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With the hype on Cell and PS3
we became interested

e The PlayStation 3's CPU based on a "Cell* processor. u
* Each Cell contains a Power PC processor and 8 SPEs (SPE is processing unit, SPE: SPU
+ DMA engine).
— An SPE is a self-contained vector processor that acts independently from the others.
* 4 way SIMD floating point units capable of a total of 25.6 Gflop/s @ 3.2 GHZ.
— 204.8 Gflop/s peak!
— The catch is that this is for 32 bit floating point; (single precision, SP).

— And 64 bit floating point runs at 14.6 Gflop/s total for all 8 SPEs!!
* Divide SP peak by 14; factor of 2 because of DP and 7 because of latency issues.
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Performance of single precision

conventional processors

* We have the similar
situation on our

commodity processors. AMD Opteron

- That is, SP is 2X as
fast as DP on many
systems.

* The Intel Pentium and
AMD Opteron have

SSE2:
— 2 flops/cycle DP
— 4 flops/cycle SP

* IBM PowerPC has

AltiVec:
— 8 flops/cycle SP

— 4 flops/cycle DP
* No DP on AltiVec
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Single precision is faster because
* Higher parallelism in SSE/vector units
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* Reduced data motion
* Higher locality in cache
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32 or 64 bit floating point precision?

* A long time ago, 32 bit floating point was used.
— Still used in scientific apps but limited.

* Most apps use 64 bit floating point.

— Accumulation of round off error:
* A 10 Tflop/s computer running for 4 hours performs > 1 exaflop (10'8) ops.

— Il conditioned problems:
— |IEEE SP exponent bits too few (8 bits, 10+38),

— Critical sections need higher precision—
* Sometimes need extended precision (128 bit floating point).

— However, some can get by with 32 bit floating point in some parts.
* Mixed precision is a possibility.

— Approximate in lower precision and then refine or improve solution to high
precision.

A
el e UNIVERSITYo TENNESSEE OAK
INNOVATIVE COMPUTING Department of Electrical Engineering and Computer Science m

LABORATORY National Laborato: ry



Idea goes something like this...

* Exploit 32 bit floating point as much as possible—
— especially for the bulk of the computation.

* Correct or update the solution with selective use of 64 bit
floating point to provide refined results.

* Intuitively
— compute a 32 bit result,

— calculate a correction to 32 bit result using selected higher precision,
and

— perform the update of the 32 bit results with the correction using high
precision.
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Mixed-precision iterative refinement

* Iterative refinement for dense systems, Ax = b, can work this way.

L U = lu(A) SINGLE
on’)
x = L\(U\b) SINGLE
on’)
r=b-Ax DOUBLE
on’)
WHILE || r || not small enough

z = L\(U\r) SINGLE o’

X=X+2Z DOUBLE om")

r=b-Ax DOUBLE o)
END
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Mixed-precision iterative refinement

* lterative refinement for dense systems, Ax = b, can work
this way.

— Wilkinson, Moler, Stewart, and Higham provide error bound for SP
floating point results when using DP fl pt.

— It can be shown that, using this approach, we can compute the
solution to 64-bit floating point precision.

* Requires extra storage, total is 1.5 times normal.
* O(n3) work is done in lower precision.
* O(n2) work is done in high precision.

* Problems if the matrix is ill-conditioned in sp; O(108).
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Results for mixed precision iterative
refinement for dense Ax=Db

Architecture (BLAS)

Intel Pentium Il Coppermine (Goto)
Intel Pentium lll Katmai (Goto)

Sun UltraSPARC lle (Sunperf)

Intel Pentium IV Prescott (Goto)
Intel Pentium IV-M Northwood (Goto)
AMD Opteron (Goto)

Cray X1 (libsci)

IBM Power PCG5 (2.7 GHz)VecLib)
Compaqg Alpha EV6 (CXML)

IBM SP Power3 (ESSL)

SGI Octane (ATLAS)
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 Single precision is faster than DP because of
— higher parallelism within vector units
* 4 ops/cycle (usually) instead of 2 ops/cycle
— reduced data motion
* 32 bit data instead of 64 bit data

— higher locality in cache
* More data items in cache

s e NIVERSITYof TENNESSEE OAK

INNOVATIVE COMPUTING Department of Electrical Engineering and Computer Science RIDGE
LABORATORY National Laboratory




Results for mixed precision iterative
refinement for dense Ax=Db

== Architecture (BLAS)
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Architecture (BLAS-MPI) No. of n DP solve | DPsolve | No.
procs /SP solve /iter ref | of iter

AMD Opteron (Goto — OpenMPI MX) 32 22627 1.85 1.79 6

AMD Opteron (Goto — OpenMPI MX) 64 32000 1.90 1.83 6
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What about the Cell?

* Power PC at 3.2 GHz:
— DGEMM at 5 Gflop/s.

— Altivec peak at 25.6 Gflop/s—
e Achieved 10 Gflop/s SGEMM.

8 bytes 16 bytes 128 bytes

° 8 SPU S |F (perdin (one dir) %(medw) Il
— 204.8 Gflop/s peak!
— The catch is that this is for 32 bit floating point (single precision SP).

— And 64 bit floating point runs at 14.6 Gflop/s total for all 8 SPEs!!

* Divide SP peak by 14; factor of 2 because of DP and 7 because of
latency issues.
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Moving data around on the Cell

SPE SPE SPE SPE
SPU SPU SPU SPU |25.6 GFlops SP
LS LS LS LS 1.82 GFlops DP
| [ > | | 256 KB
@ : — \\
PPE % -~ ~)
MEM
PPU 204.8 GB/s i,
K | | | I‘_,.Z———zs.s GB/s
LS LS LS LS
25.6 GB/s
Injection bandwidth | SPU SPU SPU SPU Injection bandwidth
SPE SPE SPE SPE

Worst-case memory-bound operations (no reuse of data).
three data movements (2 in and 1 out) with 2 ops (SAXPY)
for the Cell would be 4.6 Gflop/s (25.6 GB/s*20ps/12B).
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IBM Cell 3.2 GHZ, AX=Db
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IBM Cell 3.2 GHZ, AX=Db

GFlop/s
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Cholesky on the Cell, Ax=b, A=AT, xTAx >0

Gflop/s
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175 4 sGeEmMmpeak  Single precision performance
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For the SPE’s standard C code and C language SIMD extensions (intrinsics)
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Cholesky—Using two Cell chips
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Intriguing potential

* Exploit lower precision as much as possible

— Payoff in performance
* Faster floating point
* Fewer data to move

e Automatically switch between SP and DP to match the
desired accuracy

— Compute solution in SP and then a correction to the solution in DP
 Potential for GPU, FPGA, special purpose processors

— What about 16 bit floating point?
* Use as little you can get away with and improve the accuracy

* Applies to sparse direct and iterative linear systems and
Eigenvalue, optimization problems, where Newton's method

Is used N N f(x;)
i+1 — Al — —,
17 (xi)
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IBM/Mercury Cell blade

* From IBM or Mercury

— 2 Cell chip
 Each w/8 SPEs

- 512 MB/Cell
— ~$8K-17K
-~ Some SW
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Sony Playstation 3 cluster PS3-T

* From IBM or Mercury

— 2 Cell chip
e Each w/8 SPEs

— 512 MB/Cell
- ~$8K-17K
- Some SW

* From WAL*MART PS3

— 1 Cell chip
 w/6 SPEs

- 256 MB/PS3
- $600

-~ Download SW
— Dual boot
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Cell hardware overview

4 25.6 Gﬂop/s 25.6 Gﬂop/s 25.6 Gﬂop/s 25.6 Gﬂop/s N

/s

T S £ £

s 25.6 Gflop/s 25.6 Gflop/s )

3.2 GHz

25 GB/s injection bandwidth

200 GB/s between SPEs

32 bit peak perf 8*25.6 Gflop/s
204.8 Gflop/s peak

64 bit peak perf 8*1.8 Gflop/s
14.6 Gflop/s peak

512 MB memory
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PS3 hardware overview
/

25.6 Gflop/s 25.6 Gflop/s 25.6 Gflop/s Disabled/broken: Yield issues)

///1

ési 6% & —Y
@ GameOS
PowerPC g} g} g,i .

N 25.6 Gflop/s 25.6 Gflop/s.25.6 Gflop/s %
. 3.2GHz
5 GB/s 25 GB/s injection bandwidth
I 200 GB/s between SPEs
. B | 32 bit peak perf 6*25.6 Gflop/s
m v 153.6 Gflop/s peak
64 bit peak perf 6*1.8 Gflop/s
10.8 Gflop/s peak
1 Gb/s NIC
256 MiB memory
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PlayStation 3 LU codes
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PlayStation 3 LU codes
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Cholesky on the PS3, Ax=h, A=AT, xTAx > 0
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HPC in the living room
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Matrix Multiple on a 4 Node PlayStation3 Cluster

What s good What's bad

Very cheap: ~43 per Gflop/s (with 32 . Gigabit network card. 1 Gb/s is too

bit floating point theoretical peak). little for such computational power
* Fast local computations between

SPEs (150 Gflop/s per node).
- Perfect overlap between * Linux can only run on top of
communications and computations is GameOS (hypervisor):
possible (Open-MPI running): - Extremely high network access
- PPE does communication via MPI. latencies (120 usec).
— SPEs do computation via SGEMMs. — Low bandwidth (600 Mb/s).
* Only 256 MB local memory.
* Only6 SPEs. Gold: Computation: 8 ms

—2ome Blue: Communication: 20 ms

_— = 7

MPI Task-0

MPI Task-1

MPI Task-2

MPI Task-3
- -
Time
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Users guide for SC on PS3

SCOP3

« SCOP3: A Rough Guide to
Scientific Computing on the |
PlayStation 3 S

A Rough Guide to Scientific Computing On the PlayStation 3
Technical Report UT-CS-07-535

aaaaaaaaa

* See web page for details —
www.netlib.org/utk/people/JackDong
arra/PAPERS/scop3.pdf
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Conclusions

* For the last decade or more, the research investment
strategy has been overwhelmingly biased in favor of
hardware.

* This strategy needs to be rebalanced—Dbarriers to progress
are increasingly on the software side.

 Moreover, the return on investment is more favorable to
software.

— Hardware has a half-life measured in years, while software has a
half-life measured in decades.

* High performance ecosystem is out of balance:

- hardware, OS, compilers, software, algorithms, applications—
* no Moore’s Law for software, algorithms and applications.
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