
 - Need support for the principal synchronization approaches
 - Useful to choose mode on per-entity basis at initialization
 - Desirable to vary mode dynamically during simulation

- **General-purpose API**
 - Reusable across multiple applications
 - Accommodates multiple techniques
 - Lookahead, state saving, reverse computation, multicast, etc.
µsik—unique PDES “micro-kernel”

Unique mixed-mode kernel
- The only scalable mixed-mode kernel in the world
- Supports conservative, optimistic, and mixed modes in a single kernel

Used in a variety of applications
- DES-based vehicular traffic models
- DES-based plasma physics models
- DES-based neurological models
- Largest Internet simulations

Some recent results of fine-grained PDES benchmark (phold)
- Among the largest/fastest scalability results in parallel discrete event simulation
μsik scaled to more than 10^4 processors

- Some recent results of fine-grained PDES benchmark
 - On Blue Gene Watson (BGW) at IBM TJ Watson Research Center
 - Well-known PHOLD benchmark, with 1 million logical processes, 10 million pucks
- The largest and fastest scalability results in PDES recorded to date
µsik micro-kernel internals

Micro-kernel

- **Pc**: Earliest committable time stamp
- **EPTS Q**: Processable
- **Pe**: Earliest emittable time stamp

User LPs

- **LP**: Logical process
- **FEL → t**: Future event list
- **PEL → t**: Processed event list
- **LVT**: Local virtual time

Kernel LPs

- **KP**: Kernel process

When update kernel Qs?
- New LP added or deleted
- LP executes an event
- LP receives an event

LP = Logical process
KP = Kernel process
ECTS = Earliest committable time stamp
EPTS = Earliest processable time stamp
EETS = Earliest emittable time stamp
PEL = Processed event list
FEL = Future event list
LVT = Local virtual time
libSynk: μsik’s synchronization core
\textbf{\(\mu\text{sik\) micro-kernel capabilities}}

- \(\mu\text{sik}\) is currently able to support the following:
 - Lookahead-based conservative and/or optimistic execution
 - Reverse computation-based optimistic execution
 - Checkpointing-based optimistic execution
 - Resilient optimistic execution (zero rollbacks)
 - Constrained, out-of-order execution
 - Preemptive event processing
 - Any combinations of the above
 - Automated, network-throttled flow control
 - User-level event retraction
 - Process-specific limits to optimism
 - Dynamic process addition/deletion
 - Shared and/or distributed memory execution
 - Process-oriented views

- It accommodates addition of the following:
 - Synchronized multicast
 - Optimistic dynamic memory allocation
 - Automated load-balancing
SensorNet: Parallel simulation/immersive test-bed

- Seamless integrated testbed to incorporate a variety of important simulations, stimulations, and live devices
- Achieves unified capabilities and significant fidelity for test and evaluation of CB sensor device-based designs, concepts, and operations
SensorNet: Simulation-based analysis for plume tracking

- Environmental phenomenon exhibits high variability.
- Phenomenon drives the sensor network’s computation and communication.
- Trace gathered at base station of sensed phenomenon reflects high variability.
- Communication effects induce unpredictable gaps in series.
- Accurate, integrated simulation of phenomenon and communication captures complex interdependencies.
SCATTER: Ultra-scale PDES-based mobility simulations

- Scalable tool for transportation and energy/event/emergency research
- Regional scale: multiple states
 - 10^6–10^7 intersections
- Current tool capabilities
 - At most 10^4 intersections
- Faster than real time is very useful

Our approach: SCATTER
- DES models
 - vs time-stepped
- Parallel execution
 - vs sequential
- Scalability to high-performance computing
 - 10^2–10^3 CPUs
- Important behaviors
 - kinetic + non-kinetic

Network flow methods
- OREMS
- CORSIM
- MITSIM
- TRANSIMS

Fidelity
- Good for rough estimates of evacuation delay, ...
- Good for emissions estimates, traffic analysis, ...

Speed
- Faster
- Slower

Higher accuracy
- Lower accuracy
SCATTER: Benchmark performance

Event processing speed

- **Nodes = 9**
- **Nodes = 1089**

Very low event processing overhead (ms)!

Real time/simulated time

- **Nodes = 9**
- **Nodes = 1089**

Significantly faster than real time with 1 million vehicles!

Speedup over real-time

Parallel Speedup

- **Significant speedup with parallel execution!**
Contact

Kalyan S. Perumalla
Modeling & Simulation Group
Computational Sciences & Engineering
(865) 241-1315
perumallaks@ornl.gov